Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = high-entropy transition metal sulfides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6740 KB  
Article
High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries
by Mingyang Chen, Yan Liu, Zhenchun Fang, Yinan Wang, Shaonan Gu and Guowei Zhou
Nanomaterials 2025, 15(12), 881; https://doi.org/10.3390/nano15120881 - 7 Jun 2025
Viewed by 801
Abstract
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. [...] Read more.
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. In this work, we report the rational design of a hollow triple-shelled high-entropy sulfide (NaFeZnCoNiMn)9S8, synthesized through sequential templating method under hydrothermal conditions. Transmission electron microscopy confirms its well-defined three-shelled architecture. The inter-shell voids effectively buffer Na+ insertion/desertion-induced volume extension, while the tailored high-entropy matrix enhances electronic conductivity and accelerates Na+ transport. This synergistic design yields outstanding performance, including a high initial Coulombic efficiency (ICE) of 94.1% at 0.1 A g−1, low charge-transfer resistance (0.32~2.54 Ω), fast Na+ diffusion efficiency (10−8.5–10−10.5 cm2 s−1), and reversible capacity of 582.6 mAh g−1 after 1600 cycles at 1 A g−1 with 91.2% capacity retention. These results demonstrate the potential of high-entropy, multi-shelled architectures as a robust platform for next-generation durable SIB anodes. Full article
Show Figures

Figure 1

10 pages, 2750 KB  
Article
Carbon Nanofiber-Encapsulated FeCoNiCuMn Sulfides with Tunable S Doping for Enhanced Oxygen Evolution Reaction
by Yuhan Sun, Chen Shen, Mingran Wang, Yang Cao, Qianwei Wang, Jiayi Rong, Tong He, Duanyang Li and Feng Cao
Catalysts 2024, 14(9), 626; https://doi.org/10.3390/catal14090626 - 17 Sep 2024
Viewed by 1474
Abstract
The oxygen evolution reaction (OER) stands out as a key electrochemical process for the conversion of clean energy. However, the practical implementation of OER is frequently impeded by its slow kinetics and the necessity for scarce and expensive noble metal catalysts. High-entropy transition [...] Read more.
The oxygen evolution reaction (OER) stands out as a key electrochemical process for the conversion of clean energy. However, the practical implementation of OER is frequently impeded by its slow kinetics and the necessity for scarce and expensive noble metal catalysts. High-entropy transition metal sulfides (HETMS) stand at the forefront of OER catalysts, renowned for their exceptional catalytic performance and diversity. Herein, we have synthesized a HETMS catalyst, (FeCoNiCuMn50)S2, encapsulated within carbon nanofibers through a one-step process involving the synergistic application of electrospinning and chemical vapor deposition. By precisely controlling the doping levels of sulfur, we have demonstrated that sulfur incorporation significantly increases the exposed surface area of alloy particles on carbon nanofibers and optimizes the electronic configuration of the alloy elements. These findings reveal that sulfur doping is instrumental in the substantial improvement of the catalyst’s OER performance. Notably, the catalyst showed optimal activity at a sulfur-to-metal atom ratio of 2:1, delivering an overpotential of 254 mV at a current density of 10 mA cm−2 in 1.0 M KOH solution. Furthermore, the (FeCoNiCuMn50)S2 catalyst exhibited remarkable electrochemical stability, underscoring its potential as an efficient and robust OER electrocatalyst for sustainable energy applications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

Back to TopTop