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Abstract: The discovery of heterogeneous catalysts synthesized in easy, sustainable ways for the
valorization of olefins derived from renewable biomass is attractive from environmental, sus-
tainability, and economic viewpoints. Here, an organic–inorganic hybrid catalyst formulated as
[MoO3(Hpto)]·H2O (2), where Hpto = 5-(2-pyridyl-1-oxide)tetrazole, was prepared by a hydrolysis–
condensation reaction of the complex [MoO2Cl2(Hpto)]·THF (1). The characterization of 1 and 2
by FT-IR and Raman spectroscopies, as well as 13C solid-state NMR, suggests that the bidentate
N,O-coordination of Hpto in 1 (forming a six-membered chelate ring, confirmed by X-ray crystal-
lography) is maintained in 2, with the ligand coordinated to a molybdenum oxide substructure.
Catalytic studies suggested that 2 is a rare case of a molybdenum oxide/organic hybrid that acts as a
stable solid catalyst for olefin epoxidation with tert-butyl hydroperoxide. The catalyst was effective
for converting biobased olefins, namely fatty acid methyl esters (methyl oleate, methyl linoleate,
methyl linolenate, and methyl ricinoleate) and the terpene limonene, leading predominantly to the
corresponding epoxide products with yields in the range of 85–100% after 24 h at 70 ◦C. The versatility
of catalyst 2 was shown by its effectiveness for the oxidation of sulfides into sulfoxides and sulfones,
at 35 ◦C (quantitative yield of sulfoxide plus sulfone, at 24 h; sulfone yields in the range of 77–86%).
To the best of our knowledge, 2 is the first molybdenum catalyst reported for methyl linolenate
epoxidation, and the first of the family [MoO3(L)x] studied for methyl ricinoleate epoxidation.

Keywords: dioxomolybdenum (VI) complexes; molybdenum oxide; organic–inorganic hybrid mate-
rials; 5-(2-pyridyl-1-oxide)tetrazole; epoxidation; bio-olefins; limonene; FAMEs; sulfoxidation

1. Introduction

Tetrazoles are organic compounds that contain a five-membered ring of four nitrogen
atoms and one carbon [1–3]. They exist in two tautomeric forms: the 1H- form is the
more stable and abundant in solution; the equilibrium shifts toward the 2H- form in the
gas phase [1,3]. Tetrazoles have garnered interest over the years due to their compelling
properties, namely their rich nitrogen content, low basicity, high acidity, high stability, and
formation enthalpy [4]. These properties make tetrazoles suitable candidates as ligands for
metal ions due to their expansive coordination ability [5], as surrogates for carboxylic acids
in drug design [6], due to similar pKa figures and greater lipophilicity, and as high energy
materials [7]. Their scope of application broadens to include both homogeneous catalysis,
where tetrazoles coordinate to metal centers to form metallo-organic complexes [8–10], and
heterogeneous catalysis, where those complexes are attached to a solid support [11–13].
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Among 5-R-tetrazole derivatives, 5-(pyridyl)tetrazoles have attracted attention as
ligands owing to their multiple coordination modes, which expand the coordination chem-
istry of the tetrazole fragment. In the case of 5-(2-pyridyl)tetrazole (Hptz), the pKa of the
pyridyl N atom (pKa = 5.25) is very similar to that of N1 of the tetrazolyl ring (pKa = 4.9),
which increases the proclivity of the molecule to coordinate as a bidentate ligand to metal
centers [14]. This coordination mode is the most common among nine different possibili-
ties [15], enabled by the deprotonation of Hptz to the tetrazolate anion (ptz−). In practical
terms, this can lead to numerous chelating and bridging coordination modes [15–17] to
give molecular complexes, multinuclear clusters, and extended one-dimensional (1D), 2D,
and 3D structures with various d-block metals [18].

We previously prepared the complex salt (H2ptz)[MoO2Cl2(ptz)] and the microcrys-
talline molybdenum oxide/organic hybrid [MoO3(Hptz)], which were assessed for their
potential as catalysts of the epoxidation of biomass-derived olefins [19]. In the epoxidation
of the model olefin cis-cyclooctene, the former acted as a homogeneous catalyst, and the lat-
ter as a heterogeneous one. With a cis-cyclooctene oxide yield of 100%, [MoO3(Hptz)] was
further tested for the conversion of the monoterpene dl-limonene (LIM) and the biobased
unsaturated fatty acid methyl esters (FAMEs) methyl oleate (MO) and methyl linoleate (ML),
which mostly resulted in epoxide products. In addition, we integrated Hptz in the prepa-
ration of a polyoxometalate-based hybrid, namely a silicododecamolybdate/pyridinium-
tetrazole hybrid molecular salt, where Hptz acted as the starting reagent that produced the
countercation 2-(tetrazol-5-yl)pyridinium [20]. The salt behaved as a homogeneous catalyst
in the epoxidation of cis-cyclooctene, leading to a quantitative yield of cis-cyclooctene oxide.
It likewise proved to be an effective catalyst for the conversion of biomass-derived olefins,
specifically LIM, MO, and ML, into epoxides, diepoxides, and diol products, which are high-
added-value compounds in the production of specialty and commodity chemicals [21–23]
as well as pharmaceuticals [24,25].

The oxidation of Hptz enables the further exploration of the chemistry associated
with Hptz in a targeted manner. Facchetti et al. successfully prepared 5-(2-pyridyl-1-
oxide)tetrazole (Hpto) by mixing Hptz with 3-chloroperoxybenzoic acid in methanol [26].
This oxidant selectively targets the pyridyl N atom, unlike others such as H2O2 and
CH3CO3H, which form inseparable mixtures of products. The interaction between Hpto
and bases originates the anion 5-(2-pyridyl-1-oxide)tetrazolate (pto−) [26–29]. To the best of
our knowledge, the metallo-organic complexes reported in the literature involve the ligand
Hpto as an anion, with lanthanide ions Eu(III) [27,28], Gd(III) [26–28], and Tb(III) [27]
for luminescence purposes, and transition metal ions Zn(II) [26] and Mn(II) [29]. These
structures share common bidentate coordination of pto− to the metal center, specifically
N(py)-O-M and N1(tz)-M (py = pyridyl ring, tz = tetrazolate ring).

As a related compound of Hptz, it is worthwhile to investigate the performance
of Hpto as a ligand in inorganic/organic catalysts for olefin epoxidation, a field where
Hptz has yielded encouraging results. In this work, we report the synthesis of the new
compounds [MoO2Cl2(Hpto)]·THF (1) and [MoO3(Hpto)]·H2O (2). To the best of our
knowledge, these are the first inorganic/organic compounds where Hpto coordinates in its
neutral form to a group 6 transition metal, i.e., molybdenum.

2. Results and Discussion
2.1. Synthesis and Characterization

The structure of the ligand Hpto was determined by single-crystal X-ray diffraction
(XRD), with the compound crystallizing in the centrosymmetric space group P21/n. The
asymmetric unit is composed of two independent Hpto molecules, both having the tetra-
zole ring in its neutral form (Figure 1). The hydrogen atom of one of the tetrazole rings
is disordered, appearing at both N2 and N5 with a 70% and 30% occupancy rate, respec-
tively. The crystal packing is mediated mainly by weak intermolecular hydrogen-bonding
interactions (all of the C–H···N kind—see Table S1 for more information) and strong π-π
interactions [dπ···π = 3.646(3) Å]. These latter interactions arise between a pair of pyridyl
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rings and a pair of tetrazole rings, assisted by the almost planar configuration of the Hpto
molecules (the dihedral angle between the planes formed by the aromatic and tetrazole
rings is 3.612(3)◦), resulting from the strong intramolecular N–O···H interactions (Figure 1).
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Figure 1. Schematic representation, with selected atomic labelling, of the asymmetric unit of Hpto,
emphasizing the disordered hydrogen atom in one of the tetrazole rings. All non-hydrogen atoms
are represented as displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as
small spheres with arbitrary radii. N–O···H intramolecular interactions are represented by dashed
orange lines. Selected bond distances (Å): N1-O1 1.307(5); N6-O2 1.302(5).

The treatment of a solution of the solvent adduct [MoO2Cl2(THF)2] (prepared by dis-
solving MoO2Cl2 in THF) with one equivalent of Hpto gave the compound [MoO2Cl2(Hpto)]·
THF (1). Single crystals of 1 suitable for XRD were obtained by the slow diffusion of diethyl
ether into a solution of the complex in THF. The compound crystallized in the centrosym-
metric space group P21/c, with the asymmetric unit being composed of the molybdenum
complex and one tetrahydrofuran molecule of crystallization (Figure 2). The Mo atom is
hexacoordinated by a Hpto molecule, two oxo groups, and two chloride anions, with a
{MoO3NCl2} coordination sphere resembling a distorted octahedron. The Hpto molecule is,
in turn, coordinated to the metal center in a bidentate fashion by way of a N,O-chelate. This
coordination mode is responsible for the non-planar nature of the Hpto ligand, showing
a rotation between the pyridyl and tetrazole rings with a dihedral angle of 16.85◦. The
N–O distance of 1.334(2) Å in the complex is slightly longer than that in the free ligand
(1.302(5) Å, 1.307(5) Å). Complexes with (H)pto are rare, with only GdIII, ZnII, and MnII

structures [26,29] being reported to date according to a search in the Cambridge Structural
Database [30]. While the two MII complexes have an octahedral coordination sphere, they
are diaqua complexes with two coordinated pto− molecules. The presence of two N,O-
chelated moieties in these complexes leads to a less distorted octahedron when compared
with that of compound 1.

To the best of our knowledge, only one other literature structure exists for complexes
of the type [MoO2Cl2(L)n] containing a pyridine N-oxide ligand, namely [MoO2Cl2(4-
MepyO)2] (4-MepyO = 4-methylpyridine-1-oxide) [31]. The Mo-O(pyO) bond lengths
found for this complex (2.166 Å, 2.189 Å) are similar to those determined for 1 (2.155 Å).

The close packing of the individual moieties composing 1 is mostly mediated by weak
supramolecular interactions (C–H···Cl and C–H···O; see Table S2 for more information),
with the complex units forming hexagonal “channels” parallel to the a-axis of the unit
cell, filled with the THF crystallization solvent molecules (Figure 3). These molecules
maintain, however, strong connections with the complexes by way of hydrogen bonding
between the oxygen atom in the THF molecule and the hydrogen atom of the tetrazole ring
[dN–H···O = 2.619(2) Å].
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Figure 2. Schematic representation, with selected atomic labelling, of the asymmetric unit of com-
pound [MoO2Cl2(Hpto)]·THF (1), showing all non-hydrogen atoms as displacement ellipsoids drawn
at the 70% probability level and hydrogen atoms as small spheres with arbitrary radii. The hydrogen
bonding interaction between the molybdenum complex and the THF molecule is depicted as a dashed
orange line. Selected bond distances (Å): Mo1-Cl1 2.4012(6); Mo1-Cl2 2.3623(6); Mo1-N1 2.339(1);
Mo1-O1 2.155(1); Mo1-O2 1.704(1); Mo1-O3 1.689(2); N5-O1 1.334(2). Selected bond angles (◦): O3-
Mo1-O2 104.53(7); O3-Mo1-O1 160.38(6); O2-Mo1-O1 95.04(6); O2-Mo1-N1 167.60(6); O3-Mo1-N1
87.62(6); Cl1-Mo1-Cl2 159.811(17); O1-Mo1-N1 72.77(5); Mo1-O1-N5 130.93(10).
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Figure 3. Schematic representation of the crystal packing of compound [MoO2Cl2(Hpto)]·THF (1)
viewed in perspective along the [100] direction of the unit cell.

The FT-IR spectrum of 1 displays a strong band at 909 cm−1, assigned to νasym(Mo=O),
and a weaker one at 944 cm−1, assigned to νsym(Mo=O), confirming the presence of a
cis-[MoO2]2+ unit (Figure 4A). The corresponding bands appear in the Raman spectrum at
913 and 946 cm−1 with weak and strong intensity, respectively (Figure 4B). For comparison,
the complex (H2ptz)[MoO2Cl2(ptz)] displayed a similar pair of bands at 914–915 cm−1 and
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945 ± 1 cm−1 [19]. These frequencies are typical for complexes of the type [MoO2Cl2(L)]
containing bidentate Lewis-base ligands.
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Figure 4. FT-IR spectra in the range of 350–1700 cm−1 (A) and Raman spectra in the range of
100–1700 cm−1 (B) of (a) ligand Hpto, (b) complex 1, and (c) compound 2.

A 1H-13C HSQC NMR experiment was performed for the free ligand Hpto to allow
for the unambiguous assignment of the respective 1D spectra (Figure S1). The solid-
state 13C{1H} CP MAS NMR spectrum of Hpto was interpreted in accordance with the
assignments made for the solution spectrum, with three distinct peaks being observed for
the tetrazole carbon atom (Ctz) and the pyridyl carbon atoms directly bond to nitrogen (C2
and C6), while the resonances for the remaining three pyridyl carbons (C3, C4, and C5)
overlapped to give one intense peak centered at 127.9 ppm, with a shoulder at 127.0 ppm
(Figure 5). The solid-state 13C{1H} CP MAS NMR spectrum of complex 1 is consistent with
the bidentate coordination of Hpto to the MoVI center since the resonance for Ctz is shifted
strongly downfield by 6.3 ppm relative to that for the free ligand. The remaining pyridyl
carbon signals are tentatively assigned on the basis that the resonances for C3, C5, and C6
undergo minor downfield shifts of less than 1.3 ppm relative to those for Hpto, while the
resonances for C2 and C4 are downfield-shifted by about 4 and 9 ppm, respectively. Two
sharp resonances are observed at 26.5 and 69.4 ppm for the THF molecules of crystallization.

In previous work, we have explored the hydrolysis–condensation–polymerization chem-
istry of dichloro complexes of the type [MoO2Cl2(L)] containing N-heterocyclic aromatic
ligands (L) [19,32–37]. The treatment of these complexes with water led to the synthesis of
molybdenum oxide/organic hybrid materials with the formulas {[MoO3(bipy)][MoO3(H2O)]}n
(bipy = 2,2′-bipyridine) [32], [Mo8O22(OH)4(4,4′-di-tert-butyl-2,2′-bipyridine)4] [33], [Mo2O6
([3-(pyridinium-2-yl)-1H-pyrazol-1-yl]acetate)] [34], [Mo3O9(2-[3(5)-pyrazolyl]pyridine)]n [35],
[Mo2O6(2-(1-pentyl-3-pyrazolyl)pyridine)] [36], [MoO3(2-(2-pyridyl)-benzimidazole)] [37],
and [MoO3(Hptz)] [19]. In a similar fashion, compound 1 was treated with water under
reflux for 16 h, affording an insoluble white solid (2) suspended in an acidic mother liquor
(pH = 1-2). The low pH of the solution is due to the presence of HCl resulting from the
hydrolysis of the Mo-Cl bonds in 1. The white color suggests that the oxidation state of
molybdenum in catalyst 2 is 6+.
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Powder XRD showed that material 2 was microcrystalline but with a different crystal
structure from that of the precursor 1 (Figure 6B). The solubility of the precursor 1 in water
is too low and the hydrolysis process too fast to allow for the growth of single crystals of 2
suitable for X-ray diffraction, i.e., compound 2 readily precipitates as a fine microcrystalline
solid upon formation. Microanalyses (C,H,N) and Mo content determination by ICP-OES
indicated the formula [MoO3(Hpto)]·H2O. SEM-EDS analyses and elemental mapping
confirmed the absence of chlorine in 2. Hybrid 2 possessed a specific surface area of
73 m2 g−1, pore volume of 0.117 cm3 g−1, and did not possess measurable microporosity.
The N2 sorption isotherm indicated increasing N2 uptake in the full range of relative
pressure (p/p0) and a steep uptake as p/p0 approached unity, suggesting that the material
is non-porous and/or possesses very large mesopores (2–50 nm) or macropores (>50 nm)
(Figure S2a). The pore size distribution curve showed several peaks in the range of 2–17 nm
and some broad weak peaks in the macropore size range (Figure S2b), which may be
associated with open interparticle void spaces.

At the present time, the structure of 2 has not been completely resolved. However,
the presence of a molybdenum oxide substructure in the compound is indicated by the
720–1000 cm−1 region of the FT-IR and Raman spectra, which contain several bands as-
signed to ν(Mo=O) (895–898, 906–908 and 937–941 cm−1) and, in the case of the IR spectrum,
a broad band centered at 759 cm−1 that is attributed to a ν(Mo–O–Mo) vibrational mode,
confirming that 2 possesses a condensed (polymeric) structure (Figure 4). Concerning the
spectral region containing the ligand modes, i.e., 1000–1700 cm−1, the similarity between
the spectra of 1 and 2 suggests that the N,O-chelating mode of the ligand in 1 is maintained
in 2, i.e., bidentate coordination of the ligand to a MoVI center. Both 1 and 2 display a
Raman band at 1620 cm−1 and an IR band at 1455 cm−1, assigned to the ν(C=C) and
ν(N=C)/ν(N=N) stretching vibrations of the tetrazole ring, respectively. The medium-
intensity IR bands at 1218 cm−1 for 1 and 1213 cm−1 for 2 are assigned to N-O stretching
vibrations. The confirmation of the presence of similar Hpto coordination modes in 1 and
2 is provided by the solid-state 13C{1H} CP MAS NMR spectra, which show differences
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of only 2 ppm or less in the chemical shifts for the tetrazole and pyridyl carbon atoms
(Figure 5).
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2.2. Catalytic Studies
2.2.1. Epoxidation of cis-Cyclooctene

The catalytic properties of complex 1 and the hybrid 2 were firstly studied using
the model epoxidation reaction of cis-cyclooctene (Cy8) at different temperatures (55 and
70 ◦C). tert-Butyl hydroperoxide (TBHP) and α,α,α-trifluorotoluene (TFT) were chosen as
oxidant and solvent, respectively, due to their favorable properties in epoxidation systems.
TBHP may be produced from renewable sources, has a growing market with commercial
applications such as the large-scale epoxidation of propene [38,39], and presents as main
advantages its compatibility with organic media, stability, and the fact that the co-product
is tert-butanol, which can be repurposed. Moreover, as discussed below, catalytic stability
may be higher when using TBHP, whereas H2O2 may promote the decomposition and
solubilization of the molybdenum compounds [37,40–42]. On the other hand, the hydropho-
bicity, relatively high boiling point (102 ◦C), and insignificant coordinating properties of
TFT make it more appealing than volatile halogenated solvents, which contribute to at-
mospheric emissions (with damaging environmental impacts), or coordinating solvents,
which may compete with the reactants for access to the active sites [43].

Compounds 1 and 2 led to cyclooctene oxide (Cy8O) as the only product (100% Cy8O
selectivity, Figure 7A). Without a catalyst and/or without TBHP, the reactions were negli-
gible. For each compound, increasing the reaction temperature from 55 to 70 ◦C led to a
much faster epoxidation reaction. On the other hand, for each reaction temperature, the
catalytic reaction was much faster in the presence of 1, giving, at 70 ◦C, a quantitative yield
of Cy8O within 1 h, whereas 2 led to a 90% Cy8O yield at 6 h.
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(normal run (∆) and leaching test (N)). Dashed lines are visual guides. Cy8O was the only product
formed for all reactions (Cy8O selectivity = 100%).

A leaching test for 1 (at 55 ◦C) confirmed that it was a homogeneous catalyst; specifi-
cally, the increment in Cy8 conversion between 0.5 h and 6 h was 20%, which is similar to
that without catalyst filtration, i.e., a normal catalytic batch run (27%).

The catalytic results for 1 are comparable with those reported for the ionic complex
(H2ptz)[MoO2Cl2(ptz)] (100% epoxide yield at 1 h) [19]. Both complexes led to homo-
geneously catalyzed reactions. The reaction with 1, at 70 ◦C, led to the formation of an
insoluble and largely amorphous solid (designated as 1-used) with a powder XRD pattern
containing only a few very weak reflections (different from those displayed by microcrys-
talline 1; Figure 6B). Structural changes are also indicated by the different ATR FT-IR spectra
of 1 and 1-used (Figure 6A).

In contrast to the results with 1, the hybrid material 2 exhibited high chemical and
structural stability, i.e., the ATR FT-IR spectrum and powder XRD pattern of the solid
recovered after the catalytic run of 24 h (2-used) were practically unchanged from those of
the as-prepared 2 (Figure 6). Two further consecutive batch runs, at 70 ◦C, were performed
(starting with 2-used) and the kinetic curves for all three runs were roughly coincident
(Figure 7B). Based on SEM, the particle sizes of 2 seemed to decrease during the catalytic
process (Figure 8), although this did not affect the reaction kinetics, which somewhat
suggests that the overall reaction system advantageously operates under a kinetic regime.
A leaching test for 2 indicated no significant increment in conversion after separating the
solid catalyst from the reaction mixture after 1 h, at the reaction temperature, suggesting that
2 performs essentially as a stable solid catalyst (Figure 7C). Based on the characterization
studies, 2 does not possess measurable microporosity, but possesses meso-macropores that
may correspond to interparticle void spaces, suggesting that the catalytic reaction likely
occurs on the external surface.

Very few of the [MoO3L]-type hybrids described in the literature exhibited heteroge-
neous catalytic features [19,44,45]. The results for 2 (82%/100% epoxide yield at 4 h/24 h)
are comparable with those reported for the hybrid heterogeneous catalyst [MoO3(Hptz)]
(89%/100% epoxide yield at 5 h/24 h) [19].

Changing the oxidant from TBHP to H2O2 at 70 ◦C led not only to a much slower
Cy8 reaction (conversion at 24 h was of 60% for 1, and 81% for 2) but also to homogeneous
catalytic systems, i.e., yellow solutions were obtained for the systems 1/H2O2 and 2/H2O2,
indicating that 1 and 2, respectively, are unstable in the presence of H2O2. Based on the
conversion at 24 h/70 ◦C, the catalytic results for 2/H2O2 are in the mid-range of what
is typically found for [MoO3(L)x]-type polymeric hybrids tested for Cy8/H2O2 epoxida-
tion [37,40,41,46,47]. The hybrids reported in the literature acted as homogeneous catalysts
with the exception of three materials which acted as reaction-induced self-separating cata-
lysts, namely [MoO3(tradcH)·H2O] (tradcH = 1,2,4-triazol-4-yl)adamantane-1-carboxylic
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acid) [48], [MoO3(trleuH)]·0.5H2O (trleuH = dl-4-methyl-2-(4H-1,2,4-triazol-4-yl)pentanoic
acid) [49], and [MoO3(1,2,4-trz)0.5] (1,2,4-trz = 1,2,4-triazole) [50].
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For the system Cy8/TBHP/2, changing the solvent from TFT to ethyl acetate (a
renewable solvent owing to, for example, bioethanol-based production processes [51]) led
to slower reaction kinetics (90% and 67% conversion, respectively, at 6 h). Hence, further
catalytic studies were carried out with TBHP/TFT.

2.2.2. Epoxidation of Biobased Olefins

Catalyst 2 was further explored for the challenging practical goal of the chemical
valorization of renewable vegetable oils (VOs) and dl-limonene (LIM) via mild, selective
catalytic routes. FAMEs are formed via (trans)esterification of VOs which may be obtained
from the edible parts of agricultural crops (e.g., soybean oil), non-edible raw materials
such as waste from the forest industry and waste cooking oil, and oil-producing microal-
gae [52]. The terpene LIM is one of the main components of citrus peel waste (up to 4% by
weight) and it is estimated that every year 110–120 million tons of citrus waste is generated
worldwide from citrus-processing industries [53].

The epoxidation of FAMEs and LIM with TBHP, in the presence of 2, was studied at
70 ◦C. The FAME substrate scope included the monoene methyl oleate (MO), the diene
methyl linoleate (ML), the triene methyl linolenate (MLN), and the hydroxy-FAME methyl
ricinoleate (MR). Catalyst 2 was very active for the epoxidation of the biobased olefins
(Table 1, Figure 9). LIM was converted to LIMox which was formed in 100%/72% selectivity
at 38%/100% conversion, reached at 30 min/6 h (Figure 9A,B, Table 1). As LIM conversion
increased, LIMox was converted to LIMdiox and limonene diol (LIMdiol) (25% and 3%
selectivity, respectively, at 100% conversion, 6 h). Hence, the epoxidation of the more
electron-rich endocyclic double bond (position 1,2) was more favorable than that of the
exocyclic double bond (position 8,9). This regioselectivity is consistent with mechanistic
studies reported in the literature for olefin epoxidation using hydroperoxide oxidants
(ROOH) in the presence of organo-oxomolybdenum catalysts. An associative mechanism
may occur where the metal center acts as a Lewis acid for ROOH activation, forming an
active oxidizing species that is responsible for an electrophilic oxygen atom transfer step to
the olefin substrate, leading to the formation of the epoxide product [54]. In this process,
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more electron-donating groups increase the electron density at the C=C bond of the olefin,
making it more susceptible to epoxidation.

Table 1. Catalytic results for olefin epoxidation at 70 ◦C and sulfide oxidation at 35 ◦C, in the presence
of 2 using TBHP as oxidant.

Substrate a Conversion (%) Product(s) Selectivity (%)

6 h 24 h 6 h 24 h

Cy8
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With MO as substrate, 2 led to 100% selectivity of the corresponding monoepoxide,
methyl 9,10-epoxyoctadecanoate (MOox), at 96% conversion, 24 h (Table 1, Figure 9).
More complex product mixtures were obtained with the polyfunctional FAMEs ML and
MLN. With MLN, the selectivity to total monoepoxides (MLNox = methyl 15,16-epoxy-
9,12-octadecadienoate + methyl 12,13-epoxy-9,15-octadecadienoate + methyl 9,10-epoxy-



Catalysts 2023, 13, 565 12 of 21

12,15-octadecadienoate) decreased from 100% at 23% conversion (reached at 1 h) to 44% at
94% conversion (24 h), which was accompanied by the formation of diepoxides MLNdiox
(50% selectivity), where MLNdiox = methyl 9,10-15,16-diepoxy-12-octadecenoate + methyl
12,13-15,16-diepoxy-9-octadecenoate + methyl 9,10-12,13-diepoxy-15-octadecenoate, and
other unidentified products (total selectivity of 6%, which possibly includes the triepoxide
methyl 9,10-12,13-15,16-triepoxyoctadecanoate) (Table 1, Figure 9A,D).

For catalyst 2 with ML as substrate, the selectivity to the corresponding monoepoxides
(MLox = methyl 12,13-epoxy-9-octadecenoate and methyl 9,10-epoxy-12-octadecenoate) de-
creased from 100% at 7% conversion (1 h) to 65% at 88% conversion (24 h), with the concomi-
tant formation of diepoxides (MLdiox = methyl 9,10,12,13-diepoxy-octadecanoate) with 32%
selectivity at 88% conversion (Table 1, Figure 9A,C); minor products (3% total selectivity)
included cyclization hydroxytetrahydrofuranic compounds (MLcycl = methyl 10,13-epoxy-
9,12-dihydroxy-octadecanoate + methyl 9,12-epoxy-10,13-dihydroxy-octadecanoate).

For each substrate, ML and MLN, the respective monoepoxide isomers (at positions
9,10 or 12,13 for ML, and 9,10 or 12,13 or 15,16 for MLN) were formed in equimolar amounts,
suggesting that the C=C bonds for each substrate possessed similar nucleophilicity.

The reaction of methyl ricinoleate (MR) gave solely the corresponding epoxide (MRox
= methyl-9,10-oxido-12-hydroxyoctadecanoate), formed in 92%/100% yield at 6 h/24 h,
70 ◦C (Table 1, Figure 9A). These results are similar to those with MO as substrate. Similar
reactivities of MR and MO were previously reported for a system using MoO3/alumina
with TBHP [55], while somewhat different reactivities (MR > MO) were reported for a
system using Mo(CO)6 with cumyl hydroperoxide as oxidant [56]. Overall, 2 was effective
for the epoxidation of unsaturated FAMEs, which occurred to different extents. Conversion
at 6 h/70 ◦C decreased in the following order: MO (90%) > MLN (79%) > ML (68%); after
24 h, the conversions of MO and MLN were still higher (94–96%) than that of ML (88%;
Table 1, Figure 9). Studies in the literature reported different orders of reactivities of the three
FAMEs [57–61]. Those with a greater number of C=C bonds per molecule exhibited higher
reactivity for systems using formic acid, acetic acid+H2SO4 [57], or Nb-silica catalysts [58],
with H2O2 as oxidant. The trend MO > ML > MLN was reported for oxovanadium
complexes with TBHP [59], or formic acid with H2O2 [60]. For a Venturello catalyst using
H2O2, no clear trend could be established [61]. Electron-donating groups adjacent to C=C
bonds may increase the FAME reactivity. On the other hand, for polyfunctional olefins, a
greater number of C=C bonds may facilitate consecutive epoxidation reactions (especially
using catalysts with a high density of active sites), which may negatively impact the
substrate reaction rate.

In parallel with that verified with Cy8 as substrate, the precursor to 2, i.e., complex 1,
was more active than 2 for the epoxidation of the biobased olefins (MO, LIM), although, as
discussed above, the former performed as a homogeneous catalyst. In the presence of 1,
LIM was completely converted at 2 h, giving mainly mono and diepoxides in 84% total
yield (LIMox/LIMdiox = 4), whereas 2 led to 92% conversion at 2 h (mono and diepoxides
in 100% total yield). While 1 led to 97% MOox yield at 4 h, the hybrid 2 led to 79% MOox
yield (100% selectivity for MOox using both catalysts).

Table 2 compares the catalytic results for 2 to literature data for the epoxidation of
the biobased olefins, in the presence of homogeneous and heterogeneous [MoO3(L)x)]-
type catalysts [19,37,44,62,63]. To the best of our knowledge, 2 is the first [MoO3(L)x)]-type
catalyst to be studied for the reactions of MLN and MR. The results for the reaction of MO in
the presence of 2 (using TFT at 70 ◦C) are superior or comparable to literature data (entries
1–7). With ML as substrate, the results for 2 are somewhat comparable to those reported
for other hybrid catalysts (entries 8–12). With LIM as substrate, the catalytic results at 6 h
for 2 (97% epoxides yield, entry 13) are superior to those for other hybrid catalysts (entries
13–18). At higher reaction temperature and time (75 ◦C, 24 h), (DMA)[MoO3(Hbpdc)] led
to quantitative yield of epoxides (entry 18), although this hybrid acted as a homogeneous
catalyst [63]. Another organo-oxomolybdenum compound that has been studied with
biobased olefins is the polyoxometalate (POM) (Hptz)4[SiMo12O40]·nH2O, which was active
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for the reactions of LIM and FAMEs, but it was a homogeneous catalyst and promoted
considerable epoxide ring opening reactions for the reaction systems of ML and LIM [20].

Table 2. Comparison of the catalytic results for 2 with literature data for polymeric hybrids of the type
[MoO3(L)x] tested for the epoxidation of the biobased olefins and oxidation of sulfides with TBHP.

Entry Olefin Catalyst a CB b S/T c Mo:Su:Ox d t/h χ (%) e Sp (%) f Yp (%) f Ref.

1 MO 2 HE TFT/70 1:100:210 6/24 90/96 100/100 90/96 This work
2 [MoO3(Hptz)] HE TFT/70 1:100:210 5/24 85/100 100/100 85/100 [19]
3 [MoO3(pbim)] HO TFT/70 1:100:153 6/24 46/69 59/61 27/42 [37]
4 [MoO3(biim)]·H2O HE TFT/70 1:100:226 6/24 72/97 99/97 71/94 [44]
5 [MoO3(bipy)] HO TFT/70 1:100:226 6/24 62/96 100/100 62/96 [44]
6 [MoO3(bipy)] HO DCE/75 1:100:152 6/24 82/99 100/100 82/99 [62]
7 (DMA)[MoO3(Hbpdc)] HO TFT/75 1:103:160 6/24 93/100 98/98 91/98 [63]
8 ML 2 HE TFT/70 1:100:210 6/24 68/88 100/97 68/85 This work
9 [MoO3(Hptz)] HE TFT/70 1:100:210 5/24 67/86 100/98 67/84 [19]
10 [MoO3(pbim)] HO TFT/70 1:100:153 6/24 59/92 92/77 54/71 [37]
11 [MoO3(biim)]·H2O HE TFT/70 1:100:226 6/24 66/88 100/99 66/87 [44]
12 [MoO3(bipy)] HO TFT/70 1:100:226 6/24 63/85 100/100 63/85 [44]
13 LIM 2 HE TFT/70 1:100:210 6 100 97 97 This work
14 [MoO3(Hptz)] HE TFT/70 1:100:210 5/24 100/100 93/64 95/66 [19]
15 [MoO3(pbim)] HO TFT/70 1:100:153 6/24 69/91 93/95 64/87 [37]
16 [MoO3(biim)]·H2O HE TFT/70 1:100:226 6/24 97/100 92/90 89/90 [44]
17 [MoO3(bipy)] HO TFT/70 1:100:226 6/24 75/92 100/90 75/83 [44]
18 (DMA)[MoO3(Hbpdc)] HO TFT/75 1:103:160 6/24 95/100 100/100 95/100 [63]
19 MPS 2 HE TFT/35 1:100:220 6/24 100/100 23/86 23/86 This work
20 [MoO3(biim)]·H2O HE TFT/35 1:100:226 6/24 100/100 7/33 7/33 [44]
21 [MoO3(bipy)] HO DCM/20 1:100:300 4 100 traces traces [45]
22 DPS 2 HE TFT/35 1:100:220 6/24 100/100 33/77 33/77 This work
23 [MoO3(biim)]·H2O HE TFT/35 1:100:226 6 100 20 20 [44]
24 [MoO3(bipy)] HO TFT/35 1:100:226 6 100 30 30 [44]

a Abbreviations: Hptz = 5-(2-pyridyl)tetrazole; pbim = 2-(2-pyridyl)-benzimidazole; biim = 2,2′-biimidazole;
bipy = 2,2′-bipyridine; DMA = dimethylammonium; H2bpdc = 2,2′-bipyridine-5,5′-dicarboxylic acid. b Cata-
lyst behavior (HO = homogeneous catalyst (sometimes an apparent heterogeneous catalytic contribution ex-
isted), HE = heterogeneous catalyst). c S = solvent (TFT = α,α,α-trifluorotoluene, DCE = 1,2-dichloroethane,
DCM = dichloromethane), T = reaction temperature (◦C). d Initial molybdenum:substrate:oxidant molar ratio.
e Substrate conversion. f Product selectivity (Sp) and yield (Yp) (monoepoxide for MO; monoepoxide plus
diepoxide for ML and LIM; sulfone for sulfides).

2.2.3. Sulfoxidation Activity of 2

The catalytic applications of 2 are not restricted to olefin epoxidation. It is also an
effective catalyst for the oxidation of sulfides such as methylphenylsulfide (MPS) and
diphenylsulfide (DPS) with TBHP, at 35 ◦C (Table 1), leading to complete conversion of
MPS and DPS at 1 h and 2 h, respectively. Without a catalyst, only 20% MPS and 26% DPS
were converted at 4 h. The main products were the corresponding sulfoxides and sulfones.
Increasing the reaction time favored the conversion of sulfoxides to sulfones, which were
formed in 86% and 77% yield at 100% conversion of MPS and DPS, respectively, at 24 h
(Figure 10). The main use of diphenyl sulfone is as a high boiling solvent (b.p. 379 ◦C)
for polymerization reactions, e.g., to synthesize microporous cyanate resins [64], and high
molecular weight polymers such as polyetherimides [65]. Another use of diphenyl sulfone
is as a starting material for the synthesis of 3,3′-diaminodiphenyl sulfone (via the reduction
of the intermediate 3,3′-dinitrodiphenyl sulfone), which has been used as a curing agent
of epoxy resins [66], and a diamino monomer for the synthesis of polyimides [67]. The
main use of methyl phenyl sulfone is as a starting material in organic synthesis, e.g., for the
preparation of unsymmetric triarylmethanes [68].

According to the literature for oxomolybdenum catalysts, the sulfoxidation mechanism
may involve a proton transfer step from the hydroperoxide oxidant to a Mo=O group of the
catalyst, forming an oxidizing hydroperoxomolybdenum species (possessing the moiety
{Mo(-OαOβH)(-OH)}) [69]. The interaction between the Oα atom and the sulfur atom of
the sulfide substrate results in Oβ-Oα bond rupture and formation of a S=O bond (leading
to the sulfoxide; or of the sulfoxide intermediate, leading to the sulfone).
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Catalyst 2 is one of the few [MoO3(L)x]-type catalysts tested for the studied sulfoxida-
tion reactions (Table 2). Under similar reaction conditions, 2 and the hybrids [MoO3L] with
L = bipy or biim led to complete conversion of DPS with TBHP at 6 h and sulfone yields of
20–33% (entries 22–24, Table 2) [44]. With MPS as substrate, 2 was more effective for sulfone
production than [MoO3(biim)]·H2O: 86% vs. 33% sulfone yield at 24 h (100% conversion)
(entries 19 and 20, Table 2) [44]. Under different reaction conditions, [MoO3(bipy)] led to
94% sulfoxide yield at 4 h and 20 ◦C (dichloromethane as solvent, initial Mo:sulfide:TBHP
molar ratio = 1:100:300) [45].

3. Materials and Methods
3.1. Reagents and Chemicals

The following reagents and chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA), unless otherwise stated, and used as received: (for the preparation of 5-(2-
pyridyl)tetrazole) 2-cyanopyridine, acetic acid, sodium azide, butanol, and hydrochloric
acid; (for the preparation of 5-(2-pyridyl-1-oxide)tetrazole (Hpto)) methanol (≥99.8%),
3-chloroperoxybenzoic acid (Acros Organics, Thermo Fisher Scientific, Geel, Belgium,
70–75%); (for the synthesis of compounds 2 and 3) molybdenum(VI) dichloride dioxide,
anhydrous tetrahydrofuran (≥99.9%), hexane (≥99%, Carlo Erba, Milan, Italy), anhydrous
diethyl ether (Honeywell, ≥99.8%), and acetone (Honeywell, ≥99.5%); (for the catalytic re-
actions) cis-cyclooctene (95%, Alfa Aesar, Ward Hill, MA, USA), methyl oleate (99%), methyl
linoleate (95%, Alfa Aesar, Ward Hill, MA, USA), methyl linolenate (98.5%, Acros Organ-
ics), methyl ricinoleate (≥99%), dl-limonene (>95%, Merck, Kenilworth, NJ, USA), methyl
phenyl sulfide (99%), diphenyl sulfide (98%), tert-butyl hydroperoxide (5.5 M in decane, con-
taining <4% water), 30% aq. hydrogen peroxide, anhydrous α,α,α-trifluorotoluene (≥99%),
acetone (99.5%, Honeywell, Riedel de Häen, Seelze, Germany), and acetonitrile (99.9%,
Panreac, Barcelona, Spain); (for sample preparation for GC analysis) 1,2-dichloroethane
(≥99%), ethyl decanoate (99%), undecane (>99%), and mesitylene (98%).

3.2. Instrumentation

Elemental analyses (carbon, hydrogen, and nitrogen) were performed using a Leco
TruSpec 630-200-200 analyzer (Leco, Saint Joseph, MI, USA). ICP-OES analyses (for Mo)
were performed at the Central Analysis Laboratory (University of Aveiro); the measure-
ments were carried out on a Horiba JobinYvon Activa M spectrometer (Horiba Scientific,
Palaiseau, France). Prior to analyses, the solid samples were digested using 1 mL HF and
1 mL HNO3, and microwave heating at 180 ◦C. Powder X-Ray diffraction (PXRD) data
were collected on a Malvern Panalytical (Malvern, UK) Empyrean diffractometer (Cu-Kα

X-radiation, λ = 1.54060 Å) in a Bragg-Brentano para-focusing optics configuration (45 kV,
40 mA) at ambient temperature. Samples were prepared in a spinning flat plate sample
holder and step-scanned from 3 to 70◦ (2θ) in 0.02◦ 2θ steps with a counting time of 50 s
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per step. SEM images, elemental mappings (Mo), and EDS analyses were obtained on a
Hitachi SU-70 SEM microscope (Hitachi High-Tech Europe GmbH, Krefeld, Germany) with
a Bruker Quantax 400 detector operating at 15 kV (Bruker, Billerica, MA, USA). Samples
were prepared by deposition on aluminium sample holders followed by carbon coating
using an Emitech K950 carbon evaporator (Emitech SAS, Montigny-le-Bretonnex, France).
The textural properties of 2 were determined from the N2 sorption isotherm at −196 ◦C,
which was measured using a Quantachrome instrument (automated gas sorption data us-
ing Autosorb IQ2, Quantachrome Instruments, Florida, USA). The sample was pre-treated
at 60 ◦C for 8 h, under vacuum (<4 × 10−3 bar). The specific surface area was calculated
using the Brunauer, Emmett, Teller equation (SBET) and the total pore volume (Vp) was
based on the Gurvitch rule (for relative pressure (p/p0) of 0.996). The pore size distribution
was calculated from the adsorption branch by the Barrett–Joyner–Halenda (BJH) method.
Fourier transform infrared (FT-IR) spectra (in the range of 4000–350 cm−1) were measured
on a Bruker Tensor 27 spectrophotometer (resolution 4 cm−1, 128 scans, Bruker, Billerica,
MA, USA) as KBr pellets. Attenuated total reflectance (ATR) FT-IR spectra were measured
on the same instrument equipped with a Specac® Golden Gate Mk II ATR accessory (Specac,
Orpington, UK) having a diamond top plate and KRS-5 focusing lenses. FT-Raman spectra
were recorded on a Bruker MultiRAM spectrometer equipped with a Nd:YAG laser with an
excitation wavelength of 1064 nm (Bruker, Billerica, MA, USA). Solution 1H and 13C NMR
spectra were recorded with a Bruker Avance 300 spectrometer using DMSO-d6 as a solvent.
1H-13C HSQC NMR experiments were performed on a 500 MHz JEOL system equipped
with a Royal HFX probe. The 13C{1H} cross-polarization (CP) magic-angle spinning (MAS)
NMR spectra were recorded using a Bruker Avance 400 spectrometer with an ultra-shielded
static magnetic field of 100.6 MHz with 3.2 µs pulses, 3.5 ms contact time, spinning rate of
12 kHz, and 5 s recycle delays (NMR, Bruker, Billerica, MA, USA).

3.3. Synthesis

All preparations and manipulations were performed using standard Schlenk tech-
niques under an inert atmosphere. For the preparation of 5-(2-pyridyl)tetrazole (Hptz), the
method reported by McManus and Herbst was followed without any further modifica-
tion [70].

3.3.1. 5-(2-pyridyl-1-oxide)tetrazole (Hpto)

The procedure described by Pietraszkiewicz et al. was followed to prepare the ligand
Hpto [27]. 3-Chloroperoxybenzoic acid (1.39 g, 8.05 mmol) was added slowly to a colorless
solution of Hptz (0.47 g, 3.20 mmol) in methanol (48 mL). After stirring the mixture at room
temperature for 48 h, the resultant white precipitate was isolated by filtration, washed
with methanol (3 × 20 mL), and vacuum-dried. Yield: 0.37 g, 71%. Single crystals of Hpto
suitable for XRD were obtained by slow evaporation of the mother-liquor. Anal. Calcd for
C6H5N5O (163.14): C, 44.17; H, 3.09; N, 42.93. Found: C, 44.34; H, 3.23; N, 42.78%. FT-IR
(KBr, cm−1): ν = 3107 (w), 1654 (w), 1465 (m), 1453 (s), 1384 (m), 1337 (w), 1267 (m), 1245 (m),
1224 (m), 1197 (m), 1154 (w), 1111 (m), 1094 (w), 1069 (m), 1016 (m), 842 (m), 778 (s), 754 (m),
719 (w), 698 (m), 573 (w), 553 (m), 480 (w), 399 (w). Raman (cm−1): ν = 3107 (w), 3092 (w),
3061 (w), 1614 (m), 1571 (m), 1538 (m), 1466 (w), 1382 (w), 1324 (w), 1274 (w), 1248 (w),
1227 (w), 1165 (m), 1111 (w), 1062 (w), 1042 (w), 1008 (w), 962 (w), 841 (m), 788 (w), 755 (w),
719 (w), 687 (w), 578 (w), 553 (w), 482 (w), 373 (w), 345 (w), 324 (w), 239 (w), 182 (w),
125 (m), 79 (vs). 1H NMR (300.13 MHz, 25 ◦C, DMSO-d6): δ = 8.55 (dd, JH-H = 6.5, 1.1 Hz,
1H, H6), 8.41 (dd, JH-H = 7.8, 2.1 Hz, 1H, H3), 7.66 (dt, JH-H = 7.8, 2.1 Hz, 1H, H5), 7.60
(t, JH-H = 6.5 Hz, 1H, H4) ppm. 13C{1H} NMR (75.47 MHz, 25 ◦C, DMSO-d6): δ = 147.8
(Ctz), 140.2 (C6), 134.7 (C2), 128.3 (C5), 126.8 (C3), 126.5 (C4) ppm. 13C{1H} CP MAS NMR:
δ = 146.2 (Ctz), 142.0 (C6), 133.4 (C2), 127.9 (C3, C4 and C5) ppm.
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3.3.2. [MoO2Cl2(Hpto)]·THF (1)

Anhydrous THF (20 mL) was added to MoO2Cl2 (0.50 g, 2.51 mmol) and the mixture
was stirred at 50 ◦C for 20 min. Next, the ligand Hpto (0.41 g, 2.51 mmol) was added and
the reaction mixture was left to stir at room temperature for 2 h. Complex 1 was isolated
by filtration, washed with diethyl ether (2 × 10 mL), and vacuum-dried. Yield: 0.64 g,
59%. Single crystals of 1 suitable for XRD were obtained by slow diffusion of anhydrous
diethyl ether into a solution of 1 in anhydrous THF. Anal. Calcd for C10H13Cl2MoN5O4
(434.09): C, 27.67; H, 3.02; N, 16.13. Found: C, 28.00, H, 3.00, N, 16.65%. FT-IR (KBr, cm−1):
ν = 3399 (w), 1634 (w), 1530 (w), 1455 (s), 1385 (w), 1268 (w), 1246 (w), 1218 (m), 1149 (w),
1110 (w), 1054 (w), 1038 (w), 1013 (w), 945 (s), 909 (s), 841 (m), 779 (s), 757 (s), 713 (w), 696
(w), 595 (w), 573 (w), 395 (m). Raman (cm−1): ν = 3094 (w), 2895 (w), 1794 (w), 1620 (s),
1582 (m), 1536 (m), 1449 (m), 1324 (w), 1273 (w), 1247 (w), 1217 (w), 1163 (w), 1107 (w), 1040
(w), 1012 (w), 946 (s), 913 (m), 849 (w), 819 (w), 693 (w), 602 (w), 575 (w), 491 (w), 400 (w),
312 (w), 287 (w), 252 (w), 228 (m), 213 (m), 191 (w), 138 (w), 77 (vs). 13C{1H} CP MAS NMR:
δ = 154.1 (Ctz), 140.4 (C6), 137.0 (C2 and C4), 129.2 (C3 or C5), 128.2 (C3 or C5), 69.4 (CTHF),
26.5 (CTHF) ppm.

3.3.3. [MoO3(Hpto)]·H2O (2)

Milli-Q water (20 mL) was added to 1 (0.40 g, 0.92 mmol), and the mixture was refluxed
for 16 h. A white precipitate suspended in a colorless solution (pH = 1-2) was obtained.
The solid (2) was isolated by filtration; washed with distilled water (2 × 10 mL), acetone
(2 × 10 mL), and diethyl ether (2 × 10 mL); and vacuum-dried. Yield: 0.19 g, 67%. Anal.
Calcd for C6H5MoN5O4·H2O (325.09): C, 22.17; H, 2.17; N, 21.54; Mo, 29.5. Found: C, 22.29;
H, 2.07; N, 21.65; Mo, 29.5%. FT-IR (KBr, cm−1): ν = 3356 (m), 3084 (w), 3034 (w), 1874 (w),
1633 (m), 1572 (w), 1529 (w), 1455 (vs), 1386 (m), 1280 (w), 1246 (w), 1213 (s), 1185 (w), 1158
(w), 1120 (w), 1108 (w), 1084 (m), 1032 (m), 1014 (w), 974 (w), 941 (s), 908 (sh), 898 (vs), 840
(s), 791 (w), 759 (m), 713 (w), 694 (w), 593 (m), 573 (w), 523 (w), 499 (w), 436 (w), 396 (m).
Raman (cm−1): ν = 3091 (w), 3050 (w), 3036 (w), 1620 (s), 1573 (w), 1530 (m), 1448 (m), 1386
(w), 1247 (w), 1210 (w), 1187 (w), 1159 (w), 1120 (w), 1109 (w), 1087 (w), 1052 (w), 1032 (w),
1015 (w), 937 (vs), 906 (m), 895 (s), 840 (w), 795 (w), 764 (w), 723 (w), 694 (w), 594 (w), 571
(w), 530 (w), 503 (w), 403 (w), 374 (w), 340 (w), 303 (w), 246 (w), 213 (w), 183 (w), 143 (s),
120 (w), 104 (w), 78 (vs), 64 (vs). 13C{1H} CP MAS NMR: δ = 151.9 (Ctz), 138.5 (C2 and C6),
135.8 (C4), 128.8 (C3 and C5) ppm.

3.4. Catalytic Tests

The catalytic reactions of cis-cyclooctene (Cy8), biomass-derived olefins and sulfides
were carried out at 35 or 70 ◦C, using 1.8 mmol of substrate, cosolvent (1 mL), catalyst (in
an amount equivalent to 18 µmol of Mo), and tert-butyl hydroperoxide (TBHP) or H2O2
as oxidant.

The reactions with TBHP (2.75 mmol oxidant for Cy8; 3.85 mmol for biobased olefins
or sulfides) were carried out using 10 mL borosilicate reactors equipped with a Teflon
valve for sampling and a PTFE-coated magnetic stirring bar. Initially, catalyst, solvent, and
substrate were added to the reactor, which was then immersed in a temperature-controlled
oil bath at 70 ◦C under stirring (1000 rpm). After 10 min, preheated TBHP was added to
the reactor, and this moment was taken as the initial instant of the catalytic reaction.

The reactions with H2O2 (2.75 mmol) were performed in tubular borosilicate batch
reactors with pear-shaped bottoms (ca. 12 mL capacity), equipped with an appropriate
PTFE-coated magnetic stirring bar (for stirring at 1000 rpm) and a valve. Catalyst, substrate,
solvent, and H2O2 were loaded into the reactor, which was then immersed in a thermostati-
cally controlled oil bath (70 ◦C), and this moment was considered as the initial instant of
the catalytic reaction.

The evolution of the reactions was monitored by analyzing freshly prepared samples
by gas chromatography (GC), using a Varian 450 GC instrument equipped with a BR-5
capillary column (30 m × 0.25 mm × 0.25 µm) and an FID detector with H2 as carrier gas.
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The products were identified using pure compounds and/or GC-MS, using a GC-2010 Plus
(Shimadzu) and a GCMS-QP2010 Ultra (Shimadzu), equipped with a ZB-5ms column (He
as carrier gas). The quantification of reactants/products was based on calibrations. For the
sets of substrates Cy8/LIM, MO/ML/MLN/MR, and MPS/DPS, the internal standards
used were undecane, methyl decanoate, and mesitylene, respectively.

The catalyst stability was evaluated by reusing the recovered solids in consecutive
batch runs, keeping constant the initial mass ratio of catalyst:Cy8:TBHP between runs
(the solids were denoted i-used, i = 1 or 2). After each run, the solids were separated
from the reaction mixture by centrifugation (3500 rpm), thoroughly washed with acetone,
dried overnight under atmospheric conditions, and finally vacuum-dried (ca. 0.1 bar) at
60 ◦C for 1 h. The obtained solids were characterized by ATR FT-IR spectroscopy, PXRD,
and/or SEM/mapping. A leaching test was performed to verify whether soluble active
species were present in the liquid phase for the systems 1/Cy8/TBHP/TFT, at 55 ◦C, and
2/Cy8/TBHP/TFT, at 70 ◦C, under identical conditions to those used for a typical batch run.
Specifically, at 0.5 h for 1, and 1 h for 2, the hot solid–liquid biphasic mixture was filtered
through a 0.2 µm PTFE membrane filter, and the filtrate was transferred to a separate stirred
reactor (preheated at 55 or 70 ◦C), and the evolution of the obtained solution was monitored
by GC.

4. Conclusions

A polymeric hybrid molybdenum oxide/organic catalyst, [MoO3(Hpto)]·H2O, was
synthesized by a simple, neat strategy from [MoO2Cl2(Hpto)]·THF, and the spectroscopic
characterization indicated that the ligand 5-(2-pyridyl-1-oxide)tetrazole was involved in
bidentate N,O-coordination to MoVI centers in both the precursor complex and the hybrid
derivative. The two compounds were compared as olefin epoxidation catalysts, being very
active and selective toward the formation of epoxide products. The mononuclear complex
and the polymeric hybrid present different catalytic features. While the precursor acts
as a homogeneous catalyst, the hybrid is one of the rare examples among molybdenum
oxide/organic catalysts that acts as a solid catalyst. The hybrid may be used not only
for olefin epoxidation with a broad substrate scope (covering bioderived olefins such
as FAMEs and terpenes), but also for other reactions such as sulfoxidations under mild
conditions, which were selective toward sulfone products. Epoxide yields at 24 h were in
the range of 96–100% for methyl oleate and methyl ricinoleate, and 85–92% (total epoxides)
for polyenes, namely dl-limonene, methyl linoleate, and methyl linolenate. On the other
hand, sulfone yields were in the range of 77–86% at 24 h. For the first time, in this work, a
molybdenum-based catalyst was applied for methyl linolenate epoxidation, and methyl
ricinoleate epoxidation was demonstrated using a [MoO3(L)x]-type hybrid catalyst. Future
work will aim at developing alternative synthesis routes to 2 and resolving its structure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13030565/s1, Figure S1: 1H-13C HSQC NMR spectrum of
Hpto in DMSO-d6; Figure S2: N2 sorption isotherm and pore size distribution of 2; Experimental
details for the single-crystal X-ray diffraction studies; Table S1: Hydrogen-bonding geometry for Hpto;
Table S2: Hydrogen-bonding geometry for compound [MoO2Cl2(Hpto)]·THF (1); Table S3: Crystal
data and structure refinement details for the organic ligand Hpto and complex [MoO2Cl2(Hpto)]·THF
(1); Refs [71–79] are cited in the Supplementary Material file.
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