A Molybdenum(VI) Complex of 5-(2-pyridyl-1-oxide)tetrazole: Synthesis, Structure, and Transformation into a MoO3-Based Hybrid Catalyst for the Epoxidation of Bio-Olefins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Catalytic Studies
2.2.1. Epoxidation of cis-Cyclooctene
2.2.2. Epoxidation of Biobased Olefins
2.2.3. Sulfoxidation Activity of 2
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Instrumentation
3.3. Synthesis
3.3.1. 5-(2-pyridyl-1-oxide)tetrazole (Hpto)
3.3.2. [MoO2Cl2(Hpto)]·THF (1)
3.3.3. [MoO3(Hpto)]·H2O (2)
3.4. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. Chem. Rev. 2019, 119, 1970–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massi, M.; Stagni, S.; Ogden, M.I. Lanthanoid Tetrazole Coordination Complexes. Coord. Chem. Rev. 2018, 375, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, U. Five-Membered Heterocycles with Four Heteroatoms: Tetrazoles. In Modern Heterocyclic Chemistry; Alvarez-Builla, J., Vaquero, J.J., Barluenga, J., Eds.; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2011; pp. 1401–1430. [Google Scholar]
- Nasrollahzadeh, M.; Nezafat, Z.; Bidgoli, N.S.S.; Shafiei, N. Use of Tetrazoles in Catalysis and Energetic Applications: Recent Developments. Mol. Catal. 2021, 513, 111788. [Google Scholar] [CrossRef]
- Wang, X.-S.; Tang, Y.-Z.; Huang, X.-F.; Qu, Z.-R.; Che, C.-M.; Chan, P.W.H.; Xiong, R.-G. Syntheses, Crystal Structures, and Luminescent Properties of Three Novel Zinc Coordination Polymers with Tetrazolyl Ligands. Inorg. Chem. 2005, 44, 5278–5285. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Wani, M.Y.; Al-Thabaiti, S.A.; Shiekh, R.A. Tetrazoles as carboxylic acid isosteres: Chemistry and biology. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 15–37. [Google Scholar] [CrossRef]
- Wang, T.; Gao, H.; Shreeve, J.M. Functionalized Tetrazole Energetics: A Route to Enhanced Performance. Z. Anorg. Allg. Chem. 2021, 647, 157–191. [Google Scholar] [CrossRef]
- Go, M.J.; Lee, K.M.; Oh, C.H.; Kang, Y.Y.; Kim, S.H.; Park, H.R.; Kim, Y.; Lee, J. New Titanium Catalysts Containing Tetrazole for Cycloaddition of CO2 to Epoxides. Organometallics 2013, 32, 4452–4455. [Google Scholar] [CrossRef]
- Frija, L.M.T.; Alegria, E.C.B.A.; Sutradhar, M.; Cristiano, M.L.S.; Ismael, A.; Kopylovich, M.N.; Pombeiro, A.J.L. Copper(II) and cobalt(II) tetrazole-saccharinate complexes as effective catalysts for oxidation of secondary alcohols. J. Mol. Catal. A Chem. 2016, 425, 283–290. [Google Scholar] [CrossRef]
- Kumari, J.; Mobin, S.M.; Mukhopadhyay, S.; Vyas, K.M. Efficient oxidation of benzene catalyzed by Cu(II) tetrazolato complexes under mild conditions. Inorg. Chem. Commun. 2019, 105, 217–220. [Google Scholar] [CrossRef]
- Sajjadi, M.; Nasrollahzadeh, M.; Ghafuri, H. Cu(II)-N-Benzyl-Amino-1H-Tetrazole Complex Immobilized on Magnetic Chitosan as a Highly Effective Nanocatalyst for C-N Coupling Reactions. J. Organomet. Chem. 2021, 950, 121959. [Google Scholar] [CrossRef]
- Ariannezhad, M.; Habibi, D.; Heydari, S.; Khorramabadi, V. The capable Pd complex immobilized on the functionalized polymeric scaffold for the green benzylation reaction. Appl. Organomet. Chem. 2021, 35, e6208. [Google Scholar] [CrossRef]
- He, Y.; Cai, C. Tetrazole Functionalized Polymer Supported Palladium Complex: An Efficient and Reusable Catalyst for the Room-Temperature Suzuki Cross-Coupling Reaction. Catal. Lett. 2010, 40, 153–159. [Google Scholar] [CrossRef]
- Mrowiec, A.; Jurowska, A.; Hodorowicz, M.; Szklarzewicz, J. 5-(2-Pyridil)-1H-Tetrazole Complexes with Mo(IV) and W(IV) Cyanides. Dalton Trans. 2017, 46, 4030–4037. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-Y.; Zhang, Q.-K.; Kuang, X.-F.; Yang, W.; Yu, R.-M.; Lu, C.-Z. Two Hybrid Polyoxometalate-Pillared Metal–Organic Frameworks. Dalton Trans. 2012, 41, 11783–11787. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-g.; Zhang, P.-p.; Peng, J.; Meng, H.-x.; Wang, X.; Zhu, M.; Wang, D.-d.; Meng, C.-l.; Alimaje, K. Organic–Inorganic Hybrids Constructed from Mixed-Valence Multinuclear Copper Complexes and Templated by Keggin Polyoxometalates. Cryst. Growth Des. 2012, 12, 1273–1281. [Google Scholar] [CrossRef]
- Darling, K.; Ouellette, W.; Prosvirin, A.; Freund, S.; Dunbar, K.R.; Zubieta, J. Solid State Coordination Chemistry of the Copper(II)/Pyridyl- and Pyrazine-Tetrazolate/Sulfate System. Cryst. Growth Des. 2012, 12, 2662–2672. [Google Scholar] [CrossRef]
- Gaponik, P.N.; Voitekhovich, S.V.; Ivashkevich, O.A. Metal Derivatives of Tetrazoles. Russ. Chem. Rev. 2006, 75, 507–539. [Google Scholar] [CrossRef]
- Nunes, M.S.; Gomes, D.M.; Gomes, A.C.; Neves, P.; Mendes, R.F.; Almeida Paz, F.A.; Lopes, A.D.; Valente, A.A.; Gonçalves, I.S.; Pillinger, M. A 5-(2-Pyridyl)Tetrazolate Complex of Molybdenum(VI), Its Structure, and Transformation to a Molybdenum Oxide-Based Hybrid Heterogeneous Catalyst for the Epoxidation of Olefins. Catalysts 2021, 11, 1407. [Google Scholar] [CrossRef]
- Nunes, M.S.; Neves, P.; Gomes, A.C.; Cunha-Silva, L.; Lopes, A.D.; Valente, A.A.; Pillinger, M.; Gonçalves, I.S. A Silicododecamolybdate/Pyridinium-Tetrazole Hybrid Molecular Salt as a Catalyst for the Epoxidation of Bio-Derived Olefins. Inorg. Chim. Acta 2021, 516, 120129. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Z.; Luo, C.; Xia, X.; Liu, Z.; Zhao, Y.; Du, F.; Jin, X. Opportunities and Emerging Challenges of the Heterogeneous Metal-Based Catalysts for Vegetable Oil Epoxidation. ACS Sustain. Chem. Eng. 2022, 10, 7426–7446. [Google Scholar] [CrossRef]
- Moser, B.R.; Cermak, S.C.; Doll, K.M.; Kenar, J.A.; Sharma, B.K. A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. J. Am. Oil Chem. Soc. 2022, 99, 801–842. [Google Scholar] [CrossRef]
- Monica, F.D.; Kleij, A.W. From Terpenes to Sustainable and Functional Polymers. Polym. Chem. 2020, 11, 5109–5127. [Google Scholar] [CrossRef]
- Chen, T.C.; da Fonseca, C.O.; Schönthal, A.H. Preclinical Development and Clinical Use of Perillyl Alcohol for Chemoprevention and Cancer Therapy. Am. J. Cancer Res. 2015, 5, 1580–1593. [Google Scholar]
- Cardoso De Almeida, A.A.; Silva, R.O.; Duarte Nicolau, L.A.; Vieira De Brito, T.; Pergentino de Sousa, D.; dos Reis Barbosa, A.L.; Mendes De Freitas, R.; da Silva Lopes, L.; Medeiros, J.-V.R.; Ferreira, P.M.P. Physio-Pharmacological Investigations About the Anti-Inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide. Inflammation 2017, 40, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Facchetti, A.; Abbotto, A.; Beverina, L.; Bradamante, S.; Mariani, P.; Stern, C.L.; Marks, T.J.; Vacca, A.; Pagani, G.A. Novel Coordinating Motifs for Lanthanide(III) Ions Based on 5-(2-Pyridyl)Tetrazole and 5-(2-Pyridyl-1-Oxide)Tetrazole. Potential New Contrast Agents. Chem. Commun. 2004, 1770–1771. [Google Scholar] [CrossRef] [PubMed]
- Pietraszkiewicz, M.; Mal, S.; Pietraszkiewicz, O. Novel, Highly Photoluminescent Eu(III) and Tb(III) Tetrazolate-2-Pyridine-1-Oxide Complexes. Opt. Mater. 2012, 34, 1507–1512. [Google Scholar] [CrossRef]
- Mal, S.; Pietraszkiewicz, M.; Pietraszkiewicz, O. Synthesis and Photophysical Studies of Tetrazolate-Based Eu(III) Photoluminescent Ternary Complexes Containing N-Heterocyclic Phosphine Oxides Auxiliary Co-Ligands. Luminescence 2016, 31, 1085–1090. [Google Scholar] [CrossRef]
- Gao, F.; Yao, C.-S.; Lu, Z.-S.; Shi, Y.-H. Diaquabis[5-(1-Oxidopyridin-1-ium-2-yl)-1,2,3,4-Tetrazolido]Manganese(II) Dihydrate. Acta Crystallogr. E Crystallogr. Commun. 2011, 67, m213. [Google Scholar] [CrossRef] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Kühn, F.E.; Lopes, A.D.; Santos, A.M.; Herdtweck, E.; Haider, J.J.; Romão, C.C.; Santos, A.G. Lewis base adducts of bis-(halogeno)dioxomolybdenum(VI): Syntheses, structures, and catalytic applications. J. Mol. Catal. A Chem. 2000, 151, 147–160. [Google Scholar] [CrossRef]
- Abrantes, M.; Amarante, T.R.; Antunes, M.M.; Gago, S.; Paz, F.A.A.; Margiolaki, I.; Rodrigues, A.E.; Pillinger, M.; Valente, A.A.; Gonçalves, I.S. Synthesis, structure, and catalytic performance in cyclooctene epoxidation of a molybdenum oxide/bipyridine hybrid material: {[MoO3(bipy)][MoO3(H2O)]}n. Inorg. Chem. 2010, 49, 6865–6873. [Google Scholar] [CrossRef] [PubMed]
- Amarante, T.R.; Neves, P.; Tomé, C.; Abrantes, M.; Valente, A.A.; Paz, F.A.A.; Pillinger, M.; Gonçalves, I.S. An octanuclear molybdenum(VI) complex containing coordinatively bound 4,4′-di-tert-butyl-2,2′-bipyridine, [Mo8O22(OH)4(di-tBu-bipy)4]: Synthesis, structure, and catalytic epoxidation of bio-derived olefins. Inorg. Chem. 2012, 51, 3666–3676. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, S.; Gomes, A.C.; Neves, P.; Amarante, T.R.; Paz, F.A.A.; Soares, R.; Lopes, A.D.; Valente, A.A.; Pillinger, M.; Gonçalves, I.S. Synthesis, structural elucidation, and application of a pyrazolylpyridine–molybdenum oxide composite as a heterogeneous catalyst for olefin epoxidation. Inorg. Chem. 2012, 51, 8629–8635. [Google Scholar] [CrossRef] [PubMed]
- Amarante, T.R.; Neves, P.; Gomes, A.C.; Nolasco, M.; Ribeiro-Claro, P.; Coelho, A.C.; Valente, A.A.; Paz, F.A.A.; Smeets, S.; McCusker, L.B.; et al. Synthesis, structural elucidation, and catalytic properties in olefin epoxidation of the polymeric hybrid material [Mo3O9(2-[3(5)-pyrazolyl]pyridine)]n. Inorg. Chem. 2014, 53, 2652–2665. [Google Scholar] [CrossRef]
- Amarante, T.R.; Neves, P.; Paz, F.A.A.; Valente, A.A.; Pillinger, M.; Gonçalves, I.S. Investigation of a dichlorodioxomolybdenum(VI)-pyrazolylpyridine complex and a hybrid derivative as catalysts in olefin epoxidation. Dalton Trans. 2014, 43, 6059–6069. [Google Scholar] [CrossRef]
- Neves, P.; Nogueira, L.S.; Gomes, A.C.; Oliveira, T.S.M.; Lopes, A.D.; Valente, A.A.; Gonçalves, I.S.; Pillinger, M. Chemistry and catalytic performance of pyridyl-benzimidazole oxidomolybdenum(VI) compounds in (bio)olefin epoxidation. Eur. J. Inorg. Chem. 2017, 2017, 2617–2627. [Google Scholar] [CrossRef]
- Brégeault, J.-M. Transition-Metal Complexes for Liquid-Phase Catalytic Oxidation: Some Aspects of Industrial Reactions and of Emerging Technologies. Dalton Trans. 2003, 3289–3302. [Google Scholar] [CrossRef]
- Hub, S.; Maj, P. Manufacture of Tertiobutyl Hydroperoxyde from Renewable Materials, Tertiobutyl Hydroperoxide Thus Obtained, and Uses Thereof. U.S. Patent 8,536,379 B2, 17 September 2013. [Google Scholar]
- Bożek, B.; Neves, P.; Oszajca, M.; Valente, A.A.; Połtowicz, J.; Pamin, K.; Łasocha, W. Simple Hybrids Based on Mo or W Oxides and Diamines: Structure Determination and Catalytic Properties. Catal. Lett. 2020, 150, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Neves, P.; Lysenko, A.B.; Gomes, A.C.; Pillinger, M.; Gonçalves, I.S.; Valente, A.A. Behavior of Triazolylmolybdenum(VI) Oxide Hybrids as Oxidation Catalysts with Hydrogen Peroxide. Catal. Lett. 2017, 147, 1133–1143. [Google Scholar] [CrossRef]
- Lysenko, A.B.; Senchyk, G.A.; Domasevitch, K.V.; Hauser, J.; Fuhrmann, D.; Kobalz, M.; Krautscheid, H.; Neves, P.; Valente, A.A.; Gonçalves, I.S. Synthesis and Structural Elucidation of Triazolylmolybdenum(VI) Oxide Hybrids and Their Behavior as Oxidation Catalysts. Inorg. Chem. 2015, 54, 8327–8338. [Google Scholar] [CrossRef]
- Maul, J.J.; Ostrowski, P.J.; Ublacker, G.A.; Linclau, B.; Curran, D.P. Benzotrifluoride and Derivatives: Useful Solvents for Organic Synthesis. In Modern Solvents in Organic Synthesis; Knochel, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 206, pp. 79–105. [Google Scholar]
- Amarante, T.R.; Neves, P.; Paz, F.A.A.; Gomes, A.C.; Pillinger, M.; Valente, A.A.; Gonçalves, I.S. Heterogeneous Catalysis with an Organic–Inorganic Hybrid Based on MoO3 Chains Decorated with 2,2′-Biimidazole Ligands. Catal. Sci. Technol. 2021, 11, 2214–2228. [Google Scholar] [CrossRef]
- Tosi, I.; Vurchio, C.; Abrantes, M.; Gonçalves, I.S.; Pillinger, M.; Cavani, F.; Cordero, F.M.; Brandi, A. [MoO3(2,2′–Bipy)]n Catalyzed Oxidation of Amines and Sulfides. Catal. Commun. 2018, 103, 60–64. [Google Scholar] [CrossRef]
- Neves, P.; Gomes, A.C.; Paz, F.A.A.; Valente, A.A.; Gonçalves, I.S.; Pillinger, M. Synthesis, Structure and Catalytic Olefin Epoxidation Activity of a Dinuclear Oxo-Bridged Oxodiperoxomolybdenum(VI) Complex Containing Coordinated 4,4′-Bipyridinium. Mol. Catal. 2017, 432, 104–114. [Google Scholar] [CrossRef]
- Nogueira, L.S.; Neves, P.; Gomes, A.C.; Amarante, T.A.; Paz, F.A.A.; Valente, A.A.; Gonçalves, I.S.; Pillinger, M. A Comparative Study of Molybdenum Carbonyl and Oxomolybdenum Derivatives Bearing 1,2,3-Triazole or 1,2,4-Triazole in Catalytic Olefin Epoxidation. Molecules 2019, 24, 105. [Google Scholar] [CrossRef] [Green Version]
- Lysenko, A.B.; Senchyk, G.A.; Domasevitch, K.V.; Henfling, S.; Erhart, O.; Krautscheid, H.; Neves, P.; Valente, A.A.; Pillinger, M.; Gonçalves, I.S. A Molybdenum Trioxide Hybrid Decorated by 3-(1,2,4-Triazol-4- Yl)Adamantane-1-Carboxylic Acid: A Promising Reaction-Induced Self-Separating (RISS) Catalyst. Inorg. Chem. 2019, 58, 16424–16433. [Google Scholar] [CrossRef]
- Lysenko, A.B.; Senchyk, G.A.; Domasevitch, K.V.; Neves, P.; Valente, A.A.; Pillinger, M.; Gonçalves, I.S. Hydrophobic/Hydrophilic Interplay in 1,2,4-Triazole- or Carboxylate-Based Molybdenum(VI) Oxide Hybrids: A Step Toward Development of Reaction-Induced Self-Separating Catalysts. ChemCatChem 2021, 13, 3090–3098. [Google Scholar] [CrossRef]
- Amarante, T.R.; Neves, P.; Valente, A.A.; Paz, F.A.A.; Pillinger, M.; Gonçalves, I.S. Metal Oxide-Triazole Hybrids as Heterogeneous or Reaction-Induced Self-Separating Catalysts. J. Catal. 2016, 340, 354–367. [Google Scholar] [CrossRef]
- Zonetti, P.C.; Celnik, J.; Letichevsky, S.; Gaspar, A.B.; Appel, L.G. Chemicals from ethanol—The dehydrogenative route of the ethyl acetate one-pot synthesis. J. Mol. Catal. A Chem. 2011, 334, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.; Grossmann, I.E. On the Systematic Synthesis of Sustainable Biorefineries. Ind. Eng. Chem. Res. 2013, 52, 3044–3064. [Google Scholar] [CrossRef] [Green Version]
- Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Cho, M.H.; Cho, S. Bio-Sorbents, Industrially Important Chemicals and Novel Materials from Citrus Processing Waste as a Sustainable and Renewable Bioresource: A Review. J. Adv. Res. 2020, 23, 61–82. [Google Scholar] [CrossRef]
- Calhorda, M.J.; Costa, P.J. Unveiling the Mechanisms of Catalytic Oxidation Reactions Mediated by Oxo-Molybdenum Complexes: A Computational Overview. Curr. Org. Chem. 2012, 16, 65–72. [Google Scholar] [CrossRef]
- Ucciani, E.; Debal, A.; Rafaralahitsimba, G. Epoxidation of Fatty Acid Methyl Esters with Organic Hydroperoxides and Molybdenum Oxide. Fett/Lipid 1993, 95, 236–239. [Google Scholar] [CrossRef]
- Ucciani, E.; Bonfand, A.; Rafaralahitsimba, G.; Cecchi, G. Epoxidation of monoenic fatty esters with cumilhydroperoxide and hexacarbonylmolybdenum. Revue Française des Corps Gras. 1992, 39, 279–283. [Google Scholar]
- Huang, Y.-B.; Yao, M.-Y.; Xin, P.-P.; Zhou, M.-C.; Yang, T.; Pan, H. Influence of Alkenyl Structures on the Epoxidation of Unsaturated Fatty Acid Methyl Esters and Vegetable Oils. RSC Adv. 2015, 5, 74783–74789. [Google Scholar] [CrossRef]
- Tiozzo, C.; Bisio, C.; Carniato, F.; Marchese, L.; Gallo, A.; Ravasio, N.; Psaro, R.; Guidotti, M. Epoxidation with Hydrogen Peroxide of Unsaturated Fatty Acid Methyl Esters over Nb(V)-Silica Catalysts. Eur. J. Lipid Sci. Technol. 2013, 115, 86–93. [Google Scholar] [CrossRef]
- Cecchini, M.M.; de Angelis, F.; Iacobucci, C.; Reale, S.; Crucianelli, M. Mild Catalytic Oxidations of Unsaturated Fatty Acid Methyl Esters (FAMEs) by Oxovanadium Complexes. Appl. Catal. A Gen. 2016, 517, 120–128. [Google Scholar] [CrossRef]
- Kim, N.; Li, Y.; Sun, X.S. Epoxidation of Camelina Sativa Oil and Peel Adhesion Properties. Ind. Crops Prod. 2015, 64, 1–8. [Google Scholar] [CrossRef]
- Maiti, S.K.; Snavely, W.K.; Venkitasubramanian, P.; Hagberg, E.C.; Busch, D.H.; Subramaniam, B. Reaction Engineering Studies of the Epoxidation of Fatty Acid Methyl Esters with Venturello Complex. Ind. Eng. Chem. Res. 2019, 58, 2514–2523. [Google Scholar] [CrossRef]
- Gamelas, C.A.; Neves, P.; Gomes, A.C.; Valente, A.A.; Romão, C.C.; Gonçalves, I.S.; Pillinger, M. Molybdenum(II) Diiodo-Tricarbonyl Complexes Containing Nitrogen Donor Ligands as Catalyst Precursors for the Epoxidation of Methyl Oleate. Catal. Lett. 2012, 142, 1218–1224. [Google Scholar] [CrossRef] [Green Version]
- Amarante, T.R.; Neves, P.; Valente, A.A.; Paz, F.A.A.; Fitch, A.N.; Pillinger, M.; Gonçalves, I.S. Hydrothermal Synthesis, Crystal Structure, and Catalytic Potential of a One-Dimensional Molybdenum Oxide/Bipyridinedicarboxylate Hybrid. Inorg. Chem. 2013, 52, 4618–4628. [Google Scholar] [CrossRef]
- Deng, G.; Wang, Z. Triptycene-Based Microporous Cyanate Resins for Adsorption/Separations of Benzene/Cyclohexane and Carbon Dioxide Gas. ACS Appl. Mater. Interfaces 2017, 9, 41618–41627. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Lü, C.; Zhao, J.; Yan, J.; Ding, M.; Gao, L. One-Pot Synthesis of Polyetherimides from Bis(chlorophthalimide) and Dichlorodiphenylsulfone in Diphenylsulfone. J. Appl. Polym. Sci. 2006, 102, 4584–4588. [Google Scholar] [CrossRef]
- Wan, J.; Gan, B.; Li, C.; Molina-Aldareguia, J.; Li, Z.; Wang, X.; Wang, D.-Y. A novel biobased epoxy resin with high mechanical stiffness and low flammability: Synthesis, characterization and properties. J. Mater. Chem. A 2015, 3, 21907–21921. [Google Scholar] [CrossRef]
- Ahn, T.-K.; Kim, M.; Choe, S. Hydrogen-Bonding Strength in the Blends of Polybenzimidazole with BTDA- and DSDA-Based Polyimides. Macromolecules 1997, 30, 3369–3374. [Google Scholar] [CrossRef]
- Nambo, M.; Crudden, C.M. Modular Synthesis of Triarylmethanes through Palladium-Catalyzed Sequential Arylation of Methyl Phenyl Sulfone. Angew. Chem. Int. Ed. 2014, 53, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Bullock, C.X.; Jamieson, C.S.; Moënne-Loccoz, P.; Taylor, B.; Gonzalez, J.A.M.; Draves, E.A.; Kuo, L.Y. Sulfide Oxidation by 2,6-Bis[Hydroxyl(Methyl)Amino]-4-Morpholino-1,3,5-Triazinatodioxomolybdenum(VI): Mechanistic Implications with DFT Calculations for a New Class of Molybdenum(VI) Complex. Inorg. Chem. 2021, 60, 7762–7772. [Google Scholar] [CrossRef]
- McManus, J.M.; Herbst, R.M. Tetrazole Analogs of Pyridinecarboxylic Acids. J. Org. Chem. 1959, 24, 1462–1464. [Google Scholar] [CrossRef]
- Kottke, T.; Stalke, D. Crystal handling at low temperatures. J. Appl. Crystallogr. 1993, 26, 615–619. [Google Scholar] [CrossRef] [Green Version]
- APEX3 Crystallography Software Suite, Version 2016.9-0; Bruker AXS Inc.: Delft, The Netherlands, 2005–2016.
- Cryopad, Remote Monitoring and Control, Version 1.451; Oxford Cryosystems: Oxford, UK, 2006.
- SAINT+ Data Integration Engine, Version 8.37A; Bruker AXS Inc.: Madison, WI, USA, 2015.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putz, H.; Brandenburg, K. Diamond—Crystal and Molecular Structure Visualization, Version 3.2f; Crystal Impact GbR: Bonn, Germany, 2010.
Substrate a | Conversion (%) | Product(s) | Selectivity (%) | |||
---|---|---|---|---|---|---|
6 h | 24 h | 6 h | 24 h | |||
Cy8 | 90 | 100 | 100 | 100 | ||
dl-LIM | 100 | 100 | 72 | 59 | ||
25 | 33 | |||||
3 | 8 | |||||
MO | 90 | 96 | 100 | 100 | ||
ML | 68 | 88 | 85 | 65 | ||
15 | 32 | |||||
MLN | 79 | 94 | 69 | 44 | ||
31 | 50 | |||||
Others | 0 | 6 | ||||
MR | 92 | 100 | 100 | 100 | ||
MPS | 100 | 100 | 77 | 14 | ||
23 | 86 | |||||
DPS | 100 | 100 | 67 | 23 | ||
33 | 77 |
Entry | Olefin | Catalyst a | CB b | S/Tc | Mo:Su:Ox d | t/h | χ (%) e | Sp (%) f | Yp (%) f | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | MO | 2 | HE | TFT/70 | 1:100:210 | 6/24 | 90/96 | 100/100 | 90/96 | This work |
2 | [MoO3(Hptz)] | HE | TFT/70 | 1:100:210 | 5/24 | 85/100 | 100/100 | 85/100 | [19] | |
3 | [MoO3(pbim)] | HO | TFT/70 | 1:100:153 | 6/24 | 46/69 | 59/61 | 27/42 | [37] | |
4 | [MoO3(biim)]∙H2O | HE | TFT/70 | 1:100:226 | 6/24 | 72/97 | 99/97 | 71/94 | [44] | |
5 | [MoO3(bipy)] | HO | TFT/70 | 1:100:226 | 6/24 | 62/96 | 100/100 | 62/96 | [44] | |
6 | [MoO3(bipy)] | HO | DCE/75 | 1:100:152 | 6/24 | 82/99 | 100/100 | 82/99 | [62] | |
7 | (DMA)[MoO3(Hbpdc)] | HO | TFT/75 | 1:103:160 | 6/24 | 93/100 | 98/98 | 91/98 | [63] | |
8 | ML | 2 | HE | TFT/70 | 1:100:210 | 6/24 | 68/88 | 100/97 | 68/85 | This work |
9 | [MoO3(Hptz)] | HE | TFT/70 | 1:100:210 | 5/24 | 67/86 | 100/98 | 67/84 | [19] | |
10 | [MoO3(pbim)] | HO | TFT/70 | 1:100:153 | 6/24 | 59/92 | 92/77 | 54/71 | [37] | |
11 | [MoO3(biim)]∙H2O | HE | TFT/70 | 1:100:226 | 6/24 | 66/88 | 100/99 | 66/87 | [44] | |
12 | [MoO3(bipy)] | HO | TFT/70 | 1:100:226 | 6/24 | 63/85 | 100/100 | 63/85 | [44] | |
13 | LIM | 2 | HE | TFT/70 | 1:100:210 | 6 | 100 | 97 | 97 | This work |
14 | [MoO3(Hptz)] | HE | TFT/70 | 1:100:210 | 5/24 | 100/100 | 93/64 | 95/66 | [19] | |
15 | [MoO3(pbim)] | HO | TFT/70 | 1:100:153 | 6/24 | 69/91 | 93/95 | 64/87 | [37] | |
16 | [MoO3(biim)]∙H2O | HE | TFT/70 | 1:100:226 | 6/24 | 97/100 | 92/90 | 89/90 | [44] | |
17 | [MoO3(bipy)] | HO | TFT/70 | 1:100:226 | 6/24 | 75/92 | 100/90 | 75/83 | [44] | |
18 | (DMA)[MoO3(Hbpdc)] | HO | TFT/75 | 1:103:160 | 6/24 | 95/100 | 100/100 | 95/100 | [63] | |
19 | MPS | 2 | HE | TFT/35 | 1:100:220 | 6/24 | 100/100 | 23/86 | 23/86 | This work |
20 | [MoO3(biim)]∙H2O | HE | TFT/35 | 1:100:226 | 6/24 | 100/100 | 7/33 | 7/33 | [44] | |
21 | [MoO3(bipy)] | HO | DCM/20 | 1:100:300 | 4 | 100 | traces | traces | [45] | |
22 | DPS | 2 | HE | TFT/35 | 1:100:220 | 6/24 | 100/100 | 33/77 | 33/77 | This work |
23 | [MoO3(biim)]∙H2O | HE | TFT/35 | 1:100:226 | 6 | 100 | 20 | 20 | [44] | |
24 | [MoO3(bipy)] | HO | TFT/35 | 1:100:226 | 6 | 100 | 30 | 30 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, M.S.; Gomes, D.M.; Gomes, A.C.; Neves, P.; Mendes, R.F.; Paz, F.A.A.; Lopes, A.D.; Pillinger, M.; Valente, A.A.; Gonçalves, I.S. A Molybdenum(VI) Complex of 5-(2-pyridyl-1-oxide)tetrazole: Synthesis, Structure, and Transformation into a MoO3-Based Hybrid Catalyst for the Epoxidation of Bio-Olefins. Catalysts 2023, 13, 565. https://doi.org/10.3390/catal13030565
Nunes MS, Gomes DM, Gomes AC, Neves P, Mendes RF, Paz FAA, Lopes AD, Pillinger M, Valente AA, Gonçalves IS. A Molybdenum(VI) Complex of 5-(2-pyridyl-1-oxide)tetrazole: Synthesis, Structure, and Transformation into a MoO3-Based Hybrid Catalyst for the Epoxidation of Bio-Olefins. Catalysts. 2023; 13(3):565. https://doi.org/10.3390/catal13030565
Chicago/Turabian StyleNunes, Martinique S., Diana M. Gomes, Ana C. Gomes, Patrícia Neves, Ricardo F. Mendes, Filipe A. Almeida Paz, André D. Lopes, Martyn Pillinger, Anabela A. Valente, and Isabel S. Gonçalves. 2023. "A Molybdenum(VI) Complex of 5-(2-pyridyl-1-oxide)tetrazole: Synthesis, Structure, and Transformation into a MoO3-Based Hybrid Catalyst for the Epoxidation of Bio-Olefins" Catalysts 13, no. 3: 565. https://doi.org/10.3390/catal13030565
APA StyleNunes, M. S., Gomes, D. M., Gomes, A. C., Neves, P., Mendes, R. F., Paz, F. A. A., Lopes, A. D., Pillinger, M., Valente, A. A., & Gonçalves, I. S. (2023). A Molybdenum(VI) Complex of 5-(2-pyridyl-1-oxide)tetrazole: Synthesis, Structure, and Transformation into a MoO3-Based Hybrid Catalyst for the Epoxidation of Bio-Olefins. Catalysts, 13(3), 565. https://doi.org/10.3390/catal13030565