Taurine-Functionalized Carbon Nanotubes as Electrode Catalysts for Improvement in the Performance of Vanadium Redox Flow Battery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Properties of Taurine-Functionalized CNTs
2.2. Effect of Taurine-Functionalized CNTs on the Redox Reactivity of Vanadium Ions
2.3. Effect of Taurine-Functionalized CNTs on their Molecular Composition
2.4. The Performance Evaluations of VRFB
3. Experimental Section
3.1. Materials
3.2. Preparation of Functionalized CNTs
3.3. Electrochemical Characterizations of Functionalized CNTs
3.4. The Performance Evaluation of VRFB
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anser, M.K.; Hanif, I.; Vo, X.V.; Alharthi, M. The long-run and short-run influence of environmental pollution, energy consumption, and economic activities on health quality in emerging countries. Environ. Sci. Pollut. Res. 2020, 27, 32518–32532. [Google Scholar] [CrossRef] [PubMed]
- Fetyan, A.; El-Nagar, G.A.; Lauermann, I.; Schnucklake, M.; Schneider, J.; Roth, C. Detrimental role of hydrogen evolution and its temperature-dependent impact on the performance of vanadium redox flow batteries. J. Energy Chem. 2019, 32, 57–62. [Google Scholar] [CrossRef]
- Emmel, D.; Kunz, S.; Blume, N.; Kwon, Y.; Turek, T.; Minke, C.; Schröder, D. Benchmarking organic active materials for aqueous redox flow batteries in terms of lifetime and cost. Nat. Commun. 2023, 14, 6672. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J. Power Sources 2021, 481, 228804. [Google Scholar] [CrossRef]
- Pearre, N.; Swan, L. Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy. Energy 2020, 203, 117898. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Lin, N.; Xie, B.; Chen, J. Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage. Int. J. Miner. Met. Mater. 2022, 29, 168–176. [Google Scholar] [CrossRef]
- Sharma, J.; Kulshrestha, V. Advancements in polyelectrolyte membrane designs for vanadium redox flow battery (VRFB). Results Chem. 2023, 5, 100892. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, G.; Li, F.; He, Z.; Zhang, J.; Chen, J.; Wang, R. High conductivity membrane containing polyphosphazene derivatives for vanadium redox flow battery. J. Membr. Sci. 2021, 630, 119322. [Google Scholar] [CrossRef]
- Lv, Y.; Han, C.; Zhu, Y.; Zhang, T.; Yao, S.; He, Z.; Dai, L.; Wang, L. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives. J. Mater. Sci. Technol. 2021, 75, 96–109. [Google Scholar] [CrossRef]
- Minke, C.; Ledesma, M.A.D. Impact of cell design and maintenance strategy on life cycle costs of vanadium redox flow batteries. J. Energy Storage 2019, 21, 571–580. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.-M.; Liu, T.; Huang, J.; Chen, L.-M.; Hu, Y.-W. Preparation of vanadium electrolyte from vanadium shale leaching solution with high concentration chloride using D2EHPA. Trans. Nonferrous Met. Soc. China 2023, 33, 1594–1608. [Google Scholar] [CrossRef]
- Alphonse, P.-J.; Taş, M.; Elden, G. Novel electrode design having gradually increasing porosity in a vanadium redox flow battery. Fuel 2023, 333, 126198. [Google Scholar] [CrossRef]
- Roznyatovskaya, N.; Noack, J.; Pinkwart, K.; Tübke, J. Aspects of electron transfer processes in vanadium redox-flow batteries. Curr. Opin. Electrochem. 2020, 19, 42–48. [Google Scholar] [CrossRef]
- Jeong, K.I.; Jeong, J.-M.; Oh, J.; Lim, J.W.; Kim, S.S. An integrated composite structure with reduced electrode/bipolar plate contact resistance for vanadium redox flow battery. Compos. B Eng. 2022, 233, 109657. [Google Scholar] [CrossRef]
- Bayeh, A.W.; Kabtamu, D.M.; Chang, Y.-C.; Wondimu, T.H.; Huang, H.-C.; Wang, C.-H. Carbon and metal-based catalysts for vanadium redox flow batteries: A perspective and review of recent progress. Sustain. Energy Fuels 2021, 5, 1668–1707. [Google Scholar] [CrossRef]
- Abbas, S.; Lee, H.; Hwang, J.; Mehmood, A.; Shin, H.-J.; Mehboob, S.; Lee, J.-Y.; Ha, H.Y. A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery. Carbon 2018, 128, 31–37. [Google Scholar] [CrossRef]
- Park, S.E.; Lee, K.; Suharto, Y.; Kim, K.J. Enhanced electrocatalytic performance of nitrogen- and phosphorous-functionalized carbon felt electrode for VO2+/VO2+ redox reaction. Int. J. Energy Res. 2021, 45, 1806–1817. [Google Scholar] [CrossRef]
- Pasala, V.; Ramavath, J.N.; He, C.; Ramani, V.K.; Ramanujam, K. N- and P-co-doped Graphite Felt Electrode for Improving Positive Electrode Chemistry of the Vanadium Redox Flow Battery. ChemistrySelect 2018, 3, 8678–8687. [Google Scholar] [CrossRef]
- Hou, B.; Cui, X.; Chen, Y. In situ TiO2 decorated carbon paper as negative electrode for vanadium redox battery. Solid State Ion. 2018, 325, 148–156. [Google Scholar] [CrossRef]
- Zhou, A.; Shao, X.; Li, D.; Du, Y.; Zhang, Y.; Cao, L.; Yang, J. Heteroatom co-doped biomass carbon modified electrodes for all-vanadium redox flow batteries with ultra-low decay rate of energy efficiency. J. Power Sources 2024, 591, 233890. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Yan, C. The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery. Electrochim. Acta 2012, 79, 102–108. [Google Scholar] [CrossRef]
- González, Z.; Álvarez, P.; Blanco, C.; Vega-Díaz, S.; Tristán-López, F.; Rajukumar, L.P.; Cruz-Silva, R.; Elías, A.L.; Terrones, M.; Menéndez, R. The influence of carbon nanotubes characteristics in their performance as positive electrodes in vanadium redox flow batteries. Sustain. Energy Technol. Assess. 2015, 9, 105–110. [Google Scholar] [CrossRef]
- Hwang, S.; Jeong, S.-H. Stretchable carbon nanotube conductors and their applications. Korean J. Chem. Eng. 2016, 33, 2771–2787. [Google Scholar] [CrossRef]
- Yang, H.; Fan, C.; Zhu, Q. Sucrose pyrolysis assembling carbon nanotubes on graphite felt using for vanadium redox flow battery positive electrode. J. Energy Chem. 2018, 27, 451–454. [Google Scholar] [CrossRef]
- Jiang, Q.; Ren, Y.; Yang, Y.; Wang, L.; Dai, L.; He, Z. Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: Mechanisms, properties, and perspectives. Compos. B Eng. 2022, 242. [Google Scholar] [CrossRef]
- Dai, L.; Jiang, Y.; Meng, W.; Zhou, H.; Wang, L.; He, Z. Improving the electrocatalytic performance of carbon nanotubes for VO2+/VO2+ redox reaction by KOH activation. Appl. Surf. Sci. 2017, 401, 106–113. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Cochell, T.; Manthiram, A. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries. J. Phys. Chem. Lett. 2012, 3, 2164–2167. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Shang, Y.; Lin, X.; Yang, L.; Yu, A. Study on Nitrogen-Doped Carbon Nanotubes for Vanadium Redox Flow Battery Application. Int. J. Electrochem. Sci. 2016, 11, 665–674. [Google Scholar] [CrossRef]
- Moon, S.; Kwon, B.W.; Chung, Y.; Kwon, Y. Effect of Bismuth Sulfate Coated on Acidified CNT on Performance of Vanadium Redox Flow Battery. J. Electrochem. Soc. 2019, 166, A2602–A2609. [Google Scholar] [CrossRef]
- Chung, Y.; Noh, C.; Kwon, Y. Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery. J. Power Sources 2019, 438, 227063. [Google Scholar] [CrossRef]
- Zhou, A.L.; Wang, H.J.; Fu, X.B.; Peng, F.; Xu, H. Effect of acid oxidation treatment on Surface groups of Multi-walled carbon nanotubes. New Chem. Mater. 2007, 35, 37–39. [Google Scholar]
- Ghimire, P.C.; Schweiss, R.; Scherer, G.G.; Wai, N.; Lim, T.M.; Bhattarai, A.; Nguyen, T.D.; Yan, Q. Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 6625–6632. [Google Scholar] [CrossRef]
- Noh, C.; Kwon, B.W.; Chung, Y.; Kwon, Y. Effect of the redox reactivity of vanadium ions enhanced by phosphorylethanolamine based catalyst on the performance of vanadium redox flow battery. J. Power Sources 2018, 406, 26–34. [Google Scholar] [CrossRef]
- Jelyani, M.Z.; Rashid-Nadimi, S.; Asghari, S. Treated carbon felt as electrode material in vanadium redox flow batteries: A study of the use of carbon nanotubes as electrocatalyst. J. Solid State Electrochem. 2017, 21, 69–79. [Google Scholar] [CrossRef]
- Ramasahayam, S.K.; Azam, S.; Viswanathan, T. Phosphorous, nitrogen co-doped carbon from spent coffee grounds for fuel cell applications. J. Appl. Polym. Sci. 2015, 132, 41948. [Google Scholar] [CrossRef]
- Noh, C.; Moon, S.; Chung, Y.; Kwon, Y. Chelating functional group attached to carbon nanotubes prepared for performance enhancement of vanadium redox flow battery. J. Mater. Chem. A 2017, 5, 21334–21342. [Google Scholar] [CrossRef]
- He, Z.; Jiang, Y.; Meng, W.; Zhu, J.; Liu, Y.; Dai, L.; Wang, L. Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries. Electrochim. Acta 2016, 222, 1491–1500. [Google Scholar] [CrossRef]
- Li, C.; Xie, B.; Chen, J.; He, J.; He, Z. Enhancement of nitrogen and sulfur co-doping on the electrocatalytic properties of carbon nanotubes for VO2+/VO2+ redox reaction. RSC Adv. 2017, 7, 13184–13190. [Google Scholar] [CrossRef]
- Kabtamu, D.M.; Chen, J.-Y.; Chang, Y.-C.; Wang, C.-H. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries. J. Power Sources 2017, 341, 270–279. [Google Scholar] [CrossRef]
- Shin, M.; Noh, C.; Chung, Y.; Kim, D.-H.; Kwon, Y. Vanadium redox flow battery working even at a high current density by the adoption of tris(hydroxymethyl) aminomethane functionalized acidified carbon nanotube catalyst. Appl. Surf. Sci. 2021, 550, 148977. [Google Scholar] [CrossRef]
- Tamborini, L.; Casco, M.; Militello, M.; Silvestre-Albero, J.; Barbero, C.; Acevedo, D. Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Process. Technol. 2016, 149, 209–217. [Google Scholar] [CrossRef]
- Ge, L.; Liu, T.; Zhang, Y.; Liu, H. Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow battery. Front. Chem. Sci. Eng. 2023, 17, 1221–1230. [Google Scholar] [CrossRef]
VO2+/VO2+ | Peak Current Density (mA∙cm−2) | Peak Potential (V) | ∆E/V | Jpc/Jpa | ||
---|---|---|---|---|---|---|
Anodic | Cathodic | Anodic | Cathodic | |||
COOH-CNTs | 9.75 | −7.64 | 0.910 | 0.862 | 0.048 | 0.784 |
SO3H-CNTs | 16.40 | −13.42 | 0.920 | 0.857 | 0.063 | 0.818 |
V2+/V3+ | Peak Current Density (mA∙cm−2) | Peak Potential (V) | ∆E/V | Jpc/Jpa | ||
---|---|---|---|---|---|---|
Anodic | Cathodic | Anodic | Cathodic | |||
COOH-CNTs | 7.21 | −9.54 | −0.449 | −0.500 | 0.051 | 1.323 |
SO3H-CNTs | 11.17 | −13.50 | −0.450 | −0.505 | 0.055 | 1.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Liu, T.; Zhang, Y.; Liu, H.; Ge, L. Taurine-Functionalized Carbon Nanotubes as Electrode Catalysts for Improvement in the Performance of Vanadium Redox Flow Battery. Catalysts 2024, 14, 281. https://doi.org/10.3390/catal14040281
Wei L, Liu T, Zhang Y, Liu H, Ge L. Taurine-Functionalized Carbon Nanotubes as Electrode Catalysts for Improvement in the Performance of Vanadium Redox Flow Battery. Catalysts. 2024; 14(4):281. https://doi.org/10.3390/catal14040281
Chicago/Turabian StyleWei, Lian, Tao Liu, Yimin Zhang, Hong Liu, and Ling Ge. 2024. "Taurine-Functionalized Carbon Nanotubes as Electrode Catalysts for Improvement in the Performance of Vanadium Redox Flow Battery" Catalysts 14, no. 4: 281. https://doi.org/10.3390/catal14040281
APA StyleWei, L., Liu, T., Zhang, Y., Liu, H., & Ge, L. (2024). Taurine-Functionalized Carbon Nanotubes as Electrode Catalysts for Improvement in the Performance of Vanadium Redox Flow Battery. Catalysts, 14(4), 281. https://doi.org/10.3390/catal14040281