Comparison of Brønsted Acidic Silanol Nests and Lewis Acidic Metal Sites in Ti-Beta Zeolites for Conversion of Butenes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure and Textural Properties
2.2. Acidic Properties
2.3. Catalytic Performance
3. Materials and Methods
3.1. Preparation of Samples
3.2. Characterizations
3.3. Catalyst Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 2007, 107, 5366–5410. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.M.; Jentys, A.; Lercher, J.A. Steaming of Zeolite BEA and Its Effect on Acidity: A Comparative NMR and IR Spectroscopic Study. J. Phys. Chem. C 2011, 115, 8005–8013. [Google Scholar] [CrossRef]
- Chu, Y.; Yi, X.; Li, C.; Sun, X.; Zheng, A. Brønsted/Lewis acid sites synergistically promote the initial C–C bond formation in the MTO reaction. Chem. Sci. 2018, 9, 6470–6479. [Google Scholar] [CrossRef] [PubMed]
- Katada, N.; Suzuki, K.; Noda, T.; Sastre, G.; Niwa, M. Correlation between Brønsted Acid Strength and Local Structure in Zeolites. J. Phys. Chem. C 2009, 113, 19208. [Google Scholar] [CrossRef]
- Müller, S.; Liu, Y.; Kirchberger, F.M.; Tonigold, M.; Sanchezsanchez, M.; Lercher, J.A. Hydrogen Transfer Pathways during Zeolite Catalyzed Methanol Conversion to Hydrocarbons. J. Am. Chem. Soc. 2016, 138, 15994–16003. [Google Scholar] [CrossRef]
- Hatice, E.; Basbug, A.; Jones, G.R.; Eva, H. Branching Regulation in Olefin Polymerization via Lewis Acid Triggered Isomerization of Monomers. Angew. Chem. Int. Ed. 2020, 59, 4743–4749. [Google Scholar]
- Kenton, E.H.; Andrew, T.Y.W.; Omar, K.F.; Justin, M.N. The Dependence of Olefin Hydrogenation and Isomerization Rates on Zirconium Metal-Organic Framework Structure. ACS Catal. 2022, 12, 13671–13680. [Google Scholar]
- Sheng, D.; Zhang, Y.; Song, Q.; Xu, G.; Peng, D.; Hou, H.; Xie, R.; Shan, D.; Liu, P. Isomerization of 1-Butene to 2-Butene Catalyzed by Metal-Organic Frameworks. Organometallics 2020, 39, 51–57. [Google Scholar] [CrossRef]
- Rodrigo, J.C.; Claudio, J.A.M. Theoretical study of protonation of butene isomers on acidic zeolite: The relative stability among primary, secondary and tertiary alkoxy intermediates. Phys. Chem. Chem. Phys. 2002, 4, 375–380. [Google Scholar]
- Jennifer, P.; Kieran, P.S.; Shashank, S.N.; Weronika, W.; Henry, J.C. Theoretical Study of the Reaction of Hydrogen Atoms with Three Pentene Isomers: 2-Methyl-1-butene, 2-Methyl-2-butene, and 3-Methyl-1-butene. J. Phys. Chem. A 2020, 124, 10649–10666. [Google Scholar]
- Mikhail, V.P.; Dmitry, P.I.; Alexander, S.K.; Konstantin, A.D. Gas-Phase Selective Oxidation of Butenes in the C4 Fraction by Nitrous Oxide. Ind. Eng. Chem. Res. 2022, 61, 8607–8615. [Google Scholar]
- Alexander, G.; Joaquín, S.A.; Li, W.; Notker, R.; Günther, R. The origin of the particle-size-dependent selectivity in 1-butene isomerization and hydrogenation on Pd/Al2O3 catalysts. Nat. Commun. 2021, 12, 6098. [Google Scholar]
- Zhang, X.; Li, H.; Du, Y.; Chen, X.; Wang, P.; Wang, L.; Feng, X.; Yang, C.; Li, S. Elucidating effect of acid strength on isomerization mechanisms of butene over solid acid catalysts in C4 alkylation. Fuel 2023, 339, 127397. [Google Scholar] [CrossRef]
- Fabian, B.; Joachim, S. Dimerization of Linear Butenes and Pentenes in an Acidic Zeolite (H-MFI). Angew. Chem. Int. Ed. 2021, 60, 3529–3533. [Google Scholar]
- Kissin, Y.V. Chemical Mechanisms of Catalytic Cracking over Solid Acidic Catalysts: Alkanes and Alkenes. Chem. Rev. 2000, 43, 85–146. [Google Scholar] [CrossRef]
- Hansford, R.C. Mechanism of Catalytic Cracking. Ind. Eng. Chem. 2002, 39, 849–852. [Google Scholar] [CrossRef]
- Kondo, J.N.; Yoda, E.; Ishikawa, H.; Wakabayashi, F.; Domen, K. Acid Property of Silanol Groups on Zeolites Assessed by Reaction Probe IR Study. J. Catal. 2000, 191, 275–281. [Google Scholar] [CrossRef]
- SATO, H. Acidity Control and Catalysis of Pentasil Zeolites. Chem. Rev. 1997, 39, 395–424. [Google Scholar] [CrossRef]
- Ishikawa, H.; Yoda, E.; Konko, J.N.; Wakabayashi, F.; Domen, K. Stable Dimerized Alkoxy Species of 2-Methylpropene on Mordenite Zeolite Studied by FT-IR. J. Phys. Chem. B 1999, 103, 5681–5686. [Google Scholar] [CrossRef]
- Camblor, M.A.; Corma, A.; García, H.; Semmer-Herlédan, V.; Valencia, S. Active sites for the liquid-phase beckmann rearrangement of cyclohexanone, acetophenone and cyclododecanone oximes, catalyzed by beta zeolite. J. Catal. 1998, 177, 267–272. [Google Scholar] [CrossRef]
- Tang, B.; Dai, W.; Wu, G.; Guan, N.; Li, L.; Hunger, M. Improved Postsynthesis Strategy to Sn-Beta Zeolites as Lewis Acid Catalysts for the Ring-Opening Hydration of Epoxides. ACS Catal. 2014, 4, 2801–2810. [Google Scholar] [CrossRef]
- Finocchio, E.; Busca, G.; Rossini, S.; Cornaro, U.; Piccoli, V.; Miglio, R. FT-IR characterization of silicated aluminas, active olefin skeletal isomerization catalysts. Catal. Today. 1997, 33, 335–352. [Google Scholar] [CrossRef]
- Yi, F.; He, P.; Chen, H.; He, Y.; Tao, Z.; Li, T.; Zhao, G.; Yun, Y.; Wen, X.; Yang, Y.; et al. Mechanisms of Double-Bond Isomerization Reactions of n-Butene on Different Lewis Acids. ACS Catal. 2021, 11, 11293–11304. [Google Scholar] [CrossRef]
- Yi, F.; Chen, Y.; Tao, Z.; Hu, C.; Yi, X.; Zheng, A.; Wen, X.; Yun, Y.; Yang, Y.; Li, Y. Origin of weak Lewis acids on silanol nests in dealuminated zeolite Beta. J. Catal. 2019, 380, 204–214. [Google Scholar] [CrossRef]
- Hölderich, W.F.; Röseler, J.; Heitmann, G.; Liebens, A.T. The use of zeolites in the synthesis of fine and intermediate chemical. Catal. Today. 1997, 37, 353–366. [Google Scholar] [CrossRef]
- Brodu, N.; Manero, M.H.; Andriantsiferana, C.; Pic, J.S.; Valdés, H. Role of Lewis acid sites of ZSM-5 zeolite on gaseous ozone abatement. Chem. Eng. J. 2013, 231, 281–286. [Google Scholar] [CrossRef]
- Marques, J.P.; Gener, I.; Ayrault, P.; Bordado, J.C.; Lopes, J.M.; Ribeiro, F.R.; Guisnet, M. Infrared spectroscopic study of the acid properties of dealuminated BEA zeolites. Microporous Mesoporous Mater. 2003, 60, 251–262. [Google Scholar] [CrossRef]
- Peng, W.; Takayuki, K.A.; Yashima, T. Characterization of Titanium Species Incorporated into Dealuminated Mordenites by Means of IR Spectroscopy and 18O-Exchange Technique. J. Phys. Chem. 1996, 100, 10316–10322. [Google Scholar]
- Song, S.; Di, L.; Wu, G.; Dai, W.; Guan, N.; Li, L. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization. Appl. Catal. B 2017, 205, 393–403. [Google Scholar] [CrossRef]
- Busca, G. The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys. Chem. Chem. Phys. 1999, 1, 723–736. [Google Scholar] [CrossRef]
- Gabrienko, A.A.; Arzumanov, S.S.; Toktarev, A.V.; Stepanov, A.G. Solid-State NMR Characterization of the Structure of Intermediates Formed from Olefins on Metal Oxides (Al2O3 and Ga2O3). J. Phys. Chem. C 2012, 116, 21430–21438. [Google Scholar] [CrossRef]
- Yamamoto, Y. From σ-to π-Electrophilic Lewis Acids. Application to Selective Organic Transformations. J. Org. Chem. 2007, 72, 7817–7831. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Liu, K.; Chen, W.; Li, J.; Xu, S.; Li, C.; Xiao, Y.; Liu, H.; Guo, X.; Liu, S.; et al. Origin and Structural Characteristics of Tri-coordinated Extra-framework Aluminum Species in Dealuminated Zeolites. J. Am. Chem. Soc. 2018, 140, 10764–10774. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Liu, S.B.; Deng, F. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chem. Rev. 2017, 117, 12475–12531. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Hua, Z.; Ge, T.; Zhou, X.; Chen, L.; Yan, Z.; Shi, J. Post-synthesis of hierarchically structured Ti-β zeolites and their epoxidation catalytic performance. Chin. J. Catal. 2015, 36, 906–912. [Google Scholar] [CrossRef]
- Janas, J.; Gurgul, J.; Socha, R.P.; Kowalska, J.; Nowinska, K.; Shishido, T.; Che, M.; Dzwigaj, S. Influence of the Content and Environment of Chromium in CrSiBEA Zeolites on the Oxidative Dehydrogenation of Propane. J. Phys. Chem. C 2009, 113, 13273–13281. [Google Scholar] [CrossRef]
- Dzwigaj, S.; Janas, J.; Gurgul, J.; Socha, R.P.; Shishido, T.; Che, M. Do Cu(II) ions need Al atoms in their environment to make CuSiBEA active in the SCR of NO by ethanol or propane? A spectroscopy and catalysis study. Appl. Catal. B 2009, 85, 131–138. [Google Scholar] [CrossRef]
- Dzwigaj, S.; Janas, J.; Mizera, J.; Gurgul, J.; Socha, R.P.; Che, M. Incorporation of Copper in SiBEA Zeolite as Isolated Lattice Mononuclear Cu(II) Species and its Role in Selective Catalytic Reduction of NO by Ethanol. Catal. Lett. 2008, 126, 36–42. [Google Scholar] [CrossRef]
- Li, C.; Xiong, G.; Liu, J.; Ying, P.; Xin, Q.; Feng, Z. Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. J. Phys. Chem. B 2001, 105, 2993–2997. [Google Scholar] [CrossRef]
- Nogier, J.P.; Millot, Y.; Man, P.P.; Méthivier, C.; Che, M.; Dzwigaj, S. Nature, Environment and Quantification of Titanium Species in TiSiBEA Zeolites Investigated by XRD, NMR, DR UV–Vis and XPS. Catal. Lett. 2009, 130, 588–592. [Google Scholar] [CrossRef]
- Parry, E.P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 1963, 2, 371–379. [Google Scholar] [CrossRef]
- Maronna, M.M.; Kruissink, E.C.; Parton, R.F.; Soulimani, F.; Weckhuysen, B.M.; Hoelderich, W.F. Spectroscopic study on the active site of a SiO2 supported niobia catalyst used for the gas-phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. Phys. Chem. Chem. Phys. 2016, 18, 22636–22646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dunphy, D.R.; Jiang, X.; Meng, H.; Sun, B.; Tarn, D.; Xue, M.; Wang, X.; Lin, S.; Ji, Z. Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs pyrolytic. J. Am. Chem. Soc. 2012, 134, 15790–15804. [Google Scholar] [CrossRef] [PubMed]
- Ikuno, T.; Chaikittisilp, W.; Liu, Z.; Iida, T.; Yanaba, Y.; Yoshikawa, T.; Kohara, S.; Wakihara, T.; Okubo, T. Structure-directing behaviors of tetraethylammonium cations toward zeolite Beta revealed by the evolution of aluminosilicate species formed during the crystallization process. J. Am. Chem. Soc. 2015, 137, 14533–14544. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Mitchell, S.; Pérezramírez, J. Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. J. Phys. Chem. C 2012, 116, 18816–18823. [Google Scholar] [CrossRef]
Samples | Si/Ti a | Surface Area (m2/g) b | MicroporeVolume (cm3/g) c | Acid Contents (μmol Py/g) d | ||||
---|---|---|---|---|---|---|---|---|
Lewis Acid (Silanols) | ||||||||
SBET | Smic | Sext | 100 °C | 150 °C | 200 °C | |||
Beta | - | 533.9 | 354.7 | 179.2 | 0.13 | - | - | - |
Si-Beta | - | 436.5 | 280.9 | 155.6 | 0.11 | 186.9 | 0 | 0 |
Ti-Beta-100 | 97.8 | 706.3 | 393.1 | 313.2 | 0.15 | 85.8 | 12.2 | 0 |
Ti-Beta-80 | 89.7 | 603.2 | 396.1 | 207.1 | 0.15 | 92.0 | 12.2 | 0 |
Ti-Beta-60 | 61.6 | 606.4 | 406.5 | 199.9 | 0.15 | 126.1 | 39.5 | 16.6 |
Samples | Conversion (%) | Selectivity (%) | ||||
---|---|---|---|---|---|---|
Butane | cis-2-Butene | trans-2-Butene | Isobutene | C8 | ||
Si-Beta | 49.9 | 1.4 | 55.4 | 41.9 | 0.4 | 0.9 |
Ti-Beta-100 | 30.8 | 2.2 | 57.4 | 38.5 | 0.3 | 1.5 |
Ti-Beta-80 | 35.1 | 1.9 | 58.2 | 37.1 | 0.8 | 1.9 |
Ti-Beta-60 | 42.0 | 1.7 | 59.2 | 36.4 | 0.4 | 2.2 |
Samples | Conversion (%) | Selectivity (%) | ||||
---|---|---|---|---|---|---|
Butane | n-Butene | trans-2-Butene | Isobutene | C8 | ||
Si-Beta | 64.7 | 0.04 | 15.7 | 82.8 | 0.04 | 0.08 |
Ti-Beta-100 | 12.3 | 0.2 | 47.5 | 35.4 | 2.4 | 14.4 |
Ti-Beta-80 | 16.5 | 0.1 | 49.0 | 37.4 | 1.8 | 11.7 |
Ti-Beta-60 | 19.0 | 0.1 | 47.3 | 37.1 | 1.8 | 13.7 |
Samples | Conversion (%) | Selectivity (%) | ||||
---|---|---|---|---|---|---|
Butane | n-Butene | cis-2-Butene | Isobutene | C8 | ||
Si-Beta | 16.0 | 1.0 | 34.5 | 58.4 | 4.0 | 2.0 |
Ti-Beta-100 | 9.0 | 1.8 | 39.7 | 49.3 | 6.7 | 2.4 |
Ti-Beta-80 | 13.6 | 1.2 | 36.5 | 55.4 | 4.7 | 2.2 |
Ti-Beta-60 | 13.8 | 1.2 | 35.2 | 56.5 | 4.9 | 2.2 |
Samples | Conversion (%) | Selectivity (%) | ||||
---|---|---|---|---|---|---|
Butane | n-Butene | cis-2-Butene | trans-2-Butene | C8 | ||
Si-Beta | 18.2 | 0.2 | 0.1 | - | 0.2 | 99.5 |
Ti-Beta-100 | 19.1 | 0.9 | - | - | - | 99.1 |
Ti-Beta-80 | 23.7 | 0.1 | 0.1 | - | - | 99.8 |
Ti-Beta-60 | 29.0 | 0.2 | 0.1 | - | - | 99.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, F.; Xing, M.; Cao, J.-P.; Guo, S.; Yang, Y. Comparison of Brønsted Acidic Silanol Nests and Lewis Acidic Metal Sites in Ti-Beta Zeolites for Conversion of Butenes. Catalysts 2024, 14, 749. https://doi.org/10.3390/catal14110749
Yi F, Xing M, Cao J-P, Guo S, Yang Y. Comparison of Brønsted Acidic Silanol Nests and Lewis Acidic Metal Sites in Ti-Beta Zeolites for Conversion of Butenes. Catalysts. 2024; 14(11):749. https://doi.org/10.3390/catal14110749
Chicago/Turabian StyleYi, Fengjiao, Mengjiao Xing, Jing-Pei Cao, Shupeng Guo, and Yong Yang. 2024. "Comparison of Brønsted Acidic Silanol Nests and Lewis Acidic Metal Sites in Ti-Beta Zeolites for Conversion of Butenes" Catalysts 14, no. 11: 749. https://doi.org/10.3390/catal14110749
APA StyleYi, F., Xing, M., Cao, J.-P., Guo, S., & Yang, Y. (2024). Comparison of Brønsted Acidic Silanol Nests and Lewis Acidic Metal Sites in Ti-Beta Zeolites for Conversion of Butenes. Catalysts, 14(11), 749. https://doi.org/10.3390/catal14110749