Insights into the Reactivation Process of Thermal Aged Bimetallic Pt-Pd/CeO2-ZrO2-La2O3 Catalysts at Different Treating Temperatures and Their Structure–Activity Evolutions for Three-Way Catalytic Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Three-Way Catalytic Activity Evaluation
2.2. Dynamic Operation Window Tests
2.3. HRTEM and EDS Analysis
2.4. Chemical States of Surface Elements by XPS
2.5. Dynamic Oxygen Storage/Release Capacity
2.6. Redox Properties by H2-TPR
2.7. Stability of Surface PMOx Species by O2-TPSR
3. Experimental
3.1. Catalyst Preparation
3.2. Three-Way Catalytic Performance Evaluations
3.3. Catalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joshi, A. Review of vehicle engine efficiency and emissions. SAE Int. J. Adv. Curr. Prac. Mobil. 2019, 1, 734–761. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N.S. Automobile pollution control using catalysis. Resour. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, J.; Meng, X.; Li, Z. Recent advances in vehicle exhaust treatment with photocatalytic technology. Catalysts 2022, 12, 1051. [Google Scholar] [CrossRef]
- Robles-Lorite, L.; Dorado-Vicente, R.; Torres-Jiménez, E.; Bombek, G.; Lešnik, L. Recent advances in the development of automotive catalytic converters: A systematic review. Energies 2023, 16, 6425. [Google Scholar] [CrossRef]
- Gao, S.Y.; Yu, D.; Zhou, S.R.; Zhang, C.L.; Wang, L.Y.; Fan, X.Q.; Yu, X.H.; Zhao, Z. Construction of cerium-based oxide catalysts with abundant defects/vacancies and their application to catalytic elimination of air pollutants. J. Mater. Chem. 2023, 11, 19210–19243. [Google Scholar] [CrossRef]
- Vlachou, M.C.; Marchbank, H.R.; Brooke, E.; Kolpin, A. Challenges and opportunities for platinum in the modern three-way catalyst: Flexibility and performance in gasoline emissions control. Johns. Matthey Tech. 2023, 67, 219–229. [Google Scholar] [CrossRef]
- Wang, J.H.; Chen, H.; Hu, Z.C.; Yao, M.F.; Li, Y.D. A review on the Pd-based three-way catalyst. Catal. Rev. 2015, 57, 79–144. [Google Scholar] [CrossRef]
- Singh, A.K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 2013, 5, 652–676. [Google Scholar] [CrossRef]
- Vedyagin, A.A.; Stoyanovskii, V.O.; Kenzhin, R.M.; Slavinskaya, E.M.; Plyusnin, P.E.; Shubin, Y.V. Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts. React. Kinet. Mech. Cat. 2019, 127, 137–148. [Google Scholar] [CrossRef]
- Lim, B.; Jiang, M.; Camargo, P.H.C.; Cho, E.C.; Tao, J.; Lu, X.M.; Zhu, Y.M.; Xia, Y.N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, M.; Vora, M.; Shen, J.; Zeng, C.; Yan, W.J.; Thapa, P.S.; Subramaniam, B.; Chaudhari, R.V. Synergistic effects of bimetallic PtPd/TiO2 nanocatalysts in oxidation of glucose to glucaric acid: Structure dependent activity and selectivity. Ind. Eng. Chem. Res. 2016, 55, 2932–2945. [Google Scholar] [CrossRef]
- Chen, K.; Wan, J.; Wang, T.; Sun, Q.; Zhou, R.X. Construction of bimetallic Pt-Pd/CeO2-ZrO2-La2O3 catalysts with different Pt/Pd ratios and its structure-activity correlations for three-way catalytic performance. J. Rare Earths. 2023, 41, 896–904. [Google Scholar] [CrossRef]
- Datye, A.K.; Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 2021, 20, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Cheng, Y.S.; Seo, C.Y.; Schwank, J.W.; McCabe, R.W. Ageing, re-dispersion, and catalytic oxidation characteristics of model Pd/Al2O3 automotive three-way catalysts. Appl. Catal. B Environ. 2015, 163, 499–509. [Google Scholar] [CrossRef]
- Zhou, J.B.; Zhao, J.P.; Zhang, J.L.; Zhang, T.; Ye, M.; Liu, Z.M. Regeneration of catalysts deactivated by coke deposition: A review. Chin. J. Catal. 2020, 41, 1048–1061. [Google Scholar] [CrossRef]
- Hickey, N.; Fornasiero, P.; Monte, R.D.; Kašpar, J.; González-Velasco, J.R.; Gutiérrez-Ortiz, M.A.; González-Marcos, M.P.; Gatica, J.M.; Bernal, S. Reactivation of aged model Pd/Ce0.68Zr0.32O2 three-way catalyst by high temperature oxidising treatment. Chem. Commun. 2004, 2, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Dohmae, K.; Ikeda, Y.; Takagi, N.; Tanabe, T.; Hara, N.; Guilera, G.; Pascarelli, S.; Newton, M.A.; Kuno, O.; et al. In situ redispersion of platinum autoexhaust catalysts: An on-line approach to increasing catalyst lifetimes. Angew. Chem. Int. Ed 2008, 47, 9303–9306. [Google Scholar] [CrossRef] [PubMed]
- Eichler, A. CO oxidation on transition metal surfaces: Reaction rates from first principles. Surf. Sci. 2002, 498, 314–320. [Google Scholar] [CrossRef]
- Wan, I.; Lin, J.S.; Guo, X.L.; Wang, T.; Zhou, R.X. Morphology effect on the structure-activity relationship of Rh/CeO2-ZrO2 catalysts. Chem. Eng. J. 2019, 368, 719–729. [Google Scholar] [CrossRef]
- Wu, Y.N.; Liao, S.J.; Su, Y.L.; Zeng, J.H.; Dang, D. Enhancement of anodic oxidation of formic acid on palladium decorated Pt/C catalyst. J. Power Sources 2010, 195, 6459–6462. [Google Scholar] [CrossRef]
- Chen, S.Y.; Li, S.D.; You, R.Y.; Guo, Z.Y.; Wang, F.; Li, G.X.; Yuan, W.T.; Zhu, B.E.; Gao, Y.; Zhang, Z.; et al. Elucidation of active sites for CH4 catalytic oxidation over Pd/CeO2 via tailoring metal–support interactions. ACS Catal. 2021, 11, 5666–5677. [Google Scholar] [CrossRef]
- Luo, Y.J.; Lin, D.F.; Zheng, Y.B.; Feng, X.S.; Chen, Q.H.; Zhang, K.; Wang, X.Y.; Jiang, L.L. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation. Appl. Surf. Sci. 2020, 504, 144481. [Google Scholar] [CrossRef]
- Bozo, C.; Guilhaume, N.; Herrmann, J.M. Role of the ceria–zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions. J. Catal. 2001, 203, 393–406. [Google Scholar] [CrossRef]
- Cao, K.; Cai, J.M.; Liu, X.; Chen, R. Catalysts design and synthesis via selective atomic layer deposition. J. Vac. Sci. Technol. A 2018, 36, 010801. [Google Scholar] [CrossRef]
- Wang, B.; Weng, D.; Wu, X.D.; Ran, R. Modification of Pd–CeO2 catalyst by different treatments: Effect on the structure and CO oxidation activity. Appl. Surf. Sci. 2011, 257, 3878–3883. [Google Scholar] [CrossRef]
- Zhao, M.W.; Shen, M.Q.; Wang, J.; Wang, W.L. Influence of Pd morphology and support surface area on redox ability of Pd/Ce0.67Zr0.33O2 under CO−He pulse and transient CO−O2 Measurements. Ind. Eng. Chem. Res. 2007, 46, 7883–7890. [Google Scholar] [CrossRef]
- Hickey, N.; Fornasiero, P.; Kašpar, J.; Gatica, J.M.; Bernal, S. Effects of the nature of the reducing agent on the transient redox behavior of NM/Ce0.68Zr0.32O2 (NM=Pt, Pd, and Rh). J. Catal. 2001, 200, 181–193. [Google Scholar] [CrossRef]
- Bernal, S.; Calvino, J.J.; Cauqui, M.A.; Gatica, J.M.; Larese, C.; Pérez Omil, J.A.; Pintado, J.M. Some recent results on metal/support interaction effects in NM/CeO2 (NM: Noble metal) catalysts. Catal. Today 1999, 50, 175–206. [Google Scholar] [CrossRef]
- Sinels’nikov, V.V.; Tolkachev, N.N.; Goryashchenko, S.S.; Telegina, N.S.; Stakheev, Y.A. Propane oxidation with chemically bound oxygen on Pt/TiO2/Al2O3 and Pt/CeO2/Al2O3 catalysts. Kinet. Catal. 2006, 47, 98–105. [Google Scholar] [CrossRef]
- Lin, S.Y.; Yang, L.Y.; Yang, X.; Zhou, R.X. Redox behavior of active PdOx species on (Ce,Zr)xO2–Al2O3 mixed oxides and its influence on the three-way catalytic performance. Chem. Eng. J. 2014, 247, 42–49. [Google Scholar] [CrossRef]
- Anderson, J.A.; Daley, R.A.; Christou, S.Y.; Efstathiou, A.M. Regeneration of thermally aged Pt-Rh/CexZr1− xO2-Al2O3 model three-way catalysts by oxychlorination treatments. Appl. Catal. B Environ. 2006, 64, 189–200. [Google Scholar] [CrossRef]
- Lambrou, P.S.; Polychronopoulou, K.; Petallidou, K.C.; Efstathiou, A.M. Oxy-chlorination as an effective treatment of aged Pd/CeO2-Al2O3 catalysts for Pd redispersion. Appl. Catal. B Environ. 2012, 111, 349–359. [Google Scholar] [CrossRef]
- Birgersson, H.; Eriksson, L.; Boutonnet, M.; Järås, S.G. Thermal gas treatment to regenerate spent automotive three-way exhaust gas catalysts (TWC). Appl. Catal. B Environ. 2004, 54, 193–200. [Google Scholar] [CrossRef]
- Hatanaka, M.; Takahashi, N.; Tanabe, T.; Nagai, Y.; Dohmae, K.; Aoki, Y.; Yoshida, T.; Shinjoh, H. Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond. Appl. Catal. B Environ. 2010, 99, 336–342. [Google Scholar] [CrossRef]
Samples | Surface Composition (at. %) | Pt0/Pt (%) | Pt2+/Pt (%) | Pt4+/Pt (%) | Pd0/Pd (%) | Pd2+/Pd (%) | Ce3+/Ce (%) | |
---|---|---|---|---|---|---|---|---|
Pt | Pd | |||||||
0.6Pt-0.4Pd/CZL | 0.14 | 0.13 | 7.9 | 28.2 | 63.9 | 43.0 | 57.0 | 45.2 |
0.6Pt-0.4Pd/CZL-a | 0.04 | 0.39 | 47.4 | 43.2 | 9.4 | 45.3 | 54.7 | 38.7 |
0.6Pt-0.4Pd/CZL-a(R550) | 0.07 | 0.50 | 39.5 | 39.9 | 20.6 | 35.7 | 64.3 | 42.5 |
0.6Pt-0.4Pd/CZL-a(R700) | 0.04 | 0.25 | 52.0 | 37.9 | 10.1 | 41.1 | 58.9 | 36.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Chen, K.; Sun, Q.; Zhou, Y.; Liu, Y.; Zhang, J.; Dong, J.; Wang, X.; Wu, G.; Zhou, R. Insights into the Reactivation Process of Thermal Aged Bimetallic Pt-Pd/CeO2-ZrO2-La2O3 Catalysts at Different Treating Temperatures and Their Structure–Activity Evolutions for Three-Way Catalytic Performance. Catalysts 2024, 14, 299. https://doi.org/10.3390/catal14050299
Wan J, Chen K, Sun Q, Zhou Y, Liu Y, Zhang J, Dong J, Wang X, Wu G, Zhou R. Insights into the Reactivation Process of Thermal Aged Bimetallic Pt-Pd/CeO2-ZrO2-La2O3 Catalysts at Different Treating Temperatures and Their Structure–Activity Evolutions for Three-Way Catalytic Performance. Catalysts. 2024; 14(5):299. https://doi.org/10.3390/catal14050299
Chicago/Turabian StyleWan, Jie, Kai Chen, Qi Sun, Yuanyuan Zhou, Yanjun Liu, Jin Zhang, Jiancong Dong, Xiaoli Wang, Gongde Wu, and Renxian Zhou. 2024. "Insights into the Reactivation Process of Thermal Aged Bimetallic Pt-Pd/CeO2-ZrO2-La2O3 Catalysts at Different Treating Temperatures and Their Structure–Activity Evolutions for Three-Way Catalytic Performance" Catalysts 14, no. 5: 299. https://doi.org/10.3390/catal14050299
APA StyleWan, J., Chen, K., Sun, Q., Zhou, Y., Liu, Y., Zhang, J., Dong, J., Wang, X., Wu, G., & Zhou, R. (2024). Insights into the Reactivation Process of Thermal Aged Bimetallic Pt-Pd/CeO2-ZrO2-La2O3 Catalysts at Different Treating Temperatures and Their Structure–Activity Evolutions for Three-Way Catalytic Performance. Catalysts, 14(5), 299. https://doi.org/10.3390/catal14050299