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Abstract: To cope with global warming and increasing carbon emissions, the chemical looping
process has attracted attention due to its excellent ability to convert fossil fuel and capture CO2.
In this case, chemical looping partial oxidation technology has become the focus of attention due
to its advantages in the production of syngas and hydrogen, especially with respect to the design
and selection of oxygen carriers, which directly affect the efficiency of the production of syngas and
hydrogen. In particular, the conversion of methane can reach 95% in the chemical looping partial
oxidation of methane, and the selectivity of syngas, in the range of 700 ◦C to 900 ◦C at atmospheric
pressure, can reach 99% for twenty or more cycles. In this review, from the perspective of metal oxide
selection and structure regarding the chemical looping partial oxidation process, we discuss the role
of oxygen carriers in the chemical looping partial oxidation cycle, in which the specific surface area,
the lattice oxygen mobility, and the thermal stability are understood as the important factors affecting
reactivity. We hope to summarize the design and development of efficient oxygen carriers with
high oxygen-carrying capacity and syngas selectivity, as well as contribute to the selection, design,
optimization, and redox reaction mechanism of redox catalysts.

Keywords: chemical looping process; oxygen carriers; hydrogen production

1. Introduction

The substantial and alarming rise in CO2 emissions and its consequential impact on
climate change have spurred extensive research efforts aimed at controlling atmospheric
CO2 levels. Consequently, significant endeavors have been dedicated to executing energy
and material conversions via compact, environmentally friendly, and energy-efficient
process technologies over an extended period. A strategy for achieving this target involves
chemical looping, where a reaction or separation is deconstructed into several sub-reactions,
which take place in separate steps or environments. In other words, chemical looping
can offer distinct reaction pathways within oxygen carriers, where these carriers act as
matrices for lattice oxygen transfer. They oxidize reactants and subsequently undergo a
reduction in separate reactions. Hence, chemical looping is distinguished not only as a
promising technology for converting carbonaceous fuels, thereby boasting manageable
CO2 capture, but also as a transformative method for cleanly and efficiently converting
fuels into hydrogen, syngas, and other forms of energy [1,2].

In recent years, the chemical looping process has gained prominence as a promising
avenue for converting a broad spectrum of feedstocks into hydrogen and syngas [3]. Un-
like traditional fossil fuel gasification and reforming methods, chemical looping partial
oxidation (CLPO) removes the necessity for an air separation unit, a water–gas shift reactor,
or molecular oxygen from an air separation unit (ASU), thus resulting in increased gas
efficiency and decreased fuel consumption [4]. Accordingly, CLPO can directly generate
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syngas with desirable H2:CO ratios and reduced CO2 content [5]. Compared to conven-
tional technology, CLPO technology is capable of reducing investment into equipment
and preventing the risk of explosions from pre-mixed methane and oxygen combinations.
Moreover, basic investigations into the application of CLPO methodologies have also been
explored in renewable energy systems, including the thermo-chemical decomposition of
CO2/H2O to generate CO/H2 and O2. As the sources of raw materials are particularly
prominent in industrial production, a wide range of feedstock sources, such as shale gas and
natural gas, makes the chemical looping partial oxidation of methane (CLPOM) attractive
compared to other fuels. The reaction process is as follows:

CH4 + MOx → MO(x−1) + CO + 2H2. (1)

CO2 + MO(x−1) → MOx + CO. (2)

Moreover, CLPOM can obtain a favorable hydrogen-to-carbon ratio of syngas, which
facilitates the synthesis, such as Fischer–Tropsch synthesis, of subsequent chemicals. Al-
though there have been many review works on the stability and activity of CLPO, works dis-
cussing the design and activity of oxygen carriers (OCs) on the basis of methane are scarce.

This review examines the recent research into the redox chemistry of OCs within the
framework of CLPOM, and it is driven by the imperative for environmentally friendly and
effective approaches to material and energy transformations. We pay particular attention
to analyzing and summarizing the selection and design of OCs to provide a more open and
effective way through which to promote CLPOM.

2. Fundamentals of CLPO and CLPOM

CLPO involves partially oxidizing fuels through using oxygen from the air to generate
syngas. In this process, the fuels undergo partial oxidation in the reducer reactor with the
OCs, thereby resulting in the production of high-purity syngas. The reduced OCs are then
regenerated in a fluidized bed combustor through oxidation reactions with air [4]. After
regeneration by air, the OCs are replenished with oxygen and release heat, thereby allowing
them to be recycled back to the previous step. In this case, the partial oxidation products
include syngas and lower oxygen-containing hydrocarbons, such as olefins and aromatics,
which are crucial intermediates in the field of energy and chemical engineering [6].

Refinement of the CLPO methodology represents a relatively modern advancement
that has emerged from practices dating back to the early 1900s. This period saw the uti-
lization of fixed beds containing iron ore, which were subjected to alternating cycles of
syngas and steam, thereby marking the inception of commercial hydrogen production.
During the 1950s, CLPO improved the interaction between solid iron oxide and steam
when employed by fluidized beds. In the 1970s, the CO2 acceptor gasification process
made significant progress, and this innovative approach involved using a gasifier equipped
with CaO to convert coal into syngas. Not only did this facilitate the in situ removal of
CO2, but it also enhanced hydrogen production through the water–gas shift reaction [7].
Thermochemical studies on the splitting of H2O and CO2 began to gain momentum in
the 1980s, initiating a series of investigations into different thermochemical cycles. During
the 1990s, researchers discovered that the lattice oxygen atoms from cerium oxides could
enhance methane undergoing partial oxidation to produce syngas [8–10]. An additional
proposition suggested leveraging solar energy to heat fluidized iron oxides, thus driving
methane to undergo partial oxidation in order to produce syngas. This concept shares
a similar foundational direction with the development of chemical looping [11,12]. Both
General Electric and Alstom have independently researched systems with three reactors to
utilize coal in order to produce hydrogen with O2 carriers and CO2 carriers [13]. Starting
in 2018, a 1 MWth chemical looping gasification pilot unit was upscaled in China by the
ENN Energy Research Institute, whose target is to produce syngas with rich hydrogen [14].
At the same time, Ohio State University has produced hydrogen from coal-derived syngas
and natural gas feedstocks in a high-pressure chemical looping plant [15]. In this setup,
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moving beds are used as the reducer and oxidizer functions, while a fluidized bed is used
as the combustor operates. They are also driving bench and sub-pilot scale experiments
to progress coal-to-syngas and shale-gas-to-syngas processes [16–18]. In essence, advance-
ments in CLPO technology are primarily driven by urgent demands for the economically
efficient production of hydrogen and carbon monoxide with high purity [19].

The CLPOM process involves oxidizing CH4 with the lattice oxygen from OCs to
produce syngas, which is followed by re-oxidizing the reduced OCs with air to complete
one cycle, as shown in Figure 1. This method circumvents direct contact between CH4
and oxygen, effectively minimizing the presence of N2 in the effluent by spatially dividing
CH4 conversion into two steps. Additionally, this approach demonstrates the possibility
of directly generating high-quality syngas with preferred H2/CO ratios [1], the process of
which is shown in Figure 1. Zheng et al. investigated the production of H2 by a plasma-
assisted chemical looping system that enabled the partial oxidation of CH4 to occur at
moderate temperatures (573–773 K) [20]. Qin et al. demonstrated that iron-based OCs, with
the addition of a low concentration of copper, can dramatically enhance the reactivity in the
CLPO processes at low temperatures while maintaining the recyclability of these carriers.
At seven hundred degrees, doped oxygen carriers can increase methane conversion by
470% compared to non-doped ones [21]. The core of the CLPO technology is OCs, and now
we provide a review of OCs [8,22].

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 21 
 

 

Energy Research Institute, whose target is to produce syngas with rich hydrogen [14]. At 
the same time, Ohio State University has produced hydrogen from coal-derived syngas 
and natural gas feedstocks in a high-pressure chemical looping plant [15]. In this setup, 
moving beds are used as the reducer and oxidizer functions, while a fluidized bed is used 
as the combustor operates. They are also driving bench and sub-pilot scale experiments 
to progress coal-to-syngas and shale-gas-to-syngas processes [16–18]. In essence, advance-
ments in CLPO technology are primarily driven by urgent demands for the economically 
efficient production of hydrogen and carbon monoxide with high purity [19]. 

The CLPOM process involves oxidizing CH4 with the lattice oxygen from OCs to pro-
duce syngas, which is followed by re-oxidizing the reduced OCs with air to complete one 
cycle, as shown in Figure 1. This method circumvents direct contact between CH4 and 
oxygen, effectively minimizing the presence of N2 in the effluent by spatially dividing CH4 
conversion into two steps. Additionally, this approach demonstrates the possibility of di-
rectly generating high-quality syngas with preferred H2/CO ratios [1], the process of 
which is shown in Figure 1. Zheng et al. investigated the production of H2 by a plasma-
assisted chemical looping system that enabled the partial oxidation of CH4 to occur at 
moderate temperatures (573–773 K) [20]. Qin et al. demonstrated that iron-based OCs, 
with the addition of a low concentration of copper, can dramatically enhance the reactivity 
in the CLPO processes at low temperatures while maintaining the recyclability of these 
carriers. At seven hundred degrees, doped oxygen carriers can increase methane conver-
sion by 470% compared to non-doped ones [21]. The core of the CLPO technology is OCs, 
and now we provide a review of OCs [8,22]. 

 
Figure 1. The mechanism diagram of CLPOM. 

3. Synthesis Methods of OCs 
The synthesis method will affect the lattice oxygen distribution of the oxygen carriers, 

as well as the characteristics of the loaded doping, thereby leading to different catalytic 
activity and stability. Common oxygen carriers and methods of synthesis are summarized 
in Figure 2. 

Figure 1. The mechanism diagram of CLPOM.



Catalysts 2024, 14, 246 4 of 21

3. Synthesis Methods of OCs

The synthesis method will affect the lattice oxygen distribution of the oxygen carriers,
as well as the characteristics of the loaded doping, thereby leading to different catalytic
activity and stability. Common oxygen carriers and methods of synthesis are summarized
in Figure 2.

Catalysts 2024, 14, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. Classification and preparation of OCs. 

Liu et al. synthesized 5NiO/(xCeO2-Al2O3) oxygen carriers by two-step impregnation. 
The stable and highly active oxygen carrier was synthesized to minimize the formation of 
NiAl2O4 and the Ni2+ doping into the CeO2 lattice. The active Ni-O-Ce oxygen species can 
be devoted to partial oxidation performance, and the deactivation was found to be negli-
gible for 5NiO/(40CeO2-Al2O3) over 20 cycles [23]. For stable monoatomic deposition, Car-
rillo et al. employed the exsolution technique to achieve consistent monoatomic deposi-
tion, thus resulting in evenly distributed Ru nanoparticles that were firmly attached to the 
cerium oxide framework. This ensures the enduring microstructural integrity and cata-
lytic efficacy of the material throughout extensive cycling. Through this approach, the re-
silient Ru nanoparticles generated could enhance syngas generation via CLPOM com-
bined with CO2 splitting, a process that is as of yet unexplored for ceria-based substances 
[24]. Li et al. synthesized a range of xwt% Ni/LaFeO3 samples via the wet impregnation 
technique. Their investigation revealed that the methane conversion and product selectiv-
ity are predominantly influenced by the nickel loading, with 5wt% Ni/LaFeO3 oxygen car-
riers exhibiting elevated CH4 conversion (95.2%) and CO selectivity (85.1%). These find-
ings indicate the viability of enhancing the activation of lattice oxygen in LaFeO3 perov-
skite oxygen carriers through surface modification with NiO, thereby exerting a signifi-
cant impact on their catalytic performance [25]. 

The sol–gel method disperses raw materials into a solvent to form a low-viscosity 
solution to obtain homogeneity at the molecular level in a very short period of time; in the 
formation of the gel, the reactants are likely to be homogeneously mixed with each other 
at the molecular level. Thus, it has received a great deal of attention in the preparation of 
oxygen-carrying systems, especially for chalcogenide-type catalysts. Yao et al. synthesized 
the LaNixTi1−xO3−δ (x = 0, 0.25, 0.5, 0.75, and 1) perovskite oxides by a sol–gel method. The 
sol–gel process enabled precise control over their physical and chemical properties, 
thereby creating materials with high purity, excellent homogeneity, controllable morphol-
ogy, and unique microstructures.. They used quasi in situ XPS to characterize the 

Figure 2. Classification and preparation of OCs.

Liu et al. synthesized 5NiO/(xCeO2-Al2O3) oxygen carriers by two-step impregnation.
The stable and highly active oxygen carrier was synthesized to minimize the formation of
NiAl2O4 and the Ni2+ doping into the CeO2 lattice. The active Ni-O-Ce oxygen species
can be devoted to partial oxidation performance, and the deactivation was found to be
negligible for 5NiO/(40CeO2-Al2O3) over 20 cycles [23]. For stable monoatomic deposition,
Carrillo et al. employed the exsolution technique to achieve consistent monoatomic deposi-
tion, thus resulting in evenly distributed Ru nanoparticles that were firmly attached to the
cerium oxide framework. This ensures the enduring microstructural integrity and catalytic
efficacy of the material throughout extensive cycling. Through this approach, the resilient
Ru nanoparticles generated could enhance syngas generation via CLPOM combined with
CO2 splitting, a process that is as of yet unexplored for ceria-based substances [24]. Li et al.
synthesized a range of xwt% Ni/LaFeO3 samples via the wet impregnation technique. Their
investigation revealed that the methane conversion and product selectivity are predomi-
nantly influenced by the nickel loading, with 5wt% Ni/LaFeO3 oxygen carriers exhibiting
elevated CH4 conversion (95.2%) and CO selectivity (85.1%). These findings indicate the
viability of enhancing the activation of lattice oxygen in LaFeO3 perovskite oxygen carriers
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through surface modification with NiO, thereby exerting a significant impact on their
catalytic performance [25].

The sol–gel method disperses raw materials into a solvent to form a low-viscosity
solution to obtain homogeneity at the molecular level in a very short period of time; in the
formation of the gel, the reactants are likely to be homogeneously mixed with each other
at the molecular level. Thus, it has received a great deal of attention in the preparation of
oxygen-carrying systems, especially for chalcogenide-type catalysts. Yao et al. synthesized
the LaNixTi1−xO3−δ (x = 0, 0.25, 0.5, 0.75, and 1) perovskite oxides by a sol–gel method. The
sol–gel process enabled precise control over their physical and chemical properties, thereby
creating materials with high purity, excellent homogeneity, controllable morphology, and
unique microstructures.. They used quasi in situ XPS to characterize the compounds,
and they found that the relative concentration of partially oxidized nucleophilic lattice
oxygen species increases with titanium substitution [26]. Zhu et al. synthesized a series
of La1−xFeO3−δ oxygen carriers with A-site cation defects by sol–gel method. Tuned
A-site cation defect engineering reduces the crystallite size of La1−xFeO3−δ perovskites,
which effectively increases the oxygen vacancy concentration and thus improves the cat-
alytic performance of CH4 conversion and CO2 splitting [27]. Zhao et al. synthesized
La0.95Ce0.05NixFe1−xO3 by an improved sol–gel method (i.e., the Pechini method). The
H2/CO molar ratio was maintained at the optimal value of 2.0 for a Fischer–Tropsch syn-
thesis, which was conducted throughout the methane partial oxidation process. Afterward,
near-100% hydrogen concentrations (i.e., higher than 99.6% and 99.5%) were observed on
the La0.95Ce0.05Ni0.2Fe0.8O3 and La0.95Ce0.05Ni0.5Fe0.5O3 samples during the steam splitting
process, thus indicating that an additional separation step for pure hydrogen acquisition
can be omitted [27]. Ma et al. synthesized La-Fe-O perovskite-type oxygen carriers by
the sol–gel auto-combustion method. They reported LF as the basic oxygen carrier and
attempted to optimize the conventional gasification processes by introducing highly active
molecular oxygen through the doping of the three most representative oxygen uncoupling
elements (Cu, Mn, and Co) [28]. Lee et al. presented OCs with a surface enrichment of lan-
thanum on Co3O4. Their study identified that the optimal lanthanum doping concentration
was 10wt%. The Co3O4-containing 10wt% lanthanum exhibited an average CO2 selectivity
of 93.1% and a CH4 conversion of 95.4% at 800 ◦C over 50 cycles. This surface enrichment
not only imparts resistance to sintering, but also enhances oxygen storage capacity, thus
ensuring a prolonged cyclic chemical looping combustion performance [29].

For the same sample, different synthesis methods can have different effects on the
loading of oxygen carriers. Ding et al. synthesized BaCoO3−δ OCs, which were supported
by CeO2 with varying component distributions, using different methods such as dry mix,
sol–gel, and co-sol–gel approaches. The dry mix sample exhibited a patchy and loosely
attached interface between BaCoO3−δ and CeO2, thereby suppressing the synergistic
effects between perovskite and CeO2, as well as impeding the mobility of oxygen species.
Consequently, this led to a lower gas production of syngas and hydrogen. In contrast, the
sol–gel sample featured a macroporous structure with dense contact between perovskite
and CeO2, thereby enhancing the gas–solid contact and synergistic effects, as well as
improving reaction selectivity and gas production. However, the co-sol–gel sample, while
showing uniform component distribution, contained impurities like BaCeO3, BaCO3, and
Co3O4, along with a lower fraction of perovskite on the surface, thus resulting in a relatively
low reactivity in the partial oxidation of methane, as well as noticeable secondary methane
decomposition reactions. In transitioning from the dry mix to the sol–gel and then to the
co-sol–gel sample, the contact between BaCoO3−δ and CeO2 gradually intensified. The H2
selectivity of the co-sol–gel sample exceeded the ideal value of 1.0, reaching approximately
4.1, while the dry mix and sol–gel samples exhibited a H2 selectivity close to 1.0. These
findings suggest that the co-sol–gel sample exhibited significant methane decomposition,
yielding additional H2 and raising the H2/CO ratio above the ideal value [30].
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4. Design Strategies of OCs

The CLPOM method is aimed at creating a closed loop, so identifying oxygen carriers
that are capable of storing and releasing oxygen is crucial to the entire technology [31].
The predominant feature of OCs is their extensive surface area, which guarantees minimal
resistance to transport between the external atmospheric air and the particle surface, so
they typically consist of porous solids. Generally, OCs are composed of reducible MOx
compounds, where they serve the following three primary functions: generating oxygen
ions or vacancies and electrons or holes, facilitating their diffusion within the bulk phase,
and providing active sites for surface reactions. In general, OCs consist of reducible MOx
compounds with the following three main roles: generating oxygen ions and vacancies
or electrons and holes, accelerating their transfer, and offering active sites for the reaction.
In the reduction step, OC particles absorb thermal energy and acquire reactive oxygen
species at high temperatures, and then oxygen anions migrate from the particle surface to
the interior of the particles down the chemical potential gradient while the countercurrent
flow of electrons is induced to maintain electroneutrality, which balances this migration.
Subsequently, a redox reaction occurs on the particle surface and products are formed.
Oxygen ions and electron holes undergo surface exchange and pass inward to combine
with oxygen vacancies inside the particle [32]. Zhang et al. comprehensively reviewed
the classification of oxygen carriers and the application scenarios of CLPO, and they
proposed measures to enhance the reactivity and stability of oxygen carriers; for example,
through metal–metal interactions, metal–support synergism, pathways of oxygen vacancy
generation, de-activation resistance, etc. [3]. Liu et al. demonstrated that iron oxide
nanoparticles embedded in a mesoporous silica matrix can effectively inhibit the complete
oxidation of carbon in the reaction of CLPOM [33].

The OCs in the chemical looping processes need to meet the following requirements to
achieve high activity and stability in practical applications. First, these carriers need to have
stable redox properties and need to remain in two or more states. At the same time, the oxy-
gen carriers also need to have an advantage in terms of reaction kinetics/thermodynamics,
which is the key to increasing the reactivity. Mechanical and thermal stability must also
be taken into account, and, of course, the cost is not to be ignored. Reactions involving
oxygen carriers entail the generation and transfer of various oxygenic species within the
bulk phase. Depending on the specific surface reaction pathway, these reactions can yield
different products. Typically, nickel- and iron-based oxides are regarded as good oxygen
carriers for CLPOM due to their good thermodynamic properties and high reactivity, and
spinel- and tremolite-type metal oxides are also widely employed for CLPOM. Recent work
on the utilization of OCs is summarized in Table 1.

Table 1. Key parameters of the oxygen carriers used for syngas production via CLPOM.

Oxygen Carrier Synthesis Method Conv (CH4) Sel (CO) Yield (H2) Temperature Ref.

Fe2(SiO3)3 Wet impregnation 95% 35% - 850 ◦C [34]
Y3Fe2Al3O12 Wet impregnation 92% ~100% 0.06 mmol/g - [35]

Cu14Al Wet impregnation 96% - 2.60 mmol/g 950 ◦C [36]
Ce2(SO4)3 - 90.5% 88.23% - 800 ◦C [37]

LaFeO3 Glycine–nitrate combustion 70% ~100% - 900 ◦C [38]

NiO/Al2O3
wetness

Incipient impregnation 90% - - 800 ◦C [39]

LaFe3−xNixAl9O19 Co-precipitation ~92% ~82% - 850 ◦C [40]
NiO/C2F/CaO - 55% - - 700 ◦C [41]
LaNixTi1−xO3−δ - ~100% 80% - 800 ◦C [31]

Ni/LaFeO3 Wet impregnation 95.2% 85.1% - 800 ◦C [25]
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Table 1. Cont.

Oxygen Carrier Synthesis Method Conv (CH4) Sel (CO) Yield (H2) Temperature Ref.

FeVO4 - 60% 70% - 350 ◦C [42]
Fe-P Mechanical mixing 86.2% - 42 mL/g 600 ◦C [43]

Co-LF Sol–gel autocombustion 75.15% - 1078.70 mL/g 900 ◦C [28]
LaFeO3 - ~100% ~100% 300 ml 850 ◦C [44]

Co3O4-CeO2
La0.95Ce0.05NixFe1−xO3

Precipitation
Sol–gel

95%
95.7%

-
94.8%

-
55.72 mmol/g

800 ◦C
800 ◦C

[32]
[27]

BaCoO3−δ@CeO2 Co-sol–gel 50% 93% 123 mL/g 850 ◦C [30]
NiCo@La0.6Ca0.4FeO3−δ Sol–gel 78% - 10 mmol/g 850 ◦C [45]

Co/SiO2@CeO2 Ammonia evaporation 87% 83% - 610 ◦C [46]
Ce9Co1Oδ Co-precipitation 90% 90% - 900 ◦C [47]

The next section will focus on single-metal oxide materials and complex metal oxide
materials to summarize the research results.

4.1. Single-Metal Oxide
4.1.1. Ni-Based OCs

Nickel-based OCs, particularly NiO, have been widely employed in CLPOM because
of their high potential in breaking C-C and C-H bonds during methane conversion and
their reported ability to enhance ilmenite ore reactivity for syngas production. Long et al.
prepared an OC consisting of two different parts, and they found that a reasonable design
can fully utilize the advantages of the two parts where there is no carbon buildup, as shown
in Figure 3(a1–a4). They also found that CuO/cordierite and NiO/cordierite have high
conversion rates for both CO2 and CH4 in each cycle, with high selectivity for CO Regarding
the CH4 conversion, the two fractions maintained a high conversion in the reaction, as well
as a strong cyclic stability [48]. Liu et al. described the dynamic migration of the oxygen
species on cerium oxide-based NiO OCs in CLPOM, and they found that the content of
oxygen species was directly correlated and linearly related to the rate of CO generation;
meanwhile, the consumed Ni-O-Ce oxygen species were supplemented by the lattice
oxygen in CeO2, as shown in Figure 3b [23]. Li et al. prepared xNiO/(CeO2-MgO) OC and
demonstrated that the activity of CH4 and CO2 conversion increased significantly with
the addition of NiO, and the addition of 10wt% to the NiO increased the CH4 conversion
from 15.62% to 59.64% at 800 ◦C. In addition, the stability was also greatly improved due
to the formation of the CeO2-NiO and NiO-MgO double solid solutions. At the same time,
due to the formation of a CeO2-NiO and NiO-MgO double-solid solution, the stability was
greatly improved, as shown in Figure 3c [49]. Zhang et al. used NiO-doped κ-CeZrO4
for CLPOM, which reduces the energy compensation for methane conversion and takes
place at low temperatures due to its excellent lattice oxygen transport properties and stable
structure. It is worth noting that high methane conversion (52–72%) and syngas selectivity
(88–92%) rates were obtained in a relatively low-temperature range (700–800 ◦C), which is
competitive when compared to all the contemporary reports, as shown in Figure 3d,e [50].
Chein et al. utilized 15wt% NiO/Al2O3 as the OCs and achieved yields of H2 and CO
approaching the theoretical amounts. The impact of OC loading and reaction temperature
was then summarized [39]. Similarly, incorporating nickel as a doping element into other
OC catalysts significantly enhances catalytic activity. Shah et al. prepared Ca2Fe2O5 OCs
with different nickel doping concentrations as a recirculation medium for use in CLPOM,
as shown in Figure 4a,b [51].
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However, Ni is difficult to restore to its original state due to carbon accumulation and
particle sintering at high temperatures after several cycles. Metallic nickel is also slightly
insufficient for the reduction of H2O to produce H2, which also limits the application of
Ni-based catalysts in CLPOM [52,53].

Figure 3. (a1) CuO/cordierite monolithic oxygen carriers and (a2) CH4 conversion and CO2 selec-
tivity for different cycles. (a3) CuO/cordierite monolithic oxygen carriers and (a4) NiO/cordierite
monolithic oxygen carriers. Copyright 2021 Elsevier [48]. (b) Dynamic oxygen migration and reaction
over ceria-supported nickel oxides in the chemical looping partial oxidation of methane. Copyright
2023 Elsevier [23]. (c) Redox cycle reactivity and a stability of 10% NiO/(CeO2-MgO) during multiple
redox cycles. Copyright 2022 Elsevier [49]. (d) NiO/κ-CeZrO4 functional oxygen carriers with
Niδ+ and oxygen vacancy synergy for the chemical looping partial oxidation reforming of methane.
(e) Consumption of CH4 with temperature increase. Copyright 2021 Elsevier [50].

4.1.2. Fe-Based OCs

Fe-based OCs are widely used in practice because they are rich in lattice oxygen and
a possess variety of oxidation states of iron [2,54–56]. In light of this issue, Fe2O3 is a
widely developed and designed material for CLPOM, especially when coupled with a
fitted reactor, where the advantages of its multiple oxidation state properties are strongly
amplified [2]. Particularly, Fe2O3 is more effective than NiO for hydrogen generation under
steam conditions [57].
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In the realm of Fe-based OCs, previous studies have frequently incorporated other
metals for various objectives. The lack of a deep reduction in Fe2O3 OCs is an important
issue in the chemical cycle hydrogen production process, and it is an important area of
concern for scientists. Feng et al. modified the reducibility of Fe2O3 OCs by doping
them with different dopants. They evaluated 18 potential dopants and screened 8 ideal
candidate dopants for modifying Fe2O3 OCs, and these dopants significantly enhanced
the reduction process of Fe2O3 to Fe3O4 to FeO [58]. Meanwhile, Lang et al. demonstrated
that a low concentration (1%) of copper dopant in Fe-based OCs can significantly improve
the reactivity and recoverability of the CLPOM process at low temperatures, as shown in
Figure 4c,d [21].

In heavy oil upgrading, the use of transition metals as oxidizing agents for partial
oxidation has received widespread attention in recent years. Wang et al. conducted
synthesized Fe2O3 samples doped with different metals, which they used in CLPO for
the production of light fuels from heavy oil. Their results showed that the yield of light
fuels is strongly influenced by the specific surface area and the concentration of oxygen
species, and that Ca-doped iron-based oxygen carriers have higher yields [59]. Fang et al.
prepared Ni/Cu/FeSO4, Ni/Cu/FeSiO3, Fe2(SO4)3, and Fe2(SiO3)3 for CLPO, and their
results showed that the silicate of iron can significantly improve the conversion of methane
compared to iron oxides. In addition, the optimal experimental conditions were found to
be 800–850 ◦C when the aim is to maintain the pressure of one atmosphere. They found
that the conversion of methane could reach 95%, which is an increase of 272%, as shown in
Figure 4e,f [34].

In addition to doping metals into iron-based OCs, previous studies have explored
replacing other metals with iron or modifying other OCs to enhance stability and reactivity.
Zhu et al. used the Fe-substituted La-hexaaluminate (LF3A) in CLPO for syngas production,
and they then compared it with conventional Fe-based oxygen carriers. They found that
LF3A exhibited high reactivity and stability during the 50 cycles of the reaction process.
The deep reduction did not destroy the hexaaluminate structure, and there was an internal
charge compensation mechanism so that the activity toward CH4 and the utilization of
CO2 could be improved. It was also found that the use of CO2 as the sole oxidant was more
favorable to improve the selectivity than the use of oxygen, and their study provided better
design ideas for the chemical state of the lattice oxygen of the oxygen carriers, the design of
microstructures, and the conformational relationship between the CLPOM [60].

Previous studies have also explored composite methods involving iron combined with
other metals. Wang et al. used Fe-Mn-mixed metal oxides for partial oxidation experiments
of vacuum residue, and they found that the gasoline and diesel yields of Fe-Mn-mixed metal
oxides increased; that study provided a new oxygen carrier setup idea for the production of
lightweight fuels [59]. Zong et al. studied the influence of the encapsulation degree of Fe0

active sites on the performance of garnets for CLPOM. They found that oxygen mobility is
closely related to temperature, where the number of surface oxygen vacancies increases
when the temperature rises. Moreover, at higher temperatures, Fe0 is exposed less and less,
thus resulting in the formation of large particles. The addition of garnet to iron includes
not only the ability to introduce methane active sites, but also promotes the scavenging
of the formed carbon, and their work demonstrated that oxygen mobility is modulated
through strong metal–support interactions to improve the coke resistance of iron-based
OCs, as shown in Figure 5a,b1,b2 [35].
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However, Fe-containing OCs can catalyze the side-reaction methane decomposition
throughout the CLPO, which leads to carbon deposition on their surfaces and causes
a variety of adverse effects. To solve this problem, Donat et al. doped cobalt into iron
as a second redox active metal, thereby forming a bimetallic reduction structure with
iron, which not only changed the activation path of the methane decomposition, but also
controlled the extent of reduction and reduced the formation of carbon accumulation. In
addition to the carbon deposition, coke was also found to be a tricky problem in iron-based
catalysts because, during the activation of methane, the temperature is usually very high
and site clashes of Fe at high temperatures can lead to coke production [63]. Hu et al.
doped the oxides of Ca in iron-based oxygen carriers and investigated their catalytic effect
in the CLPO of rice straw; the results showed that the highest hydrogen production of
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the 23.07 mmol/g of biomass was achieved when Ca was added in equal proportions,
which suggests that the presence of Ca facilitates the further reduction and oxidation of the
iron-based oxygen carrier, which ultimately achieves hydrogen production, as shown in
Figure 5c [62]. Regarding this issue, Liu et al. designed FeWOx-based OCs for CLPOM,
which greatly improved the catalytic activity of CLPO because of its stable structure. It
was shown that the catalyst could significantly increase the total methane conversion and
CO selectivity compared to unmodified WO3/SiO2. These performances can be attributed
to its high lattice oxygen content, its high catalytic activity at the bimetallic interface, etc.,
as shown in Figure 5d [63]. In addition, it was found that the deactivation of pure Fe2O3
still exists at high temperatures, mostly due to the sintering and agglomeration effects
that occur at high temperatures, and that more deactivation-resistant, iron-based oxygen
carriers are needed [64–67].

4.1.3. Ce-Based OCs

With the popularization and application of renewable energy, solar energy as an energy
source for producing syngas has become a promising production technology. Coupling
solar energy with CLPO technology relies on the stability and catalytic activity of the
intermediates of metal compounds, and, cerium, as a multivalent metal element, has
attracted attention because of its outstanding optical properties and its ability to promote
the separation of carbon dioxide.

Compared to other oxides, cerium is characterized by low oxygen exchange or supply
capacity leading to its slow CLPO reaction kinetics, and these problems can be solved by
doping with other reactive cations, as well as by surface modification [68,69]. To address
this challenge, Carrillo et al. immobilized Ru nanoparticles on the cerium oxide skeleton
using an exsolution method to ensure its cyclic catalytic activity and structural stability. The
catalysts designed in this scheme could greatly improve CO selectivity and H2 generation
rate, which doubled when compared with a single CeO2 at 700 ◦C, whereas the selectivity
of carbon monoxide at a higher temperature of 900 ◦C was somewhat reduced to 80%, as
shown in Figure 6a,b1–b3 [24]. Asim et al. used vanadium- and cerium-doped materials
to separate the CO2 and H2O in CLPO in order to prepare syngas. They found that, as
vanadium doping increased, the lattice inhalation of cerium increased and saturated to
form CeVO4, which led to vanadium atoms migrating to the surface of the powder to
cause methane cracking; meanwhile, the lattice vanadium atoms provided an active site for
the redox reaction to promote cycling, which was achieved over 200 cycles of operation.
The catalyst was stable for 200 cycles and yielded up to 4.5 mmol−1/cycle, as shown in
Figure 6c [70]. Ceria is also frequently employed as a carrier to improve the utilization of
OC feedstock. Kang et al. added a small amount of CeO2 to iron oxide carriers and used
it in CLPO to produce syngas. Due to the addition of CeO2, the selectivity of the syngas
was improved, and high-purity syngas production with H2/CO equal to two was realized.
Moreover, it was found that the ideal ratio of syngas could be obtained by controlling the
feed ratio in the production, as shown in Figure 6(d1,d2) [71].

4.1.4. Other Metal Oxide-Based OCs

In addition to these three extensively researched metal oxides, the selection of oxygen
carriers for CLPO also includes several other metal oxides with excellent properties. Chen
et al. designed WO3-based oxygen carriers, which have strong high-temperature resistance
and a sufficient lattice oxygen source, and they also introduced nickel oxide clusters to
further improve the availability of lattice oxygen and the activation ability of methane,
which was found to increase the methane conversion by about 2.7 times [72]. Miller et al.
found that calcium ferrate can deeply reduce methane and selectively undergo carbon
oxidation, thus benefiting the production of syngas in desired proportions, and they used
thermodynamic analysis and DFT to give a reaction mechanism for the overall reaction, as
shown in Figure 7a,b [73].
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4.2. Complex Metal Oxide

Complex metal oxides can be designed with a greater surface area, higher thermal
stability, and strength than mono-metallic substances, thus ensuring their superior heat and
mass transfer, especially in the context of oxygen transfer. As a result, they have excellent
catalytic, syngas-selective, and redox properties [2,74].
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4.2.1. Spinel-Type (AB2O4) OCs

The spinel structure has a special structure of A-O tetrahedra and B-O octahedra, which
promotes synergistic interactions between the constituent metals and results in composite
metal oxides with excellent redox properties [75–77]. Hyun et al. synthesized Fe2O3-
NiO/La0.8Sr0.2FeO3 spinel particles and used them for a CLPO of methane, and they found
that the reduced particles were converted to CO after oxidation of CO2 in 80 min, which
saw the conversion maintained at 93%. The formation of NiFe2O4 increased the oxygen-
carrying capacity and improved the activity and stability during the cycle. CO reduction
in the two OC samples was conducted, and the results are shown in Figure 7c,d [78].
Zhang et al. prepared different structures for the CaFe2O4, Ca2Fe2O5, and FeAl2O4 metal
oxides as oxygen carriers for CLPO. CaFe2O4 is considered to be a more promising oxygen
carrier due to its special structure, fast reaction rate, high oxygen-carrying property, and
carbon monoxide selectivity, which has gained wide attention in practical applications [79].
Virginia et al. synthesized the spinel structures of compounds such as FeMoO4, Fe2ZnO4,
and Fe2MnO4, and then used them in a redox chemical chain cycle of CH4-H2O. They found
that the thermodynamic and sensitive process simulations of Fe2MnO4 allowed for the
highest syngas yields and high-purity hydrogen production in addition to the advantage
of complete regeneration with the assistance of steam, as shown in Figure 7e,f [80].
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4.2.2. Perovskite (ABO3) OCs

Perovskite materials have attracted a great deal of attention in several fields, and
researchers have made several attempts at the methane CLPO process [2]. In these sub-
stances, examples of lanthanide or alkaline earth metals fill the A sites as supporting agents
for the skeleton, while transition elements occupy the B sites as a centering agent for the
architecture [81–83]. Transition metals generally have good redox properties, syngas se-
lectivity, and high oxygen transport properties, so they can be used as oxygen carriers in
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the activation of hydrocarbons and they have a wide range of uses in hydrogenation, the
complete oxidation of carbon, and catalytic combustion.

Lanthanide perovskite-type metal oxides demonstrate exceptional reactivity, selectiv-
ity, and thermal stability when employed as oxygen carriers in CLPO [3]. Lv et al. used
different methods to synthesize a LaFeO3 chalcogenide structure as a carrier for toluene
CLPO, and they tested its performance. The conversion of toluene is mainly divided into
two phases, the first is partial oxidation, and the second is the cracking reaction of the
carrier, in which the chalcogenide carrier occupies a great role. The results also showed
that the structure can efficiently realize the conversion of toluene to syngas, as shown in
Figure 8a [44].

In perovskite structures, the A-site metal affects the coordination environment and
the iron–oxygen bonding, which, in turn, affects the concentrations of the lattice oxygen
and the synthesis gas yield. Yang et al. investigated the distribution of active sites on
La-Fe-based catalysts and analyzed the migration during the chemical chain process, as
shown in Figure 8b [38]. Their results showed that the selectivity of the catalyst is closely
related to the oxygen vacancies and the coordination environment of the core metal. Li et al.
focused on improving the lattice oxygen activity of oxygen carriers, and they prepared
a LaFeO3 oxygen carrier for the CLPO process that was modified by NiO. During this
period, they found that the relationship between temperature and yield was extremely close.
Moreover, they conducted methane conversion experiments at different temperatures, and
they finally concluded that Ni doping can increase methane conversion by about 25%, as
shown in Figure 8c [25].
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Figure 8. (a) The columns are the simulative gas yield in each stage, and the star is the H2/CO ratio
in each stage. Copyright 2023 Elsevier [44]. (b) Schematic representations of the local structures
around Fe on LaFeO3 (001). Copyright 2022 Elsevier [38]. (c) CH4 conversion, CO selectivity, and
the hydrogen-to-carbon ratio in the partial oxidation of methane with 5wt% Ni/LaFeO3 oxygen
carriers at different temperatures. Copyright 2022 Elsevier [25]. (d) Redox test performance, including
product selectivity, methane conversion, CO/CO2 ratio, and syngas yields, for the CLPO of methane
at 850 ◦C. (e) The 20-cycle stability test performance of four perovskites at 850 ◦C. Copyright 2021
Royal Society of Chemistry [84]. (f) Light-reinforced key intermediates for anticaking to boost highly
durable methane dry reforming over a single atom in the active sites on CeO2. (*: the tracked
anticoking paths during the DRM process.). Copyright 2023 American Chemical Society [31].
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Introducing simple metal oxides to modify perovskites is another effective method
that can enhance oxygen activity and reactivity. Jiang et al. found that the lanthanide
LnFeO3 could influence the syngas yield by controlling the chemical interaction between
Fe and oxygen through a combination of theoretical and experimental methods, as shown
in Figure 8d,e [84]. Zhang et al. focused on the activity of CLPO at low temperatures,
and they proposed a CuO-modified La0.7Sr0.3FeO3. It was shown that the CuO-modified
methane conversion was increased by more than a factor of two, and that the obtained
syngas had an H2/CO molar ratio of about 2.5 [85].

The B-site doping of perovskites can also be applied to other metals, but their sum
has to be kept the same. Yao et al. have investigated the constitutive relationship between
the oxygen and catalytic properties of LaNixTi1-xO3-δ perovskites structures in CLPO with
different Ti doping degrees, and they showed that the higher the substitution degree of
Ti, the more the main reaction of CLPO tends to be partially oxidized. Such work also
demonstrates the feasibility of tailoring the oxygen carriers according to the specific needs
of the CLPO, as shown in Figure 8f [31]. Nalbandian et al. prepared (La1-xSrx)MnO3±δ

perovskite structures as oxygen carriers for use in CLPO, and it was pointed out that the
conversion of CH4 with increasing Sr has a close relationship with the oxygen vacancies δ,
whereas the oxygen transport capacity with CO2 as the oxidant decreases with increasing
Sr. According to this defect model, Mn4+ may be reduced to Mn3+ and produce oxygen
vacancies; meanwhile, the overall oxygen vacancies increase with the increase in Sr, but
these oxygen vacancies will not participate in the CO2 separation reaction [86]. Zhang
et al. introduced tin as a promoter into the perovskites’ BaFe1-xSnxO3-δ structure, which
significantly improved the coking resistance, and the syngas yield was 2.9 times higher
than that of the doped case, reaching 19.2 mmol/g or more [87]. Donat et al. developed a
La0.85Sr0.15Fe0.95Al0.05O3-δ perovskite structure with a high lattice oxygen contribution of
up to 9wt%, which can be synthesized at high temperatures of 900 ◦C with a higher than
99% selectivity to synthesize syngas in the right proportions [88].

4.3. Function of Supports

Metal–support synergism involves phenomena such as charge transfer, contact inter-
face range, nanoparticle morphology, chemical composition of the material, and strong
metal–carrier interactions (SMSI). It is an effective strategy for the construction of oxygen
vacancies, and the enhancement of inactivation resistance to achieve a superior reactivity
and stability in OCs [89,90]. Chein et al. prepared the NiO/Al2O3 oxygen carrier. Spherical
Al2O3 particles with an average diameter of 0.5–1.2 mm were used as the support. They
found that the specific area of Al2O3 was larger than NiO/Al2O3, and the average pore
size of Al2O3 was smaller than NiO/Al2O3 [39]. Fang et al. found that Fe2(SiO3)3 could
enhance reactivity in the CLPOM process. Ni/Cu/FeSO4, Ni/Cu/FeSiO3, Fe2(SO4)3, and
Fe2(SiO3)3 were, respectively, calculated to find that Fe2(SiO3)3 was a promising candidate.
It could increase CH4 conversion by 272% [34]. CeO2 can greatly enhance the oxygen trans-
fer performance of oxygen carriers due to its large number of oxygen vacancy properties as
support. Ding et al. used CeO2 as a support to synthesize Ba0.3Sr0.7CoO3−δ/CeO2. The
catalysts showed high syngas and H2 productivity in the CLPOM, which was ascribed
to the formation of BaCeO3 and SrCeO3 from CeO2 and Ba/Sr, as evidenced by X-ray
diffraction measurements. Zhu et al. designed sandwich- and core-shell-structured 5%
Ni-SiO2@Ce0.8M0.2O2-δ (M = Fe, Co, Ni) catalysts for moderate temperature CLPOM. They
found the transition metal doping of Ni-phyllosilicate@CeO2-δ increased the oxygen dona-
tion ability [69]. Wang et al. prepared Co3O4/CeO2 (where the Co/Ce ratios = 7/3), and
showed a better performance with a CH4 conversion above 70%. The highest hydrogen
yield, and a CH4 conversion of up to 55.73 mmol/g and 94.09% were obtained at 700 ◦C.
The enhancement in the performance of Co3O4/CeO2 during hydrogen production was
attributed to the interaction between Co3O4 and CeO2 particles at the interfaces, which
could cause charge redistribution [32].
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5. Conclusions

We provide an overview of the characteristics and fundamental concepts of CLPOM,
thereby emphasizing the significance of OCs in this process. With the decline in carbon-
containing fuel availability, chemical looping technologies offer advantages such as low
environmental impact and high energy efficiency, and they serve as alternatives to con-
ventional processes. Compared to conventional methods, CLPO processes mitigate the
shortcomings inherent in traditional approaches. In CLPO, fuels undergo partial oxidation
by the OCs in the reactor, thereby yielding high-purity syngas. Given the critical role
of OCs, a significant amount of research has focused on the design and development of
highly efficient OCs with high levels of oxygen-carrying capacity and syngas selectivity.
While many of the OCs used for CLPOM are single-metallic oxygens, such as NiO and
Fe2O3, complex metallic oxides such as spinel-type and tremolite-type OCs are also being
investigated. We noticed that, at atmospheric pressure, within the range of 700 ◦C to 900
◦C, the methane conversion rate can achieve 95%, and the selectivity of syngas can reach
99% for twenty or more cycles. We also discussed the influence of different preparation
methods on the OCs and found that the selectivity of the sample prepared by sol–gel
method was four times that of the dry mix method. Nevertheless, these materials still have
room for improvement in terms of durability, cost, and sustainability. Although various
approaches, including doping and modification, enhance the creation of oxygen vacancies
and resistance to deactivation, further improving OC reactivity and stability remains a
significant challenge.

There are still several topics related to the development of oxygen carriers that require
further research: (i) Techniques to characterize lattice oxygen mobility, in particular, to
quantify oxygen diffusion rates and surface exchange kinetics, should be further developed.
(ii) The development of new OCs suitable for use within pressurized reactor systems
to improve reactor integration. (iii) A design of low-cost oxygen carrier catalysts and a
design of efficient catalysts from widely available feedstocks to accelerate industrialization.
(vi) The latest preparation methods for special-structured OCs have been thoroughly
discussed, thereby providing new options for designing functionalized OCs materials. (v)
Machine learning-based, high-throughput material screening technologies have attracted
widespread attention in fields such as energy and the environment, but they are less
commonly applied in chemical looping technologies.
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