Carbon Nanofiber-Encapsulated FeCoNiCuMn Sulfides with Tunable S Doping for Enhanced Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Result and Discussion
2.1. Characterizations of Samples
2.2. Electrocatalytic Performance on OER for Different Samples
3. Materials and Methods
3.1. Materials
3.2. Materials Synthesis
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Xu, Z.; Wu, X.; Wu, Z.-S. Recent advances and key perspectives of in-situ studies for oxygen evolution reaction in water electrolysis. Green Energy Environ. 2023, 9, 1497–1517. [Google Scholar] [CrossRef]
- Wang, S.; Geng, Z.; Bi, S.; Wang, Y.; Gao, Z.; Jin, L.; Zhang, C. Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water electrolysis. Green Energy Environ. 2024, 9, 659–683. [Google Scholar] [CrossRef]
- Bernt, M.; Hartig Weiß, A.; Tovini, M.F.; El-Sayed, H.A.; Schramm, C.; Schröter, J.; Gebauer, C.; Gasteiger, H.A. Current Challenges in Catalyst Development for PEM Water Electrolyzers. Chem. Ing. Tech. 2019, 92, 31–39. [Google Scholar] [CrossRef]
- Tang, J.; Xu, X.; Tang, T.; Zhong, Y.; Shao, Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. Small Methods 2022, 6, 2201099. [Google Scholar]
- Yang, L.; Shi, L.; Chen, H.; Liang, X.; Tian, B.; Zhang, K.; Zou, Y.; Zou, X. A Highly Active, Long-Lived Oxygen Evolution Electrocatalyst Derived from Open-Framework Iridates. Adv. Mater. 2023, 35, 2208539. [Google Scholar]
- Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Adv. Funct. Mater. 2022, 32, 2110036. [Google Scholar] [CrossRef]
- Huang, H.; Xue, Y.; Xie, Y.; Yang, Y.; Yang, L.; He, H.; Jiang, Q.; Ying, G. MoS2 quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts. Inorg. Chem. Front. 2022, 9, 1171–1178. [Google Scholar] [CrossRef]
- Chen, Z.; Han, G.-F.; Mahmood, A.; Hou, J.; Wei, W.; Shon, H.K.; Wang, G.; Waite, T.D.; Baek, J.-B.; Ni, B.-J. Mechanosynthesized electroactive materials for sustainable energy and environmental applications: A critical review. Prog. Mater. Sci. 2024, 145, 101299. [Google Scholar] [CrossRef]
- Wang, N.; Ji, L.; Zhai, Y. WO3-Xas An Activation Medium to Prompt Overall Water Splitting of Nife-Based Electrocatalyst. J. Colloid Interf. Sci. 2024, 669, 53–63. [Google Scholar]
- Deng, X.; Chen, J.; Chen, Q.; Zhou, Y.; Liu, X.; Zhang, J.; Wang, G.; Wang, R. The synergistic effect of Ir and oxygen vacancies on Enhancing the OER performance of Surface-Reconstructed FeCo LDH. Appl. Surf. Sci. 2024, 665, 160310. [Google Scholar] [CrossRef]
- Zhu, Y.; Klingenhof, M.; Gao, C.; Koketsu, T.; Weiser, G.; Pi, Y.; Liu, S.; Sui, L.; Hou, J.; Li, J.; et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.C.; Fernandes, M.R.; Ticianelli, E.A. Activity and Stability of Pt/IrO2 Bifunctional Materials as Catalysts for the Oxygen Evolution/Reduction Reactions. ACS Catal. 2018, 8, 2081–2092. [Google Scholar] [CrossRef]
- Devendrachari, M.C.; Palem, R.R.; Shimoga, G.; Kim, S.Y.; Choi, D.S. Enhanced oxygen evolution reaction by controlled assembly of Co3O4 nanorods on TiB2 nanosheets. Surf. Interfaces 2024, 51, 104619. [Google Scholar]
- Fu, G.; Cui, Z.; Chen, Y.; Xu, L.; Tang, Y.; Goodenough, J.B. Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy 2017, 39, 77–85. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhao, Z.H.; Wang, Y.Y.; Dou, S.; Yan, D.F.; Liu, D.D.; Xia, Z.H.; Wang, S.Y. In Situ Exfoliated, Edge-Rich, OxygenFunctionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Adv. Mater. 2017, 29, 1606207. [Google Scholar]
- Pan, S.; Ma, Z.; Yang, Z.; Dongyang, B.; Yang, H.; Lai, S.; Dong, F.; Yang, X.; Lin, Z. Magnesium incorporation activates perovskite cobaltites toward efficient and stable electrocatalytic oxygen evolution. Mater. Rep. Energy 2023, 3, 100212. [Google Scholar]
- Abdelghafar, F.; Xu, X.; Guan, D.; Lin, Z.; Hu, Z.; Ni, M.; Huang, H.; Bhatelia, T.; Ping, S.; Shao, J. New Nanocomposites Derived from Cation-Nonstoichiometric Bax(Co, Fe, Zr, Y)O3−δ as Efficient Electrocatalysts for Water Oxidation in Alkaline Solution. ACS Mater. Lett. 2024, 6, 2985–2994. [Google Scholar]
- Zhang, W.; Zhao, Y.; Xu, J.; Jia, B.; Zhang, W.; Qin, M. Guided Design of Efficient Oxygen Evolution Catalysts Using Patent Analysis. ACS Omega 2024, 9, 18160–18168. [Google Scholar]
- Yuan, C.Z.; Zhao, H.; Huang, S.; Li, J.; Zhang, L.; Zhao, W.; Weng, Y.; Zhang, X.; Ye, S.; Chen, Y. Designing and regulating catalysts for enhanced oxygen evolution in acid electrolytes. Carbon Neutralization 2023, 2, 467–493. [Google Scholar]
- Wei, X.; Cao, S.; Cheng, S.; Lu, C.; Chen, X.; Lu, X.; Chen, X.; Dai, F. Unraveling the Intrinsic Mechanism of High-Performance Two-Dimensional Conjugated Metal–Organic Frameworks for ORR/OER through Theoretical Investigation. ACS Mater. Lett. 2024, 6, 3496–3504. [Google Scholar]
- Shi, Y.; Zhu, B.; Guo, X.; Li, W.; Ma, W.; Wu, X.; Pang, H. MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Mater. 2022, 51, 840–872. [Google Scholar] [CrossRef]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, e1807134. [Google Scholar] [PubMed]
- Zheng, X.; Cao, Y.; Wu, Z.; Ding, W.; Xue, T.; Wang, J.; Chen, Z.; Han, X.; Deng, Y.; Hu, W. Rational design and spontaneous sulfurization of NiCo-(oxy) hydroxysulfides nanosheets with modulated local electronic configuration for enhancing oxygen electrocatalysis. Adv. Energy Mater. 2022, 12, 2103275. [Google Scholar]
- Sari, F.N.I.; Lai, Y.; Huang, Y.; Wei, X.; Pourzolfaghar, H.; Chang, Y.; Ghufron, M.; Li, Y.; Su, Y.; Clemens, O.; et al. Electronic Structure Engineering in NiFe Sulfide via A Third Metal Doping as Efficient Bifunctional OER/ORR Electrocatalyst for Rechargeable Zinc-Air Battery. Adv. Funct. Mater. 2024, 34, 2310181. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Yu, H.; Hang, C.; Tang, W.; Yang, Y.; Chen, H.; Li, H.; Yu, F. Three-dimensional pine-tree-like bimetallic sulfide with maximally exposed active sites by secondary structural restructuring for efficient electrocatalytic OER. Int. J. Hydrogen Energy 2024, 79, 1418–1426. [Google Scholar] [CrossRef]
- Viswanathan, S.S. Nanocarbons-Based Trifunctional Electrocatalysts for Overall Water Splitting and Metal-Air Batteries: Metal-Free and Hybrid Electrocatalysts. Chem. Asian J. 2024, e202400712. [Google Scholar] [CrossRef]
- Xu, X.; Shao, Z.; Jiang, S. High-Entropy Materials for Water Electrolysis. Energy Technol. 2022, 10, 2200573. [Google Scholar]
- Xiao, W.; Lei, W.; Gong, M.; Xin, H.L.; Wang, D. Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catal. 2018, 8, 3237–3256. [Google Scholar]
- Sol, A.L.; Jeewon, B.; Jiwoo, L.; Ho, W.J. High-Entropy Nanomaterials for Advanced Electrocatalysis. Small Sci. 2023, 3, 2200109. [Google Scholar]
- Wang, S.; Xu, B.; Huo, W.; Feng, H.; Zhou, X.; Fang, F.; Xie, Z.; Shang, J.K.; Jiang, J. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B Environ. 2022, 313, 121472. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, L.; Xu, W.; Xiong, C.; Chen, W.; Xiang, X.; Zhang, B.; Shang, H. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–6061. [Google Scholar] [CrossRef]
- Li, S.; Tong, L.K.; Peng, Z.; Zhang, B.; Fu, X. A novel high-entropy sulfide (ZnCoMnFeAlMg)9S8 as a low potential and long life electrocatalyst for overall water splitting in experiments and DFT analysis. Green Chem. 2023, 26, 384–395. [Google Scholar] [CrossRef]
- Yang, P.; Sun, M.; Wang, J.; Li, J.; Yang, R.; Hao, Y.; Qi, L.; Yang, L.; Liu, X. High-entropy sulfurization enables efficient non-noble metal-based NiCoFeCuS electrocatalyst for alkaline oxygen evolution reaction. Particuology 2024, 93, 180–185. [Google Scholar] [CrossRef]
- Feng, C.; Chen, M.; Zhou, Y.; Xie, Z.; Li, X.; Xiaokaiti, P.; Kansha, Y.; Abudula, A.; Guan, G. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis. J. Colloid Interface Sci. 2023, 645, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; You, J.; Wang, Z.; Liu, G.; Huang, X.; Duan, M.; Zhang, H. High-entropy FeCoNiCuAlV sulfide as an efficient and reliable electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 70, 599–605. [Google Scholar] [CrossRef]
- Moradi, M.; Hasanvandian, F.; Bahadoran, A.; Shokri, A.; Zerangnasrabad, S.; Kakavandi, B. New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochimica Acta 2022, 436, 141444. [Google Scholar] [CrossRef]
- Cao, F.; Yang, X.; Shen, C.; Li, X.; Wang, J.; Qin, G.; Li, S.; Pang, X.; Li, G. Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode. J. Mater. Chem. A 2020, 8, 7245–7252. [Google Scholar] [CrossRef]
- Wang, R.; Huang, J.; Zhang, X.; Han, J.; Zhang, Z.; Gao, T.; Xu, L.; Liu, S.; Xu, P.; Song, B. Two-Dimensional High-Entropy Metal Phosphorus Trichalcogenides for Enhanced Hydrogen Evolution Reaction. ACS Nano 2022, 16, 3593–3603. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, X.; Zhong, C.; Ma, T.; Deng, Y.; Hu, W.; Han, X. Pyrite-type CoS2 Nanoparticles Supported on Nitrogen-Doped Graphene for Enhanced Water Splitting. Front. Chem. 2018, 6, 569. [Google Scholar]
- Tan, Z.; Sharma, L.; Kakkar, R.; Meng, T.; Jiang, Y.; Cao, M. Arousing the Reactive Fe Sites in Pyrite (FeS2) via Integration of Electronic Structure Reconfiguration and in Situ Electrochemical Topotactic Transformation for Highly Efficient Oxygen Evolution Reaction. Inorg. Chem. 2019, 58, 7615–7627. [Google Scholar] [CrossRef]
- Fu, H.Q.; Zhang, L.; Wang, C.W.; Zheng, L.R.; Liu, P.F.; Yang, H.G. 1D/1D Hierarchical Nickel Sulfide/Phosphide Nanostructures for Electrocatalytic Water Oxidation. ACS Energy Lett. 2018, 3, 2021–2029. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Yan, Y.; Xing, Y.; Lu, S.; Zhao, L.; Zhou, S.; Peng, Z.; Zeng, J. Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Appl. Catal. B Environ. 2018, 236, 569–575. [Google Scholar] [CrossRef]
- Moradi, M.; Hasanvandian, F.; Afshar, M.G.; Larimi, A.; Khorasheh, F.; Niknam, E.; Setayesh, S.R. Incorporation of Fe in Mixed CoCu-Alkoxide Hollow Sphere for Enhancing the Electrochemical Water Oxidation Performance. Mater. Today Chem. 2021, 22, 100586. [Google Scholar]
- Zhou, Y.; Yu, W.; Cao, Y.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F.; Fan, R.; Zhou, Y.; Chai, Y. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B Environ. 2021, 292, 120150. [Google Scholar] [CrossRef]
- Gong, X.; Zhong, H.; Estudillo-Wong, L.A.; Alonso-Vante, N.; Feng, Y.; Li, D. Bifunctional oxygen electrode cobalt–nickel sulfides catalysts originated from intercalated LDH precursors. J. Energy Chem. 2022, 74, 376–386. [Google Scholar] [CrossRef]
- Łukaszewski, M.; Soszko, M.; Czerwiński, A. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes-an Overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. [Google Scholar]
- Khaled, A.; Bilal, A.; Abdalla, O.; Mohammad, K.Q.; Abdel, M.R. Structural, electronic, and magnetic properties of X3Pt and XPt3 (X=Fe, Co, or Ni) alloys: Density functional theory and Monte Carlo simulation. Phys. B Condens. Matter. 2023, 651, 414615. [Google Scholar]
- Kasatikov, S.; Fantin, A.; Manzoni, A.; Sakhonenkov, S.; Makarova, A.; Smirnov, D.; Filatova, E.; Schumacher, G. Chemical interaction and electronic structure in a compositionally complex alloy: A case study by means of X-ray absorption and X-ray photoelectron spectroscopy. J. Alloys Compd. 2020, 857, 157597. [Google Scholar] [CrossRef]
- Kausar, A.; Eisa, M.H.; Aldaghri, O.; Ibnaouf, K.H.; Mimouni, A. Nanostructured Materials Derived from High Entropy Alloys–State-of-the-Art and Leading Technical Applications. Results Phys. 2024, 62, 107838. [Google Scholar]
- Wang, Y.; Zhang, Y.; Xing, P.; Li, X.; Du, Q.; Fan, X.; Cai, Z.; Yin, R.; Yao, Y.; Gan, W. Self-Encapsulation of High-Entropy Alloy Nanoparticles inside Carbonized Wood for Highly Durable Electrocatalysis. Adv. Mater. 2024, 36, e2402391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Shen, C.; Wang, M.; Cao, Y.; Wang, Q.; Rong, J.; He, T.; Li, D.; Cao, F. Carbon Nanofiber-Encapsulated FeCoNiCuMn Sulfides with Tunable S Doping for Enhanced Oxygen Evolution Reaction. Catalysts 2024, 14, 626. https://doi.org/10.3390/catal14090626
Sun Y, Shen C, Wang M, Cao Y, Wang Q, Rong J, He T, Li D, Cao F. Carbon Nanofiber-Encapsulated FeCoNiCuMn Sulfides with Tunable S Doping for Enhanced Oxygen Evolution Reaction. Catalysts. 2024; 14(9):626. https://doi.org/10.3390/catal14090626
Chicago/Turabian StyleSun, Yuhan, Chen Shen, Mingran Wang, Yang Cao, Qianwei Wang, Jiayi Rong, Tong He, Duanyang Li, and Feng Cao. 2024. "Carbon Nanofiber-Encapsulated FeCoNiCuMn Sulfides with Tunable S Doping for Enhanced Oxygen Evolution Reaction" Catalysts 14, no. 9: 626. https://doi.org/10.3390/catal14090626
APA StyleSun, Y., Shen, C., Wang, M., Cao, Y., Wang, Q., Rong, J., He, T., Li, D., & Cao, F. (2024). Carbon Nanofiber-Encapsulated FeCoNiCuMn Sulfides with Tunable S Doping for Enhanced Oxygen Evolution Reaction. Catalysts, 14(9), 626. https://doi.org/10.3390/catal14090626