Magnetic Cross-Linked Enzyme Aggregates of Glycoside Hydrolase: An Efficient and Stable Biocatalyst for Icaritin
Abstract
1. Introduction
2. Results
2.1. Optimization and Characterization of CLEAs
2.2. Optimization and Characterization of MCLEAs
2.3. Assays of the Optimal pH and Temperature
2.4. Stability and Reusability
2.5. Application in Icaritin Biosynthesis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Expression of Rhamnosidase and Glucosidase
3.3. Enzyme Activity Assay
3.4. Preparing Carboxyl-Functionalized Magnetic Fe3O4 Nanoparticles
3.5. Preparation of CLEAs and MCLEAs
3.6. Stability Evaluation of Free Enzymes and Immobilized Enzymes
3.7. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Wei, X.; Gu, D.; Xu, Y.; Zhou, H. Human Liver Cancer Organoids: Biological Applications, Current Challenges, and Prospects in Hepatoma Therapy. Cancer Lett. 2023, 555, 216048. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.-Y.; Zhang, A.-Q.; Cheng, S.-X.; Rong, L.; Zhang, X.-Z. Drug Self-Delivery Systems for Cancer Therapy. Biomaterials 2017, 112, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Ion, D.; Niculescu, A.-G.; Păduraru, D.N.; Andronic, O.; Mușat, F.; Grumezescu, A.M.; Bolocan, A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2022, 14, 18. [Google Scholar] [CrossRef]
- Bi, Z.; Zhang, W.; Yan, X. Anti-Inflammatory and Immunoregulatory Effects of Icariin and Icaritin. Biomed. Pharmacother. 2022, 151, 113180. [Google Scholar] [CrossRef]
- Huong, N.T.; Son, N.T. Icaritin: A Phytomolecule with Enormous Pharmacological Values. Phytochemistry 2023, 213, 113772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, B.; Wen, S.; Wang, Y.; Pan, C.; Qu, L.; Yin, Y.; Wei, Y. Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium. Molecules 2023, 28, 7173. [Google Scholar] [CrossRef]
- Liu, D.-F.; Li, Y.-P.; Ou, T.-M.; Huang, S.-L.; Gu, L.-Q.; Huang, M.; Huang, Z.-S. Synthesis and Antimultidrug Resistance Evaluation of Icariin and Its Derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 4237–4240. [Google Scholar] [CrossRef]
- Liu, F.; Wei, B.; Cheng, L.; Zhao, Y.; Liu, X.; Yuan, Q.; Liang, H. Co-Immobilizing Two Glycosidases Based on Cross-Linked Enzyme Aggregates to Enhance Enzymatic Properties for Achieving High Titer Icaritin Biosynthesis. J. Agric. Food Chem. 2022, 70, 11631–11642. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, S.; Tong, X.; Wu, T.; Pei, J.; Zhao, L. Biochemical Characterization of a Novel Hyperthermophilic α-l-Rhamnosidase from Thermotoga petrophila and Its Application in Production of Icaritin from Epimedin C with a Thermostable β-Glucosidase. Process Biochem. 2020, 93, 115–124. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, S.; Lu, C.; Xu, J.; Pei, J.; Zhao, L. Immobilization of Thermostable β-Glucosidase and α-l-Rhamnosidase from Dictyoglomus Thermophilum DSM3960 and Their Cooperated Biotransformation of Total Flavonoids Extract from Epimedium into Icaritin. Catal. Lett. 2021, 151, 2950–2963. [Google Scholar] [CrossRef]
- Liu, C.; Li, R.; Peng, J.; Qu, D.; Huang, M.; Chen, Y. Enhanced Hydrolysis and Antitumor Efficacy of Epimedium Flavonoids Mediated by Immobilized Snailase on Silica. Process Biochem. 2019, 86, 80–88. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Lu, Y.; Xu, L.; Yin, H.; Tam, J.P.; Yang, H.; Jia, X. Construction of a Novel Catalysis System for Clean and Efficient Preparation of Baohuoside I from Icariin Based on Biphase Enzymatic Hydrolysis. J. Clean. Prod. 2018, 170, 727–734. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Gao, J. Simultaneous Preparation and Comparison of the Osteogenic Effects of Epimedins A–C and Icariin from Epimedium Brevicornu. Chem. Biodivers. 2018, 15, e1700578. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.L.; Albuquerque, B.F.; Nunes, M.A.P.; Ribeiro, M.H.L. Exploring Magnetic and Imprinted Cross-Linked Enzyme Aggregates of Rhamnopyranosidase in Microbioreactors. Bioresour. Technol. 2018, 249, 704–712. [Google Scholar] [CrossRef]
- Liu, Z.; Smith, S.R. Cross-Linked Enzyme Aggregate (CLEA) Preparation from Waste Activated Sludge. Microorganisms 2023, 11, 1902. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, D.; Yin, L.; Wang, F. Preparation, Activity and Structure of Cross-Linked Enzyme Aggregates (CLEAs) with Nanoparticle. Enzym. Microb. Technol. 2017, 107, 22–31. [Google Scholar] [CrossRef]
- Xu, M.; Ji, D.; Deng, Y.; Agyei, D. Preparation and Assessment of Cross-Linked Enzyme Aggregates (CLEAs) of β-Galactosidase from Lactobacillus Leichmannii 313. Food Bioprod. Process. 2020, 124, 82–96. [Google Scholar] [CrossRef]
- Shaarani, S.M.; Jahim, J.M.; Rahman, R.A.; Idris, A.; Murad, A.M.A.; Illias, R.M. Silanized Maghemite for Cross-Linked Enzyme Aggregates of Recombinant Xylanase from Trichoderma Reesei. J. Mol. Catal. B Enzym. 2016, 133, 65–76. [Google Scholar] [CrossRef]
- Talekar, S.; Ghodake, V.; Ghotage, T.; Rathod, P.; Deshmukh, P.; Nadar, S.; Mulla, M.; Ladole, M. Novel Magnetic Cross-Linked Enzyme Aggregates (Magnetic CLEAs) of Alpha Amylase. Bioresour. Technol. 2012, 123, 542–547. [Google Scholar] [CrossRef]
- Venkataraman, S.; Vaidyanathan, V.K. Synthesis of Magnetically Recyclable Porous Cross-Linked Aggregates of Tramates Versicolor MTCC 138 Laccase for the Efficient Removal of Pentachlorophenol from Aqueous Solution. Environ. Res. 2023, 229, 115899. [Google Scholar] [CrossRef]
- Lucena, G.N.; dos Santos, C.C.; Pinto, G.C.; Piazza, R.D.; Guedes, W.N.; Jafelicci Júnior, M.; de Paula, A.V.; Marques, R.F.C. Synthesis and Characterization of Magnetic Cross-Linked Enzyme Aggregate and Its Evaluation of the Alternating Magnetic Field (AMF) Effects in the Catalytic Activity. J. Magn. Magn. Mater. 2020, 516, 167326. [Google Scholar] [CrossRef]
- Escalante Morales, L.K.; Sengar, P.; Dorado Baeza, A.; Vazquez-Duhalt, R.; Chauhan, K. Enhanced Laccase Activity and Stability as Crosslinked Enzyme Aggregates on Magnetic Copper Ferrite Nanoparticles for Biotechnological Processes. ChemCatChem 2023, 15, e202301071. [Google Scholar] [CrossRef]
- Abdulhamid, M.B.; Hero, J.S.; Zamora, M.; Gómez, M.I.; Navarro, M.C.; Romero, C.M. Effect of the Biological Functionalization of Nanoparticles on Magnetic CLEA Preparation. Int. J. Biol. Macromol. 2021, 191, 689–698. [Google Scholar] [CrossRef]
- He, G.; Liu, H.; Yang, C.; Hu, K.; Zhai, X.; Fang, B.; Liu, K.; Zulekha; Li, D. A Comparison of Dual-Enzyme Immobilization by Magnetic Nanoparticles and Magnetic Enzyme Aggregates for Cascade Enzyme Reactions. Biochem. Eng. J. 2024, 204, 109207. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors—A Review. Nanomaterials 2023, 13, 760. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Pu, S.; Wang, J.; Deng, Y.; Yang, C.; Naseer, S.; Li, D. Enzymatic Hydrolysate of Geniposide Directly Acts as Cross-Linking Agent for Enzyme Immobilization. Process Biochem. 2020, 99, 187–195. [Google Scholar] [CrossRef]
- Bouguerra, O.M.; Wahab, R.A.; Huyop, F.; Al-Fakih, A.M.; Mahmood, W.M.A.W.; Mahat, N.A.; Sabullah, M.K. An Overview of Crosslinked Enzyme Aggregates: Concept of Development and Trends of Applications. Appl. Biochem. Biotechnol. 2024, 196, 5711–5739. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R. CLEAs, Combi-CLEAs and ‘Smart’ Magnetic CLEAs: Biocatalysis in a Bio-Based Economy. Catalysts 2019, 9, 261. [Google Scholar] [CrossRef]
- Abdul Wahab, M.K.H.; El-Enshasy, H.A.; Bakar, F.D.A.; Murad, A.M.A.; Jahim, J.M.; Illias, R.M. Improvement of Cross-Linking and Stability on Cross-Linked Enzyme Aggregate (CLEA)-Xylanase by Protein Surface Engineering. Process Biochem. 2019, 86, 40–49. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Adv. 2013, 4, 1583–1600. [Google Scholar] [CrossRef]
- Zhen, Q.; Wang, M.; Qi, W.; Su, R.; He, Z. Preparation of β-Mannanase CLEAs Using Macromolecular Cross-Linkers. Catal. Sci. Technol. 2013, 3, 1937. [Google Scholar] [CrossRef]
- Panwar, D.; Kaira, G.S.; Kapoor, M. Cross-Linked Enzyme Aggregates (CLEAs) and Magnetic Nanocomposite Grafted CLEAs of GH26 Endo-β-1,4-Mannanase: Improved Activity, Stability and Reusability. Int. J. Biol. Macromol. 2017, 105, 1289–1299. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rathod, V.K. Magnetic Macromolecular Cross Linked Enzyme Aggregates (CLEAs) of Glucoamylase. Enzym. Microb. Technol. 2016, 83, 78–87. [Google Scholar] [CrossRef]
- Schoevaart, R.; Wolbers, M.W.; Golubovic, M.; Ottens, M.; Kieboom, A.P.G.; van Rantwijk, F.; van der Wielen, L.A.M.; Sheldon, R.A. Preparation, Optimization, and Structures of Cross-Linked Enzyme Aggregates (CLEAs). Biotechnol. Bioeng. 2004, 87, 754–762. [Google Scholar] [CrossRef]
- Li, L.; Li, G.; Cao, L.; Ren, G.; Kong, W.; Wang, S.; Guo, G.; Liu, Y.-H. Characterization of the Cross-Linked Enzyme Aggregates of a Novel β-Galactosidase, a Potential Catalyst for the Synthesis of Galacto-Oligosaccharides. J. Agric. Food Chem. 2015, 63, 894–901. [Google Scholar] [CrossRef]
- Rathod, A.G.; Tiwari, P.; Shaily, J.; Tiwari, S. Stabilizing Effect of Quercetin upon Bovine Serum Albumin as a Model Protein. Colloids Surf. B Biointerfaces 2025, 252, 114663. [Google Scholar] [CrossRef]
- Fazary, A.E.; Ismadji, S.; Ju, Y.-H. Biochemical Studies on Native and Cross-Linked Aggregates of Aspergillus Awamori Feruloyl Esterase. Int. J. Biol. Macromol. 2009, 44, 240–248. [Google Scholar] [CrossRef]
- Khatik, A.G.; Jain, A.K.; Muley, A.B. Preparation, Characterization and Stability of Cross Linked Nitrilase Aggregates (Nitrilase–CLEAs) for Hydroxylation of 2-Chloroisonicotinonitrile to 2-Chloroisonicotinic Acid. Bioprocess Biosyst. Eng. 2022, 45, 1559–1579. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.E.; Mary, P.R.; Haritha, K.V.; Panwar, D.; Kapoor, M. Soluble and Cross-Linked Aggregated Forms of α-Galactosidase from Vigna Mungo Immobilized on Magnetic Nanocomposites: Improved Stability and Reusability. Appl. Biochem. Biotechnol. 2021, 193, 238–256. [Google Scholar] [CrossRef]
- Wei, B.; Liu, F.; Liu, X.; Cheng, L.; Yuan, Q.; Gao, H.; Liang, H. Enhancing Stability and By-Product Tolerance of β-Glucuronidase Based on Magnetic Cross-Linked Enzyme Aggregates. Colloids Surf. B Biointerfaces 2022, 210, 112241. [Google Scholar] [CrossRef]
- Ifko, D.; Vasić, K.; Knez, Ž.; Leitgeb, M. (Magnetic) Cross-Linked Enzyme Aggregates of Cellulase from T. Reesei: A Stable and Efficient Biocatalyst. Molecules 2023, 28, 1305. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; He, Y.; Cui, G.; Abdulrazaq, M.A.; Yan, Y. Enhancing Enzyme Activity and Enantioselectivity of Burkholderia Cepacia Lipase via Immobilization on Melamine-Glutaraldehyde Dendrimer Modified Magnetic Nanoparticles. Chem. Eng. J. 2018, 351, 258–268. [Google Scholar] [CrossRef]
- Bian, H.; Cao, M.; Wen, H.; Tan, Z.; Jia, S.; Cui, J. Biodegradation of Polyvinyl Alcohol Using Cross-Linked Enzyme Aggregates of Degrading Enzymes from Bacillus Niacini. Int. J. Biol. Macromol. 2019, 124, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef]
- Wang, H.; Han, S.; Wang, J.; Yu, S.; Li, X.; Lu, L. Preparation and Synthetic Dye Decolorization Ability of Magnetic Cross-Linked Enzyme Aggregates of Laccase from Bacillus Amyloliquefaciens. Bioprocess Biosyst. Eng. 2021, 44, 727–735. [Google Scholar] [CrossRef]
- Lucena, G.N.; dos Santos, C.C.; Pinto, G.C.; da Rocha, C.O.; Brandt, J.V.; de Paula, A.V.; Jafelicci Júnior, M.; Marques, R.F.C. Magnetic Cross-Linked Enzyme Aggregates (MCLEAs) Applied to Biomass Conversion. J. Solid State Chem. 2019, 270, 58–70. [Google Scholar] [CrossRef]
- Talekar, S.; Joshi, A.; Kambale, S.; Jadhav, S.; Nadar, S.; Ladole, M. A Tri-Enzyme Magnetic Nanobiocatalyst with One Pot Starch Hydrolytic Activity. Chem. Eng. J. 2017, 325, 80–90. [Google Scholar] [CrossRef]
- Patil, S.S.; Rathod, V.K. Combined Effect of Enzyme Co-Immobilized Magnetic Nanoparticles (MNPs) and Ultrasound for Effective Extraction and Purification of Curcuminoids from Curcuma Longa. Ind. Crops Prod. 2022, 177, 114385. [Google Scholar] [CrossRef]
- Sahu, A.; Badhe, P.S.; Adivarekar, R.; Ladole, M.R.; Pandit, A.B. Synthesis of Glycinamides Using Protease Immobilized Magnetic Nanoparticles. Biotechnol. Rep. 2016, 12, 13–25. [Google Scholar] [CrossRef]
- Singh, V.; Rakshit, K.; Rathee, S.; Angmo, S.; Kaushal, S.; Garg, P.; Chung, J.H.; Sandhir, R.; Sangwan, R.S.; Singhal, N. Metallic/Bimetallic Magnetic Nanoparticle Functionalization for Immobilization of α-Amylase for Enhanced Reusability in Bio-Catalytic Processes. Bioresour. Technol. 2016, 214, 528–533. [Google Scholar] [CrossRef]
- Sandler, S.E.; Fellows, B.; Mefford, O.T. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal. Chem. 2019, 91, 14159–14169. [Google Scholar] [CrossRef]
- Chi, M.-C.; Huang, Y.-F.; Lu, B.-Y.; Lin, M.-G.; Wang, T.-F.; Lin, L.-L. Magnetic Cross-Linked Enzyme Aggregates of a Transpeptidase-Specialized Variant (N450D) of Bacillus Licheniformis γ-Glutamyl Transpeptidase: An Efficient and Stable Biocatalyst for l-Theanine Synthesis. Catalysts 2021, 11, 243. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, W.; Liu, Y.; Zhang, K.; Chen, Y.; Yin, X. Laccase Immobilized on Chitosan-Coated Fe3O4 Nanoparticles as Reusable Biocatalyst for Degradation of Chlorophenol. J. Mol. Struct. 2020, 1220, 128769. [Google Scholar] [CrossRef]
- Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases. Molecules 2014, 19, 8995–9018. [Google Scholar] [CrossRef] [PubMed]
- Nawawi, N.N.; Hashim, Z.; Manas, N.H.A.; Azelee, N.I.W.; Illias, R.M. A Porous-Cross Linked Enzyme Aggregates of Maltogenic Amylase from Bacillus Lehensis G1: Robust Biocatalyst with Improved Stability and Substrate Diffusion. Int. J. Biol. Macromol. 2020, 148, 1222–1231. [Google Scholar] [CrossRef]
- Moradi, S.; Khodaiyan, F.; Hadi Razavi, S. Green Construction of Recyclable Amino-Tannic Acid Modified Magnetic Nanoparticles: Application for β-Glucosidase Immobilization. Int. J. Biol. Macromol. 2020, 154, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Ryan, M.P.; Walsh, G. Purification and Characterization of a Novel β-Galactosidase From the Thermoacidophile Alicyclobacillus Vulcanalis. Appl. Biochem. Biotechnol. 2020, 191, 1190–1206. [Google Scholar] [CrossRef]
- Cheng, G.; Pi, Z.; Zheng, Z.; Liu, S.; Liu, Z.; Song, F. Magnetic Nanoparticles-Based Lactate Dehydrogenase Microreactor as a Drug Discovery Tool for Rapid Screening Inhibitors from Natural Products. Talanta 2020, 209, 120554. [Google Scholar] [CrossRef]
- Salgın, S.; Salgın, U. Bioconjugation of Magnetic Iron Oxide Nanoparticles and Cross-Linked Enzyme Aggregates: Characterization and Comparison of CLEAs and Magnetic CLEAs. Curr. Nanosci. 2017, 13, 149–158. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Yu, H.; Wu, B.; Huai, B.; Zhuang, Z.; Sun, C.; Xu, L.; Jin, F. Icaritin Preparation from Icariin by a Special Epimedium Flavonoid-Glycosidase from Aspergillus Sp.Y848 Strain. J. Microbiol. Biotechnol. 2022, 32, 437–446. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Li, X.; Huang, W.; Wang, Y.; Wang, J.; Zhang, Y.; Yang, X.; Yan, X.; Wang, Y.; et al. Complete Biosynthesis of the Potential Medicine Icaritin by Engineered Saccharomyces cerevisiae and Escherichia coli. Sci. Bull. 2021, 66, 1906–1916. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Sun, S.; Zhou, Z.; Yuan, Q.; Liu, Y.; Liang, H. Thermostable Enzyme-Immobilized Magnetic Responsive Ni-Based Metal–Organic Framework Nanorods as Recyclable Biocatalysts for Efficient Biosynthesis of S-Adenosylmethionine. Dalton Trans. 2019, 48, 2077–2085. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, W.; Li, Y.; Fei, W.; Liang, H. Magnetic Cross-Linked Enzyme Aggregates of Glycoside Hydrolase: An Efficient and Stable Biocatalyst for Icaritin. Catalysts 2025, 15, 1034. https://doi.org/10.3390/catal15111034
Zhao Y, Zhang W, Li Y, Fei W, Liang H. Magnetic Cross-Linked Enzyme Aggregates of Glycoside Hydrolase: An Efficient and Stable Biocatalyst for Icaritin. Catalysts. 2025; 15(11):1034. https://doi.org/10.3390/catal15111034
Chicago/Turabian StyleZhao, Yuxuan, Wei Zhang, Ye Li, Wenting Fei, and Hao Liang. 2025. "Magnetic Cross-Linked Enzyme Aggregates of Glycoside Hydrolase: An Efficient and Stable Biocatalyst for Icaritin" Catalysts 15, no. 11: 1034. https://doi.org/10.3390/catal15111034
APA StyleZhao, Y., Zhang, W., Li, Y., Fei, W., & Liang, H. (2025). Magnetic Cross-Linked Enzyme Aggregates of Glycoside Hydrolase: An Efficient and Stable Biocatalyst for Icaritin. Catalysts, 15(11), 1034. https://doi.org/10.3390/catal15111034

