Advances and Challenges in Oxygen Carriers for Chemical Looping Partial Oxidation of Methane
Abstract
1. Introduction
2. Fundamentals of CLPO and CLPOM
3. Synthesis Methods of OCs
4. Design Strategies of OCs
4.1. Single-Metal Oxide
4.1.1. Ni-Based OCs
4.1.2. Fe-Based OCs
4.1.3. Ce-Based OCs
4.1.4. Other Metal Oxide-Based OCs
4.2. Complex Metal Oxide
4.2.1. Spinel-Type (AB2O4) OCs
4.2.2. Perovskite (ABO3) OCs
4.3. Function of Supports
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Chen, S.; Duan, L.; Xiang, W. Carbon Dioxide Capture and Hydrogen Production with a Chemical Looping Concept: A Review on Oxygen Carrier and Reactor. Energy Fuels 2023, 37, 16245–16266. [Google Scholar] [CrossRef]
- Luo, S.; Zeng, L.; Fan, L.-S. Chemical Looping Technology: Oxygen Carrier Characteristics. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 53–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, F.; Song, Z.; Lin, L.; Zhao, X.; Sun, J.; Mao, Y.; Wang, W. Review of chemical looping process for carbonaceous feedstock Conversion: Rational design of oxygen carriers. Fuel 2022, 325, 124964. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, M.; Wang, K.; Yue, X.; Chen, X.; Dai, W.; Fu, X. Visible light-assisted thermal catalytic reverse water gas reaction over Cu-CeO2: The synergistic of hot electrons and oxygen vacancies induced by LSPR effect. Fuel 2022, 315, 123186. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Jiang, L.; Tian, D.; Li, K. Perovskites as oxygen storage materials for chemical looping partial oxidation and reforming of methane. Phys. Chem. Chem. Phys. 2024, 26, 1516–1540. [Google Scholar] [CrossRef] [PubMed]
- De Vos, Y.; Jacobs, M.; Van Der Voort, P.; Van Driessche, I.; Snijkers, F.; Verberckmoes, A. Development of Stable Oxygen Carrier Materials for Chemical Looping Processes—A Review. Catalysts 2020, 10, 926. [Google Scholar] [CrossRef]
- Sunny, A.A.; Meng, Q.; Kumar, S.; Joshi, R.; Fan, L.-S. Nanoscaled Oxygen Carrier-Driven Chemical Looping for Carbon Neutrality: Opportunities and Challenges. Acc. Chem. Res. 2023, 56, 3404–3416. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Imtiaz, Q.; Donat, F.; Müller, C.R.; Li, F. Chemical looping beyond combustion—A perspective. Energy Environ. Sci. 2020, 13, 772–804. [Google Scholar] [CrossRef]
- Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal. 1998, 175, 152–160. [Google Scholar] [CrossRef]
- Steinfeld, A.; Kuhn, P.; Karni, J. High-temperature solar thermochemistry: Production of iron and synthesis gas by Fe3O4-reduction with methane. Energy 1993, 18, 239–249. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, K.; Wang, H.; Tian, D.; Wang, Y.; Zhu, X.; Wei, Y.; Zheng, M.; Luo, Y. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane. Appl. Catal. B Environ. 2017, 202, 51–63. [Google Scholar] [CrossRef]
- Zhao, K.; Zheng, A.; Li, H.; He, F.; Huang, Z.; Wei, G.; Shen, Y.; Zhao, Z. Exploration of the mechanism of chemical looping steam methane reforming using double perovskite-type oxides La1.6Sr0.4FeCoO6. Appl. Catal. B Environ. 2017, 219, 672–682. [Google Scholar] [CrossRef]
- Kulkarni, P.; Guan, J.; Subia, R.; Cui, Z.; Manke, J.; Frydman, A.; Wei, W.; Shisler, R.; Ayala, R.; Rizeq, G. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2; GE Energy & Environmental Research Corporation: Irvine, CA, USA, 2008. [Google Scholar]
- Jia, Z.; Li, H.; He, B.; Xu, B.; Shao, L.; Chen, H.; Li, K.; Zeng, L. Design Basis of 1 MWth Calcium Looping Gasification Pilot Unit. In Proceedings of the International Pittsburgh Coal Conference, Zuzhou, China, 15–18 October 2018. [Google Scholar]
- Chung, C.; Qin, L.; Shah, V.; Fan, L.-S. Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications. Energy Environ. Sci. 2017, 10, 2318–2323. [Google Scholar] [CrossRef]
- Fan, L.-S.; Zeng, L.; Wang, W.; Luo, S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion–prospect and opportunity. Energy Environ. Sci. 2012, 5, 7254–7280. [Google Scholar] [CrossRef]
- Zeng, L.; Kathe, M.V.; Chung, E.Y.; Fan, L.-S. Some remarks on direct solid fuel combustion using chemical looping processes. Curr. Opin. Chem. Eng. 2012, 1, 290–295. [Google Scholar] [CrossRef]
- Qin, L.; Cheng, Z.; Fan, J.A.; Kopechek, D.; Xu, D.; Deshpande, N.; Fan, L.-S. Nanostructure formation mechanism and ion diffusion in iron–titanium composite materials with chemical looping redox reactions. J. Mater. Chem. A 2015, 3, 11302–11312. [Google Scholar] [CrossRef]
- Sun, Z.; Russell, C.K.; Whitty, K.J.; Eddings, E.G.; Dai, J.; Zhang, Y.; Fan, M.; Sun, Z. Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation. Prog. Energy Combust. Sci. 2023, 96, 101045. [Google Scholar] [CrossRef]
- Zheng, Y.; Marek, E.J.; Scott, S.A. H2 production from a plasma-assisted chemical looping system from the partial oxidation of CH4 at mild temperatures. Chem. Eng. J. 2020, 379, 122197. [Google Scholar] [CrossRef]
- Qin, L.; Guo, M.; Liu, Y.; Cheng, Z.; Fan, J.A.; Fan, L.-S. Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification. Appl. Catal. B Environ. 2018, 235, 143–149. [Google Scholar] [CrossRef]
- Zeng, L.; Cheng, Z.; Fan, J.A.; Fan, L.-S.; Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2018, 2, 349–364. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, X.; Liu, T.; Yao, X.; Zhao, Z.; Pei, C.; Gong, J. Dynamic oxygen migration and reaction over ceria-supported nickel oxides in chemical looping partial oxidation of methane. Appl. Catal. B Environ. 2023, 328, 122478. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Navarrete, L.; Laqdiem, M.; Balaguer, M.; Serra, J.M. Boosting methane partial oxidation on ceria through exsolution of robust Ru nanoparticles. Mater. Adv. 2021, 2, 2924–2934. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Lu, C.; Li, D.; Li, Z.; Gao, J.; Wei, J.; Li, K. Enhanced performance of LaFeO3 oxygen carriers by NiO for chemical looping partial oxidation of methane. Fuel Process. Technol. 2022, 236, 107396. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, X.; Liu, R.; Pei, C.; Zhao, Z.J.; Gong, J. Oxygen activity regulation over LaNiO3 perovskites by Ti substitution for chemical looping partial oxidation of methane. Chem. Eng. Sci. 2023, 278, 118911. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, R.; Gao, Y.; Lin, Y.; Liu, A.; Wang, X.; Zheng, A.; Huang, Z.; Zhao, Z. High syngas selectivity and near pure hydrogen production in perovskite oxygen carriers for chemical looping steam methane reforming. Fuel Process. Technol. 2022, 236, 107398. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Liao, Y.; Liang, S.; Ma, X. Oxygen uncoupling chemical looping gasification of biomass over heterogeneously doped La-Fe-O perovskite-type oxygen carriers. Fuel Process. Technol. 2023, 250, 107883. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.; Lim, H.S.; Kim, H.; Lee, J.W. Surface enrichment of lanthanum on Co3O4 for stable chemical looping combustion. J. CO2 Util. 2023, 73, 102532. [Google Scholar] [CrossRef]
- Ding, H.; Jin, Y.; Hawkins, S.C.; Zhang, L.; Luo, C. Development and performance of CeO2 supported BaCoO3−δ perovskite for chemical looping steam methane reforming. Fuel Process. Technol. 2023, 239, 1075463. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, K.; Cao, Y.; Feng, Y.; Huang, Z.; Chen, Y.; Wei, S.; Liu, L.; Gong, Z.; Cui, Y.; et al. Light-Reinforced Key Intermediate for Anticoking To Boost Highly Durable Methane Dry Reforming over Single Atom Ni Active Sites on CeO2. J. Am. Chem. Soc. 2023, 145, 24625–24635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Song, Z.; Zhao, X.; Sun, J.; Mao, Y.; Wang, W. Co3O4-CeO2 for enhanced syngas by low-temperature methane conversion with CO2 utilization via a catalytic chemical looping process. Fuel Process. Technol. 2023, 245, 107741. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, L.; Cheng, Z.; Goetze, J.W.; Kong, F.; Fan, J.A.; Fan, L.-S. Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation. Nat. Commun. 2019, 10, 5503. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, Z.; Wang, C.; Duan, H.; Li, Y.; Zhang, G. Enhanced Methane Conversion in Chemical Looping Partial Oxidation of Iron-Based Oxygen Carriers. JOM 2023, 75, 1530–1539. [Google Scholar] [CrossRef]
- Zong, T.; Li, L.; Han, Y.; Wang, C.; Kang, Y.; Tian, M.; Huang, C.; Wang, X. Influence of the encapsulation degree of Fe0 active sites on performance of garnets for chemical looping partial oxidation of CH4. Appl. Catal. B Environ. 2022, 312, 121421. [Google Scholar] [CrossRef]
- Cabello, A.; Mendiara, T.; Abad, A.; Izquierdo, M.T.; García-Labiano, F. Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier. Fuel 2022, 322, 124250. [Google Scholar] [CrossRef]
- Wang, C.; Fang, Y.; Wang, Z.; Long, M.; Chen, D.; Duan, H.; Li, Y.; Zhang, G. Performance and mechanism study of Ce2(SO4)3 for methane chemical looping partial oxidation. Fuel 2023, 334, 126817. [Google Scholar] [CrossRef]
- Yang, J.; Bjørgum, E.; Chang, H.; Zhu, K.-K.; Sui, Z.-J.; Zhou, X.-G.; Holmen, A.; Zhu, Y.-A.; Chen, D. On the ensemble requirement of fully selective chemical looping methane partial oxidation over La-Fe-based perovskites. Appl. Catal. B Environ. 2022, 301, 120788. [Google Scholar] [CrossRef]
- Chein, R.-Y.; Lu, C.-Y.; Chen, W.-H. Syngas production via chemical looping reforming using methane-based feed and NiO/Al2O3 oxygen carrier. Energy 2022, 250, 123815. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, L.; Zhao, W.; Li, F.; Chen, X. Ni-Fe bimetallic hexaaluminate for efficient reduction of O2-containing CO2 via chemical looping. Chem. Eng. J. 2022, 441, 136071. [Google Scholar] [CrossRef]
- Zheng, Y.; Sukma, M.S.; Scott, S.A. The exploration of NiO/Ca2Fe2O5/CaO in chemical looping methane conversion for syngas and H2 production. Chem. Eng. J. 2023, 465, 142779. [Google Scholar] [CrossRef]
- Song, H.; Wang, W.; Sun, J.; Wang, X.; Zhang, X.; Chen, S.; Pei, C.; Zhao, Z.-J. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets. Chin. J. Chem. Eng. 2023, 53, 409–420. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Zhang, J.; Yang, T.; Rao, Q.; Gai, Z.; Wang, X.; Pan, Y.; Jin, H. Mid-temperature chemical looping methane reforming for hydrogen production via iron-based oxygen carrier particles. Fuel Process. Technol. 2024, 253, 108026. [Google Scholar] [CrossRef]
- Lv, Y.; Cheng, B.; Yang, H.; Cui, X.; Zhao, M. Chemical looping partial oxidation (CLPO) of toluene on LaFeO3 perovskites for tunable syngas production. Chem. Eng. J. 2023, 451, 138968. [Google Scholar] [CrossRef]
- Oh, D.; Colombo, F.; Nodari, L.; Kim, J.H.; Kim, J.K.; Lee, S.; Kim, S.; Kim, S.; Lim, D.-K.; Seo, J.; et al. Rocking chair-like movement of ex-solved nanoparticles on the Ni-Co doped La0.6Ca0.4FeO3-δ oxygen carrier during chemical looping reforming coupled with CO2 splitting. Appl. Catal. B Environ. 2023, 332, 122745. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Wang, J.; Li, D.; Li, K.; Zhu, X. Oxygen vacancies enriched Ni-Co/SiO2@CeO2 redox catalyst for cycling methane partial oxidation and CO2 splitting. Chin. J. Chem. Eng. 2023, 63, 235–245. [Google Scholar] [CrossRef]
- Khani, H.; Khandan, N.; Eikani, M.H.; Eliassi, A. Investigation of synthesized Fe2O3 and CuO–Fe2O3 for pure hydrogen production by chemical-loop reformng of methanol in a micro-channel reactor. Int. J. Hydrogen Energy 2023, 48, 6436–6450. [Google Scholar] [CrossRef]
- Long, Y.; Gu, Z.; Lin, S.; Yang, K.; Zhu, X.; Wei, Y.; Wang, H.; Li, K. NiO and CuO coated monolithic oxygen carriers for chemical looping combustion of methane. J. Energy Inst. 2021, 94, 199–209. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Gu, Z.; Lu, C.; Li, D.; Zhu, X.; Jiang, L.; Deng, G.; Li, K. Enhanced performance of the CeO2MgO oxygen carrier by NiO for chemical looping CO2 splitting. Fuel Process. Technol. 2022, 225, 107045. [Google Scholar] [CrossRef]
- Zhang, Y.-k.; Zhao, Y.-j.; Yi, Q.; Wei, G.-q.; Shi, L.-j.; Zhou, H. NiO/κ-CeZrO4 functional oxygen carriers with Niδ+ and oxygen vacancy synergy for chemical looping partial oxidation reforming of methane. Fuel Process. Technol. 2021, 219, 106875. [Google Scholar] [CrossRef]
- Shah, V.; Cheng, Z.; Mohapatra, P.; Fan, L.-S. Enhanced methane conversion using Ni-doped calcium ferrite oxygen carriers in chemical looping partial oxidation systems with CO2 utilization. React. Chem. Eng. 2021, 6, 1928–1939. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Jiang, B.; Wang, K.; Tang, D.; Dou, B. An intelligent oxygen carrier of La2−xSrxNiO4−λ for hydrogen production by chemical looping reforming of ethanol. Int. J. Hydrogen Energy 2017, 42, 17102–17111. [Google Scholar] [CrossRef]
- Ashok, J.; Kathiraser, Y.; Ang, M.L.; Kawi, S. Bi-functional hydrotalcite-derived NiO–CaO–Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions. Appl. Catal. B Environ. 2015, 172–173, 116–128. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, Z.; Chen, D.; Wei, G.; He, F.; Zhao, K.; Zheng, A.; Zhao, Z.; Li, H. Exploration of Reaction Mechanisms on Hydrogen Production through Chemical Looping Steam Reforming Using NiFe2O4 Oxygen Carrier. ACS Sustain. Chem. Eng. 2019, 7, 11621–11632. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, K.; Zhao, Z.; He, F.; Huang, Z.; Wei, G. Identifying the roles of MFe2O4 (M=Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis. Int. J. Hydrogen Energy 2019, 44, 4674–4687. [Google Scholar] [CrossRef]
- Huang, J.; Liu, W.; Yang, Y.; Liu, B. High-Performance Ni–Fe Redox Catalysts for Selective CH4 to Syngas Conversion via Chemical Looping. ACS Catal. 2018, 8, 1748–1756. [Google Scholar] [CrossRef]
- Wang, D.; Jin, L.; Li, Y.; Wei, B.; Yao, D.; Hu, H. Upgrading of vacuum residue with chemical looping partial oxidation over Fe-Mn mixed metal oxides. Fuel 2019, 239, 764–773. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, N.; Guo, X.; Zhang, S. Dopant screening of modified Fe2O3 oxygen carriers in chemical looping hydrogen production. Fuel 2020, 262, 116489. [Google Scholar] [CrossRef]
- Wang, D.; Jin, L.; Li, Y.; Hu, H. Upgrading of Heavy Oil with Chemical Looping Partial Oxidation over M2+ Doped Fe2O3. Energy Fuels 2018, 33, 257–265. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, W.; Sun, X.; Ma, X.; Kang, Y.; Wang, X.; Wang, J. La-hexaaluminate for synthesis gas generation by Chemical Looping Partial Oxidation of Methane Using CO2 as Sole Oxidant. AIChE J. 2017, 64, 550–563. [Google Scholar] [CrossRef]
- Hu, Q.; Shen, Y.; Chew, J.W.; Ge, T.; Wang, C.-H. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production. Chem. Eng. J. 2020, 379, 122346. [Google Scholar] [CrossRef]
- Liu, R.; Pei, C.; Zhang, X.; Chen, S.; Li, H.; Zeng, L.; Mu, R.; Gong, J. Chemical looping partial oxidation over FeWO/SiO2 catalysts. Chin. J. Catal. 2020, 41, 1140–1151. [Google Scholar] [CrossRef]
- Donat, F.; Kierzkowska, A.; Müller, C.R. Chemical Looping Partial Oxidation of Methane: Reducing Carbon Deposition through Alloying. Energy Fuels 2022, 36, 9780–9784. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, K.; Zhao, Z.; He, F.; Huang, Z.; Wei, G.; Xia, C. Reaction schemes of barium ferrite in biomass chemical looping gasification for hydrogen-enriched syngas generation via an outer-inner looping redox reaction mechanism. Energy Convers. Manag. 2019, 189, 81–90. [Google Scholar] [CrossRef]
- Kang, Y.; Tian, M.; Huang, C.; Lin, J.; Hou, B.; Pan, X.; Li, L.; Rykov, A.I.; Wang, J.; Wang, X. Improving Syngas Selectivity of Fe2O3/Al2O3 with Yttrium Modification in Chemical Looping Methane Conversion. ACS Catal. 2019, 9, 8373–8382. [Google Scholar] [CrossRef]
- Zeng, D.; Qiu, Y.; Peng, S.; Chen, C.; Zeng, J.; Zhang, S.; Xiao, R. Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlOx spinel oxygen carrier materials. J. Mater. Chem. A 2018, 6, 11306–11316. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, S.; Ma, S.; Xiang, W. Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process. Chem. Eng. J. 2017, 325, 322–331. [Google Scholar] [CrossRef]
- Li, D.; Xu, R.; Gu, Z.; Zhu, X.; Qing, S.; Li, K. Chemical-Looping Conversion of Methane: A Review. Energy Technol. 2019, 8, 1900925. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.; Wang, H.; Li, Z.; Zhu, X. Sandwich Ni-phyllosilicate@doped-ceria for moderate-temperature chemical looping dry reforming of methane. Fuel Process. Technol. 2022, 232, 107268. [Google Scholar] [CrossRef]
- Riaz, A.; Kremer, F.; Kim, T.; Sattayaporn, S.; Tsuzuki, T.; Lipiński, W.; Lowe, A. Experimental demonstration of vanadium-doped nanostructured ceria for enhanced solar thermochemical syngas production. Nano Energy 2021, 81, 105639. [Google Scholar] [CrossRef]
- Kang, D.; Lee, M.; Lim, H.S.; Lee, J.W. Chemical looping partial oxidation of methane with CO2 utilization on the ceria-enhanced mesoporous Fe2O3 oxygen carrier. Fuel 2018, 215, 787–798. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, L.; Tian, H.; Li, X.; Gong, J. Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane. ACS Catal. 2017, 7, 3548–3559. [Google Scholar] [CrossRef]
- Miller, D.D.; Riley, J.; Siriwardane, R. Interaction of Methane with Calcium Ferrite in the Chemical Looping Partial Oxidation Application: Experimental and DFT Study. Energy Fuels 2019, 34, 2193–2204. [Google Scholar] [CrossRef]
- Jiang, S.; Shen, L.; Wu, J.; Yan, J.; Song, T. The investigations of hematite-CuO oxygen carrier in chemical looping combustion. Chem. Eng. J. 2017, 317, 132–142. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, Z.; Feng, Y.; Chen, T.; Chen, D.; Zheng, A.; Wei, G.; He, F.; Zhao, Z.; Wu, J.; et al. Exploring the Conversion Mechanisms of Toluene as a Biomass Tar Model Compound on NiFe2O4 Oxygen Carrier. ACS Sustain. Chem. Eng. 2019, 7, 16539–16548. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, Z.; He, F.; Chen, D.; Wei, G.; Zhao, K.; Zheng, A.; Zhao, Z.; Li, H. Reactivity investigation on chemical looping gasification of biomass char using nickel ferrite oxygen carrier. Int. J. Hydrogen Energy 2017, 42, 14458–14470. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Li, D.; Li, K.; Wang, H.; Zhu, T.; Zhu, X. Enhanced performance of La1-xFeO3-δ oxygen carrier via A-site cation defect engineering for chemical looping dry reforming of methane. Fuel Process. Technol. 2023, 248, 107820. [Google Scholar] [CrossRef]
- Lim, H.S.; Kang, D.; Lee, J.W. Phase transition of Fe2O3–NiO to NiFe2O4 in perovskite catalytic particles for enhanced methane chemical looping reforming-decomposition with CO2 conversion. Appl. Catal. B Environ. 2017, 202, 175–183. [Google Scholar] [CrossRef]
- Zhang, J.; He, T.; Wang, Z.; Zhu, M.; Zhang, K.; Li, B.; Wu, J. The search of proper oxygen carriers for chemical looping partial oxidation of carbon. Appl. Energy 2017, 190, 1119–1125. [Google Scholar] [CrossRef]
- Collins-Martinez, V.H.; Cazares-Marroquin, J.F.; Salinas-Gutierrez, J.M.; Pantoja-Espinoza, J.C.; Lopez-Ortiz, A.; Melendez-Zaragoza, M.J. The thermodynamic evaluation and process simulation of the chemical looping steam methane reforming of mixed iron oxides. RSC Adv. 2020, 11, 684–699. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Sun, Y.; Wu, Y.; Wang, J.; Jiang, E.; Xu, X.; Su, J.; Jia, Z. The coupling of CH4 partial oxidation and CO2 splitting for syngas production via double perovskite-type oxides LaFexCo1−xO3. Fuel 2020, 268, 117381. [Google Scholar] [CrossRef]
- Ksepko, E. Perovskite-type Sr(Mn1−xNix)O3 materials and their chemical-looping oxygen transfer properties. Int. J. Hydrogen Energy 2014, 39, 8126–8137. [Google Scholar] [CrossRef]
- Imtiaz, Q.; Hosseini, D.; Müller, C.R. Review of Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU): Thermodynamics, Material Development, and Synthesis. Energy Technol. 2013, 1, 633–647. [Google Scholar] [CrossRef]
- Jiang, B.; Li, L.; Zhang, Q.; Ma, J.; Zhang, H.; Yu, K.; Bian, Z.; Zhang, X.; Ma, X.; Tang, D. Iron–oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation. J. Mater. Chem. A 2021, 9, 13008–13018. [Google Scholar] [CrossRef]
- Zhang, R.; Cao, Y.; Li, H.; Zhao, Z.; Zhao, K.; Jiang, L. The role of CuO modified La0·7Sr0·3FeO3 perovskite on intermediate-temperature partial oxidation of methane via chemical looping scheme. Int. J. Hydrogen Energy 2020, 45, 4073–4083. [Google Scholar] [CrossRef]
- Nalbandian, L.; Evdou, A.; Matsouka, C.; Zaspalis, V. Assessment of (La1-xSrx)MnO3±δ perovskites as oxygen- carrier materials in chemical-looping processes. Fuel Process. Technol. 2022, 226, 107086. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Xu, W.; Huang, C.; Su, Y.; Tian, M.; Zhu, Y.; Gong, H.; Wang, X. Anti-coke BaFe1–xSnxO3−δ Oxygen Carriers for Enhanced Syngas Production via Chemical Looping Partial Oxidation of Methane. Energy Fuels 2020, 34, 6991–6998. [Google Scholar] [CrossRef]
- Donat, F.; Müller, C.R. CO2-free conversion of CH4 to syngas using chemical looping. Appl. Catal. B Environ. 2020, 278, 119328. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, H.; Sikarwar, V.S.; Zhao, M.; Park, A.-H.A.; Fennell, P.S.; Shen, L.; Fan, L.-S. Biomass-based chemical looping technologies: The good, the bad and the future. Energy Environ. Sci. 2017, 10, 1885–1910. [Google Scholar] [CrossRef]
- Liu, G.; Liao, Y.; Wu, Y.; Ma, X.; Chen, L. Characteristics of microalgae gasification through chemical looping in the presence of steam. Int. J. Hydrogen Energy 2017, 42, 22730–22742. [Google Scholar] [CrossRef]
Oxygen Carrier | Synthesis Method | Conv (CH4) | Sel (CO) | Yield (H2) | Temperature | Ref. |
---|---|---|---|---|---|---|
Fe2(SiO3)3 | Wet impregnation | 95% | 35% | - | 850 °C | [34] |
Y3Fe2Al3O12 | Wet impregnation | 92% | ~100% | 0.06 mmol/g | - | [35] |
Cu14Al | Wet impregnation | 96% | - | 2.60 mmol/g | 950 °C | [36] |
Ce2(SO4)3 | - | 90.5% | 88.23% | - | 800 °C | [37] |
LaFeO3 | Glycine–nitrate combustion | 70% | ~100% | - | 900 °C | [38] |
NiO/Al2O3 | wetness Incipient impregnation | 90% | - | - | 800 °C | [39] |
LaFe3−xNixAl9O19 | Co-precipitation | ~92% | ~82% | - | 850 °C | [40] |
NiO/C2F/CaO | - | 55% | - | - | 700 °C | [41] |
LaNixTi1−xO3−δ | - | ~100% | 80% | - | 800 °C | [31] |
Ni/LaFeO3 | Wet impregnation | 95.2% | 85.1% | - | 800 °C | [25] |
FeVO4 | - | 60% | 70% | - | 350 °C | [42] |
Fe-P | Mechanical mixing | 86.2% | - | 42 mL/g | 600 °C | [43] |
Co-LF | Sol–gel autocombustion | 75.15% | - | 1078.70 mL/g | 900 °C | [28] |
LaFeO3 | - | ~100% | ~100% | 300 ml | 850 °C | [44] |
Co3O4-CeO2 La0.95Ce0.05NixFe1−xO3 | Precipitation Sol–gel | 95% 95.7% | - 94.8% | - 55.72 mmol/g | 800 °C 800 °C | [32] [27] |
BaCoO3−δ@CeO2 | Co-sol–gel | 50% | 93% | 123 mL/g | 850 °C | [30] |
NiCo@La0.6Ca0.4FeO3−δ | Sol–gel | 78% | - | 10 mmol/g | 850 °C | [45] |
Co/SiO2@CeO2 | Ammonia evaporation | 87% | 83% | - | 610 °C | [46] |
Ce9Co1Oδ | Co-precipitation | 90% | 90% | - | 900 °C | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cui, Y.; Si-ma, W.; Zhang, Y.; Gao, Y.; Wang, P.; Zhang, Q. Advances and Challenges in Oxygen Carriers for Chemical Looping Partial Oxidation of Methane. Catalysts 2024, 14, 246. https://doi.org/10.3390/catal14040246
Zhang J, Cui Y, Si-ma W, Zhang Y, Gao Y, Wang P, Zhang Q. Advances and Challenges in Oxygen Carriers for Chemical Looping Partial Oxidation of Methane. Catalysts. 2024; 14(4):246. https://doi.org/10.3390/catal14040246
Chicago/Turabian StyleZhang, Jinnan, Yuxuan Cui, Wang Si-ma, Yanqi Zhang, Yuming Gao, Pengxuan Wang, and Qian Zhang. 2024. "Advances and Challenges in Oxygen Carriers for Chemical Looping Partial Oxidation of Methane" Catalysts 14, no. 4: 246. https://doi.org/10.3390/catal14040246
APA StyleZhang, J., Cui, Y., Si-ma, W., Zhang, Y., Gao, Y., Wang, P., & Zhang, Q. (2024). Advances and Challenges in Oxygen Carriers for Chemical Looping Partial Oxidation of Methane. Catalysts, 14(4), 246. https://doi.org/10.3390/catal14040246