Characterization and Evaluation of Natural Bearing and Iron-Enriched Montmorillonitic Clay as Catalysts for Wet Oxidation of Dye-Containing Wastewaters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Clay Samples Characterization
2.2. Catalytic Wet Air and Peroxide Oxidation
- (1)
- In the presence of either air or hydrogen peroxide, no significant differences were observed between the efficiencies calculated for BG and CV dyes and all tested clay samples.
- (2)
- TOC efficiencies exhibit very close values for BG in presence of air (CWAO), while for CV the following trendline was established: RC-0 < SC-0 < RC~SC < Fe-RC < Fe-SC < Fe-PILC.
- (3)
- In terms of TOC efficiency, the CWPO process shows similar trends for both dyes as follows: Fe-RC < Fe-SC < Fe-PILC < RC-0 < RC < SC-0~SC.
2.3. Iron Leakage
3. Materials and Methods
3.1. Materials
3.2. Clay Samples Preparation
3.3. Clay Samples Characterization
3.4. Catalytic Wet Oxidation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mukherjee, S. The Science of Clays; Springer: Dordrecht, Germany, 2013. [Google Scholar]
- Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z.; Bhatti, H.N.; Nouren, S. Dyes adsorption using clay and modified clay: A review. J. Mol. Liq. 2018, 256, 395–407. [Google Scholar] [CrossRef]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manag. 2017, 191, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramírez, E.G.; Theng, B.K.G.; Mora, M.L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review. Appl. Clay Sci. 2010, 47, 182–192. [Google Scholar] [CrossRef]
- Perathoner, S.; Centi, G. Catalytic Wastewater Treatment Using Pillared Clays. In Pillared Clays and Related Catalysts; Gil, A., Korili, S., Trujillano, R., Vicente, M., Eds.; Springer: New York, NY, USA, 2010; pp. 167–200. [Google Scholar]
- Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Adsorption of dyes using different types of clay: A review. Appl. Water Sci. 2017, 7, 543–568. [Google Scholar] [CrossRef] [Green Version]
- Shahadat, M.; Yasmin, M.; Kumar, S.; Ismail, S.; Ali, S.W.; Ahammad, S.Z. Clay-Based Adsorbents for the Analysis of Dye Pollutants. In Applied Water Science Volume 1: Fundamentals and Applications; Inamuddin, M.I.A., Boddula, R., Rangreez, T.A., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2021; pp. 163–198. [Google Scholar]
- Kurian, M. Advanced oxidation processes and nanomaterials—A review. Clean. Eng. Technol. 2021, 2, 100090. [Google Scholar] [CrossRef]
- Baloyi, J.; Ntho, T.; Moma, J. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Adv. 2018, 8, 5197–5211. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int. J. Environ. Res. Public Health 2019, 16, 2066. [Google Scholar] [CrossRef] [Green Version]
- Teng, T.T.; Low, L.W. Removal of Dyes and Pigments from Industrial Effluents. In Advances in Water Treatment and Pollution Prevention; Sharma, S.K., Sanghi, R., Eds.; Springer Science + Business Media Dordrecht: Berlin, Germany, 2012; pp. 65–93. [Google Scholar]
- Azimi, S.C.; Shirini, F.; Pendashteh, A.R. Advanced Oxidation Process as a Green technology for Dyes Removal from Wastewater: A Review. Iran. J. Chem. Chem. Eng. 2021, 40, 1467–1489. [Google Scholar]
- Idrissi, M.; Miyah, Y.; Benjelloun, Y.; Chaouch, M. Degradation of crystal violet by heterogeneous Fenton-like reaction using Fe/Clay catalyst with H2O2. J. Mater. Environ. Sci. 2016, 7, 50–58. [Google Scholar]
- Maicaneanu, A.; Bedelean, H.; Burcă, S.; Stanca, M. Heavy metal ions removal from model wastewaters using Orasul Nou (Transilvania, Romania) bentonite sample. Studia Univ. Babes-Bolyai Chem. 2009, 54, 127–140. [Google Scholar]
- Govea, L.V.; Steinfink, H. Thermal Stability and Magnetic Properties of Fe-Polyoxocation Intercalated Montmorillonite. Chem. Mater. 1997, 9, 849–856. [Google Scholar] [CrossRef]
- Viani, A.; Gualtieri, A.F.; Artioli, G. The nature of disorder in montmorillonite by simulation of X-ray patterns. Am. Mineral. 2002, 87, 966–975. [Google Scholar] [CrossRef]
- Plesa Chicinas, R.; Bedelean, H.; Stefan, R.; Maicaneanu, A. Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions. J. Mol. Struct. 2018, 1154, 187. [Google Scholar] [CrossRef]
- Madejová, J.; Komadel, P. Baseline studies of the clay minerals society source clays: Infrared methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Hrachová, J.; Madejová, J.; Billik, P.; Komadel, P.; Fajnor, V.Š. Dry grinding of Ca and octadecyltrimethylammonium montmorillonite. J. Colloid Interface Sci. 2007, 316, 589–595. [Google Scholar] [CrossRef]
- Guimarães, G.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Effect of Zr Impregnation on Clay-Based Materials for H2O2-Assisted PhotocatalyticWet Oxidation of Winery Wastewater. Water 2020, 12, 3387–3392. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, S.; Qin, L.; Wang, W.; Zhang, T.; Song, S.; Komarneni, S. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem. Eng. J. 2020, 379, 122322. [Google Scholar] [CrossRef]
- Plesa Chicinas, R.; Tanase, A.; Bedelean, H.; Maicaneanu, A. Characterization of Romanian Bentonitic Clays for the Removal of Dyes from Wastewater. Anal. Lett. 2016, 49, 2686. [Google Scholar] [CrossRef]
- Arroyo, L.J.; Li, H.; Teppen, B.J.; Boyd, S.A. A Simple Method for Partial Purification of Reference Clays. Clay Clay Miner. 2005, 53, 511–519. [Google Scholar] [CrossRef]
- Costanzo, P.M. Baseline studies of the clay minerals society source clays: Introduction. Clay Clay Miner. 2001, 49, 372–373. [Google Scholar] [CrossRef]
- Barrault, J.; Bouchoule, C.; Echachoui, K.; Frini-Srasra, N.; Trabelsi, M.; Bergaya, F. Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)-pillared clays. Appl. Catal. B Environ. 1998, 15, 269–274. [Google Scholar] [CrossRef]
- Gu, L.; Xu, J.; Lv, L.; Liu, B.; Zhang, H.; Yu, X.; Luo, Z. Dissolved organic nitrogen (DON) adsorption by using Al-pillared bentonite. Desalination 2011, 269, 206–213. [Google Scholar] [CrossRef]
w% # | Na | K | Mg | Ca | Al | Si | Fe | Ti | O | C |
---|---|---|---|---|---|---|---|---|---|---|
RC-0 | <0.1 | 0.47 | 0.20 | 0.45 | 5.05 | 24.7 | 0.74 | <0.1 | 49.4 | 16.7 |
RC | - | <0.1 | 0.21 | 0.47 | 5.64 | 28.0 | 0.76 | <0.1 | 51.7 | 10.2 |
Fe-RC | - | - | - | - | 5.16 | 28.0 | 2.32 | - | 48.6 | 16.0 |
SC-0 | - | - | 0.38 | 0.74 | 8.12 | 28.4 | 1.42 | - | 50.1 | 10.8 |
SC | - | - | 0.28 | 0.94 | 7.78 | 29.4 | 1.58 | - | 48.2 | 11.8 |
Fe-SC | - | - | - | - | 7.12 | 26.0 | 3.10 | - | 48.7 | 15.0 |
Fe-PILC | - | - | - | - | 6.68 | 22.9 | 15.1 | - | 45.1 | 10.2 |
Sample | Oxidating Agent | Brilliant Green | Crystal Violet | ||
---|---|---|---|---|---|
E, (%) | ETOC, (%) | E, (%) | ETOC, (%) | ||
RC-0 | Air | 98.8 | 96.3 | 99.7 | 53.1 |
H2O2 | 98.9 | 89.8 | 99.9 | 82.5 | |
RC | Air | 98.6 | 98.3 | 99.4 | 72.4 |
H2O2 | 98.8 | 95.3 | 99.9 | 91.4 | |
Fe-RC | Air | 99.0 | 98.1 | 99.9 | 80.8 |
H2O2 | 99.0 | 66.5 | 99.9 | 72.7 | |
SC-0 | Air | 98.5 | 98.1 | 99.3 | 60.7 |
H2O2 | 98.9 | 96.0 | 99.9 | 87.9 | |
SC | Air | 98.7 | 98.9 | 99.8 | 71.4 |
H2O2 | 98.8 | 95.8 | 99.9 | 92.9 | |
Fe-SC | Air | 99.0 | 98.7 | 99.9 | 82.9 |
H2O2 | 98.4 | 78.4 | 98.6 | 79.0 | |
Fe-PILC | Air | 98.8 | 98.5 | 99.9 | 88.5 |
H2O2 | 98.9 | 87.9 | 99.9 | 89.5 | |
- | Air | 10.0 | 12.3 | 1.05 | 1.41 |
- | H2O2 | 94.5 | 54.2 | 60.0 | 0.490 |
Fe-PILC | - | 99.0 | 95.8 | 93.5 | 87.3 |
Sample | Process | Brilliant Green | Crystal Violet | ||
---|---|---|---|---|---|
E, (%) | ETOC, (%) | E, (%) | ETOC, (%) | ||
RC-0 | Adsorption | 98.9 | - | 99.9 | - |
CWPO | 64.8 | 59.7 | 86.8 | 57.0 | |
RC | Adsorption | 81.4 | - | 76.2 | - |
CWPO | 54.7 | 47.0 | 74.0 | 48.0 | |
Fe-RC | Adsorption | 85.4 | - | 58.8 | - |
CWPO | 86.5 | 29.6 | 83.4 | 60.4 | |
Fe-PILC | Adsorption | 99.5 | - | 71.1 | - |
CWPO | 75.2 | 40.3 | 60.0 | 45.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maicaneanu, S.A.; Henninger, D.L., III; Lake, C.H.; Addicott, E.; Olar, L.E.; Stefan, R. Characterization and Evaluation of Natural Bearing and Iron-Enriched Montmorillonitic Clay as Catalysts for Wet Oxidation of Dye-Containing Wastewaters. Catalysts 2022, 12, 652. https://doi.org/10.3390/catal12060652
Maicaneanu SA, Henninger DL III, Lake CH, Addicott E, Olar LE, Stefan R. Characterization and Evaluation of Natural Bearing and Iron-Enriched Montmorillonitic Clay as Catalysts for Wet Oxidation of Dye-Containing Wastewaters. Catalysts. 2022; 12(6):652. https://doi.org/10.3390/catal12060652
Chicago/Turabian StyleMaicaneanu, Sanda Andrada, David L. Henninger, III, Charles H. Lake, Ethan Addicott, Loredana E. Olar, and Razvan Stefan. 2022. "Characterization and Evaluation of Natural Bearing and Iron-Enriched Montmorillonitic Clay as Catalysts for Wet Oxidation of Dye-Containing Wastewaters" Catalysts 12, no. 6: 652. https://doi.org/10.3390/catal12060652