Preparation of Oxygen Reduction Catalyst Electrodes by Electrochemical Acidification and Synergistic Electrodeposition
Abstract
:1. Introduction
2. Results and Discussion
2.1. CP Treated under Different Acidification Concentrations and Voltages
2.2. Pt loaded on CP Substrates Treated under Different Acidification Concentrations and Voltages
2.3. Half-Cell Electrochemical Tests of Catalyst Electrodes
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of Catalyst Electrodes
3.3. Preparation of Commercial Catalyst Electrodes
3.4. Electrochemical Test
3.5. Characterizations and Measurements
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, D.Q.; Wang, B.W.; Zhang, J.G. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Junbo, H.; Min, Y.; Changchun, K.; Guanghua, W.; Cameron, P.; Zhi, Q.; Gang, W.; Junliang, Z. Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. Energychem 2020, 2, 10023–10061. [Google Scholar]
- Yaldagard, M.; Seghatoleslami, N.; Jahanshahi, M. Oxygen Reduction Reaction Activity Improvement in Cu/PtPd Nanocatalyst Based on Core-Shell Structured through Electrochemical Synthesis on Porous Gas Diffusion Electrodes in Polymer Electrolyte Membrane Fuel Cells. J. Nano Res. 2015, 31, 61–80. [Google Scholar] [CrossRef]
- Rego, R.; Oliveira, C.; Velázquez, A.; Cabot, P. A new route to prepare carbon paper-supported Pd catalyst for oxygen reduction reaction. Electrochem. Commun. 2010, 12, 745–748. [Google Scholar] [CrossRef]
- Ferrero, G.A.; Diez, N.; Sevilla, M.; Fuertes, A.B. Iron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. Microporous Mesoporous Mater. 2019, 278, 280–288. [Google Scholar] [CrossRef]
- Podleschny, P.; Rost, U.; Muntean, R.; Marginean, G.; Heinze, A.; Peinecke, A.; Radev, I.; Muhler, M.; Brodmann, M. Investigation of Carbon Nanofiber-supported Electrocatalysts with Ultra-low Platinum Loading for the Use in PEM Fuel Cells. Fuel Cell 2018, 5, 586–593. [Google Scholar] [CrossRef]
- Lüsi, M.; Erikson, H.; Merisalu, M.; Rähn, M.; Sammelselg, V.; Tammeveski, K. Electrochemical reduction of oxygen in alkaline solution on Pd/C catalysts prepared by electrodeposition on various carbon nanomaterials. J. Electroanal. Chem. 2019, 834, 223–232. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.; Lim, T.; Kim, H.; Kwon, O.J. Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template. J. Power Sources 2017, 364, 16–22. [Google Scholar] [CrossRef]
- YohRong, L.; YangChih, H.; TsongPyng, P. Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2017, 42, 10175–10183. [Google Scholar]
- Suvani, S.; Rashika, S.; Dipak, K.G.; Amit, K.D.; Narayan, C.D. Electrodeposited Cu2O Nanopetal Architecture as a Superhydrophobic and Antibacterial Surface. Langmuir 2019, 35, 17166–17176. [Google Scholar]
- Ganesan, A.; Narayanasamy, M.; Shunmugavel, K. Self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells. Electrochim. Acta 2018, 285, 47–59. [Google Scholar] [CrossRef]
- Muthukumar, V.; Chetty, R. Morphological transformation of electrodeposited Pt and its electrocatalytic activity towards direct formic acid fuel cells. J. Appl. Electrochem. 2017, 47, 735–745. [Google Scholar] [CrossRef]
- Weiser, M.; Schulze, C.; Schneider, M.; Michaelis, A. Platinum electrodeposition from a dinitrosulfatoplatinate(II) electrolyte. Appl. Surf. Sci. 2016, 390, 333–338. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Lin, Z.; Cao, Y.; Zheng, Z.; Zeng, Z.; Hu, Z. Shape-Controllable Pulse Electrodeposition of Ultrafine Platinum Nanodendrites for Methanol Catalytic Combustion and the Investigation of their Local Electric Field Intensification by Electrostatic Force Microscope and Finite Element Method. Electrochim. Acta 2014, 136, 66–74. [Google Scholar] [CrossRef]
- Sookhakian, M.; Ridwan, N.A.; Zalnezhad, E.; Yoon, G.H.; Azarang, M.; Mahmoudian, M.R.; Alias, Y. Layer-by-Layer Electrodeposited Reduced Graphene Oxide-Copper Nanopolyhedra Films as Efficient Platinum-Free Counter Electrodes in High Efficiency Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2016, 163, D154–D159. [Google Scholar] [CrossRef]
- Su, Y.; Ren, H.; Jiang, H.; Tang, S.; Lu, H.; Meng, X. Two-Stage Tunneling-Dominated Electrodeposition for Large-Scale Production of Ultralong Wavy Metal Microstructures on Native Oxide Layer-Passivated Si Electrode with Specific Surface Configuration. J. Phys. Chem. C 2019, 123, 16326–16331. [Google Scholar] [CrossRef]
- Hay, C.E.; Lee, J.; Silvester, D.S. Formation of 3-Dimensional Gold, Copper and Palladium Microelectrode Arrays for Enhanced Electrochemical Sensing Applications. Nanomaterials 2019, 9, 1170. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Roguska, A.; Nogala, W.; Opallo, M. Patterning Cu nanostructures tailored for CO2 reduction to electrooxidizable fuels and oxygen reduction in alkaline media. Nanoscale Adv. 2019, 1, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Su, D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591. [Google Scholar] [CrossRef]
- Li, Y.; Luo, S.; Yang, L.; Liu, C.; Chen, Y.; Meng, D. Photo-assisted synthesis of rosalike CuSe hierarchical nanostructures on TiO2 nanotubes with remarkable photocatalytic performance. Electrochim. Acta 2014, 83, 394–401. [Google Scholar] [CrossRef]
- Liu, C.; Sun, C.; Gao, Y.; Lan, W.; Chen, S. Improving the Electrochemical Properties of Carbon Paper as Cathodes for Microfluidic Fuel Cells by the Electrochemical Activation in Different Solutions. ACS Omega 2021, 6, 19153–19161. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, X.; Yin, Y.; Qin, Y.; Zhang, J.; Wang, Q. In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid. Electrochim. Acta 2018, 291, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Y.; Zeng, Y.; Qie, Y.; Wang, Y.; Zheng, D.; Lu, X.; Tong, Y. Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. J. Mater. Chem. A 2016, 4, 5828–5833. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Zhu, W.; Yin, Y.; Qin, Y.; Zhang, J.; Wang, Q. Synergetic electrochemical HNO3 reduction on the activated-CFP supported nano-Pt electrodes. J. Electroanal. Chem. 2020, 869, 114182–114185. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 10, 2000789–2000799. [Google Scholar] [CrossRef]
- Fan, X.; Lu, Y.; Xu, H.; Kong, X.; Wang, J. Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance. J. Mater. Chem. 2011, 21, 18753–18760. [Google Scholar] [CrossRef]
- Singh, P.R.; Zeng, X. Size-Dependent Intercalation of Ions into Highly Oriented Pyrolytic Graphite in Ionic Liquids: An Electrochemical Atomic Force Microscopy Study. J. Phys. Chem. C 2011, 115, 17429–17439. [Google Scholar] [CrossRef]
- Song, Y.; Feng, D.; Liu, T.; Li, Y.; Liu, X. Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. Nanoscale 2015, 7, 3581–3587. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, X.; Li, P.; Zhou, X.; Yuan, W. Microstructure effect of carbon nanofiber on electrocatalytic oxygen reduction reaction. Catal. Today 2008, 131, 270–277. [Google Scholar] [CrossRef]
- Ustarroz, J.; Altantzis, T.; Hammons, J.A.; Hubin, A.; Bals, S.; Terryn, H. The Role of Nanocluster Aggregation, Coalescence, and Recrystallization in the Electrochemical Deposition of Platinum Nanostructures. Chem. Mater. 2014, 26, 2396–2406. [Google Scholar] [CrossRef]
- Hu, F.; Chen, S.; Wang, C.; Yuan, R.; Yuan, D.; Wang, C. Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal. Chim. Acta 2012, 724, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yang, D.; Edward, S. X-ray Photoelectron Spectroscopic Analysis of Pt Nanoparticles on Highly Oriented Pyrolytic Graphite, Using Symmetric Component Line Shapes. J. Phys. Chem. C 2007, 111, 565–570. [Google Scholar] [CrossRef]
- Jiajun, W.; Geping, Y.; Yuyan, S.; Sheng, Z.; Zhenbo, W.; Yunzhi, G. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 2007, 171, 331–339. [Google Scholar]
- Wakisaka, M.; Suzuki, H.; Mitsui, S.; Uchida, H.; Watanabe, M. Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS. J. Phys. Chem. C 2008, 112, 2750–2755. [Google Scholar] [CrossRef]
- Balbuena, P.B.; Altomare, D.; Vadlamani, N.; Bingi, S.; Agapito, L.A.; Seminario, J.M. Adsorption of O, OH, and H2O on Pt-based bimetallic clusters alloyed with Co, Cr, and Ni. J. Phys. Chem. A 2004, 108, 6378–6384. [Google Scholar] [CrossRef]
- Robert, M.D.; Jeremy, P.M. Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Soc. 2003, 150, A1523–A1527. [Google Scholar]
- Li, R.; Guan, Q.; Wei, R.; Yang, S.; Shu, Z.; Dong, Y.; Chen, J.; Li, W. A Potential Regularity for Enhancing the Hydrogenation Properties of Ni2P. J. Phys. Chem. C 2015, 119, 2557–2565. [Google Scholar] [CrossRef]
- Gatewood, D.S.; Schull, T.L.; Baturina, O.; Pietron, J.J.; Garsany, Y.; Swider-Lyons, K.E.; Ramaker, D.E. Characterization of ligand effects on water activation in triarylphosphine-stabilized Pt nanoparticle catalysts by X-ray absorption spectroscopy. J. Phys. Chem. C 2008, 112, 4961–4970. [Google Scholar] [CrossRef]
- Daqin, G.; Jian, Z.; Hengyue, X.; Yu-Cheng, H.; Zhiwei, H.; Bin, C.; Yuan, Z.; Meng, N.; Xiaomin, X.; Wei, Z.; et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422–011433. [Google Scholar]
- Ustarroz, J.; Geboes, B.; Vanrompay, H.; Sentosun, K.; Bals, S.; Breugelmans, T.; Hubin, A. Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area. ACS Appl. Mater. Interfaces 2017, 9, 16168–16177. [Google Scholar] [CrossRef]
- Eiler, K.; Molmen, L.; Fast, L.; Leisner, P.; Sort, J.; Pellicer, E. Oxygen reduction reaction and proton exchange membrane fuel cell performance of pulse electrodeposited Pt-Ni and Pt-Ni-Mo(O) nanoparticles. Mater. Today Energy 2022, 27, 101023–101034. [Google Scholar] [CrossRef]
- Topalov, A.A.; Zeradjanin, A.R.; Cherevko, S.; Mayrhofer, K.J.J. The impact of dissolved reactive gases on platinum dissolution in acidic media. Electrochem. Commun. 2014, 40, 49–53. [Google Scholar] [CrossRef]
Substrate | C:O | Catalyst | C:O | Pt Wt% | Pt0:Pt2+ | Pt0:Ptδ+ |
---|---|---|---|---|---|---|
C0.5V0.24CP | 85.23 | Pt/C0.5V0.24CP | 7.87 | 84.78 | 2.25 | 2.25 |
C0.5V1.84CP | 2.29 | Pt/C0.5V1.84CP | 8.34 | 80.45 | 2.24 | 2.24 |
C0.5V2.04CP | 4.63 | Pt/C0.5V2.04CP | 8.65 | 67.62 | 2.07 | 2.07 |
C0.5V2.24CP | 5.31 | Pt/C0.5V2.24CP | 11.53 | 57.23 | 1.48 | 0.73 |
C0.5V2.44CP | 1.49 | Pt/C0.5V2.44CP | 11.77 | 47.89 | 1.00 | 1.00 |
C0.25V2.24CP | 8.16 | Pt/C0.25V2.24CP | 8.19 | 75.87 | 1.94 | 1.94 |
C1.0V2.24CP | 6.30 | Pt/C1.0V2.24CP | 7.96 | 42.59 | 1.22 | 1.22 |
C2.0V2.24CP | 5.21 | Pt/C2.0V2.24CP | 9.25 | 28.07 | 0.45 | 0.45 |
Catalyst | Initial Deposition Current A | Before ADT | After ADT | |||||
---|---|---|---|---|---|---|---|---|
Ptloading mg/cm2 | ECSA m2/gPt | Eonset V vs. RHE | Tafel Slop mV dec−1 | ECSA m2/gPt | Eonset V vs. RHE | Tafel Slop mV dec−1 | ||
Pt/C0.5V0.24CP | 0.00 | 0.24 | 11.86 | 0.89 | 63.51 | 7.39 | 0.87 | 58.20 |
Pt/C0.5V1.84CP | 0.01 | 0.20 | 12.40 | 0.84 | 84.02 | 7.33 | 0.80 | 74.27 |
Pt/C0.5V2.04CP | 0.05 | 0.13 | 12.60 | 0.86 | 82.58 | 12.35 | 0.83 | 76.27 |
Pt/C0.5V2.24CP | 0.23 | 0.06 | 49.35 | 0.91 | 74.26 | 36.11 | 0.87 | 81.47 |
Pt/C0.5V2.44CP | 0.42 | 0.05 | 124.46 | 0.86 | 94.56 | 85.80 | 0.80 | 122.46 |
Pt/C0.25V2.24CP | 0.16 | 0.14 | 25.72 | 0.90 | 71.94 | 11.45 | 0.87 | 81.86 |
Pt/C1.0V2.24CP | 0.41 | 0.03 | 241.72 | 0.91 | 78.66 | 116.63 | 0.77 | 87.34 |
Pt/C2.0V2.24CP | 0.42 | 0.02 | 270.99 | 0.88 | 102.11 | 171.24 | 0.75 | 124.51 |
Pt/C/CP-1 | - | 0.10 | 12.40 | 0.87 | 96.56 | 5.86 | 0.85 | 110.20 |
Pt/C/CP-2 | - | 0.10 | 16.92 | 0.85 | 93.80 | 5.97 | 0.84 | 82.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Guo, Y.; Xu, Y.; Li, P.; Zhang, Q. Preparation of Oxygen Reduction Catalyst Electrodes by Electrochemical Acidification and Synergistic Electrodeposition. Catalysts 2024, 14, 300. https://doi.org/10.3390/catal14050300
Zhou L, Guo Y, Xu Y, Li P, Zhang Q. Preparation of Oxygen Reduction Catalyst Electrodes by Electrochemical Acidification and Synergistic Electrodeposition. Catalysts. 2024; 14(5):300. https://doi.org/10.3390/catal14050300
Chicago/Turabian StyleZhou, Liheng, Yongjian Guo, Yu Xu, Ping Li, and Qi Zhang. 2024. "Preparation of Oxygen Reduction Catalyst Electrodes by Electrochemical Acidification and Synergistic Electrodeposition" Catalysts 14, no. 5: 300. https://doi.org/10.3390/catal14050300
APA StyleZhou, L., Guo, Y., Xu, Y., Li, P., & Zhang, Q. (2024). Preparation of Oxygen Reduction Catalyst Electrodes by Electrochemical Acidification and Synergistic Electrodeposition. Catalysts, 14(5), 300. https://doi.org/10.3390/catal14050300