Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Temperature on Pyrolysis
2.1.1. Effect of Temperature on Pyrolysis Products’ Distribution
2.1.2. Effect of Temperature on Gas Composition
2.1.3. Effect of Temperature on Gas Products’ Properties
2.2. Catalytic Effect of Calcined Dolomite
2.2.1. Effect of Catalyst on Pyrolysis Products Yield
2.2.2. Effect of Catalyst on Gas Composition
2.2.3. Effect of Catalyst on Gas Products’ Properties
3. Experimental Section
3.1. Sample Preparation
3.2. Catalyst Preparation
3.3. Experimental Apparatus and Procedures
3.4. Data Analysis
4. Conclusions
- High pyrolysis temperature improved gas yield by thermal cracking of solid and liquid products.
- The CO, CH4 and CO2 contents in gas decreased with the increase in temperature. H2/CO, dry gas yield and carbon conversion rates all increased with the growth in temperature. The heating value of gas products reached a maximum value of 13.43 MJ/Nm3 at 850 °C.
- Calcined dolomite had good catalytic activity for biomass pyrolysis, which could increase the tar removing capability and syngas yield by 44.64% and by 52.92%, respectively.
- The increasing catalytic temperature could increase H2 and CO content in pyrolysis gas. In addition, increasing catalytic temperature also significantly improved H2/CO ratio, dry gas yield, carbon conversion and heating value.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeng, Z.Q.; Tang, H.; Hu, Q.; Wang, S.L.; Li, M.H.; Yang, R.; Niu, Y.D.; Zhang, C.M. Tree biomass distribution patterns with a forest succession in subtropical China. Agron. J. 2021, 113, 706–710. [Google Scholar] [CrossRef]
- Fatehi, H.; Weng, W.B.; Li, Z.S.; Bai, X.S.; Alden, M. Recent Development in Numerical Simulations and Experimental Studies of Biomass Thermochemical Conversion. Energy Fuels 2021, 35, 6940–6963. [Google Scholar] [CrossRef]
- Zuorro, A.; Garcia-Martinez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [Google Scholar] [CrossRef]
- Xu, T.; Wu, Y.; Bhattacharya, S. Gasification kinetic modelling of Victorian brown coal chars and validity for entrained flow gasification in CO2. Int. J. Min. Sci. Technol. 2021, 31, 473–481. [Google Scholar] [CrossRef]
- Xu, T.; Bhattacharya, S. Direct and two-step gasification behaviour of Victorian brown coals in an entrained flow reactor. Energy Convers. Manag. 2019, 195, 1044–1055. [Google Scholar] [CrossRef]
- Muhammad, I.; Manos, G. Improving the Conversion of Biomass in Catalytic Pyrolysis via Intensification of Biomass-Catalyst Contact by Co-Pressing. Catalysts 2021, 11, 805. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Jahirul, M.I. Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renew. Sustain Energ. Rev. 2021, 145, 145. [Google Scholar] [CrossRef]
- Xu, T.; Srivatsa, S.C.; Bhattacharya, S. In-situ synchrotron IR study on surface functional group evolution of Victorian and Thailand low-rank coals during pyrolysis. J. Anal. Appl. Pyrolysis 2016, 122, 122–130. [Google Scholar] [CrossRef]
- Suresh, A.; Alagusundaram, A.; Kumar, P.S.; Vo, D.V.N.; Christopher, F.C.; Balaji, B.; Viswanathan, V.; Sankar, S. Microwave pyrolysis of coal, biomass and plastic waste: A review. Environ. Chem. Lett. 2021, 19, 3609–3629. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J. Energy Chem. 2019, 39, 109–143. [Google Scholar] [CrossRef] [Green Version]
- Trninic, M.; Jovovic, A.; Stojiljkovic, D. A steady state model of agricultural waste pyrolysis: A mini review. Waste Manag. Res. 2016, 34, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Cho, E.B.; Lee, J.H.; Moon, D.H.; Jung, S.; Kwon, E.E. Synergistic benefits for hydrogen production through CO2-cofeeding catalytic pyrolysis of cellulosic biomass waste. Cellulose 2021, 28, 4781–4792. [Google Scholar] [CrossRef]
- Kazimierski, P.; Hercel, P.; Suchocki, T.; Smoliński, J.; Pladzyk, A.; Kardaś, D.; Łuczak, J.; Januszewicz, K. Pyrolysis of Pruning Residues from Various Types of Orchards and Pretreatment for Energetic Use of Biochar. Materials 2021, 14, 2969. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, N.; Kim, J.; Lee, J. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environ. Pollut. 2021, 270, 270. [Google Scholar] [CrossRef] [PubMed]
- Ningbo, G.; Baoling, L.; Aimin, L.; Juanjuan, L. Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times. J. Anal. Appl. Pyrolysis 2015, 114, 155–162. [Google Scholar] [CrossRef]
- DeSisto, W.J.; Hill, N.; Beis, S.H.; Mukkamala, S.; Joseph, J.; Baker, C.; Ong, T.-H.; Stemmler, E.A.; Wheeler, M.C.; Frederick, B.G.; et al. Fast Pyrolysis of Pine Sawdust in a Fluidized-Bed Reactor. Energy Fuels 2010, 24, 2642–2651. [Google Scholar] [CrossRef]
- Xie, Q.; Kong, S.; Liu, Y.; Zeng, H. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification. Bioresour. Technol. 2012, 110, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.Y.; Zhang, Y.; Wang, T.; Li, A.; Wu, Z.; Ji, G. Dynamic Pyrolysis Characteristics, Kinetics and Products Analysis of Waste Tire Catalytic Pyrolysis with Ni/Fe-ZSM-5 Catalysts Using TG-IR-GC/MS. Catalysts 2021, 11, 1031. [Google Scholar] [CrossRef]
- Galiwango, E.; Al-Marzuoqi, A.H.; Khaleel, A.A.; Abu-Omar, M.M. Catalytic Depolymerization of Date Palm Waste to Valuable C5-C12 Compounds. Catalysts 2021, 11, 371. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, S.; Lin, K.Y.A.; Rinklebe, J.; Kwon, E.E. Comparative study on carbon dioxide-cofed catalytic pyrolysis of grass and woody biomass. Bioresour. Technol. 2021, 323. [Google Scholar] [CrossRef]
- Santamaria, L.; Lopez, G.; Fernandez, E.; Cortazar, M.; Arregi, A.; Olazar, M.; Bilbao, J. Progress on Catalyst Development for the Steam Reforming of Biomass and Waste Plastics Pyrolysis Volatiles: A Review. Energy Fuels 2021, 35, 17051–17084. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Salisu, J.; Quan, C.; Williams, P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review. Renew. Sustain. Energ. Rev. 2021, 145, 111023. [Google Scholar] [CrossRef]
- Aljeradat, R.A.; Aljbour, S.H.; Jarrah, N.A. Natural minerals as potential catalysts for the pyrolysis of date kernels: Effect of catalysts on products yield and bio-oil quality. Energy Sources A Recovery Util. Environ. Eff. 2021. [Google Scholar] [CrossRef]
- Khan, S.R.; Zeeshan, M.; Ahmed, A.; Saeed, S. Comparison of synthetic and low-cost natural zeolite for bio-oil focused pyrolysis of raw and pretreated biomass. J. Clean. Prod. 2021, 313. [Google Scholar] [CrossRef]
- Kawi, S.; Ashok, J.; Dewangan, N.; Pati, S.; Chen, J.M. Recent Advances in Catalyst Technology for Biomass Tar Model Reforming: Thermal, Plasma and Membrane Reactors. Waste Biomass Valorization 2022, 13, 1–30. [Google Scholar] [CrossRef]
- Li, Q.; Ye, H.D.; Wang, Z.H.; Zhou, H.Y.; Wei, J.C. Characteristics and evolution of products under moderate and high temperature coal pyrolysis in drop tube furnace. J. Energy Inst. 2021, 96, 121–127. [Google Scholar] [CrossRef]
- Xu, K.; Hu, S.; Zhang, L.P.; Li, H.J.; Chen, Y.F.; Xiong, Z.; Xu, J.; Jiang, L.; Wang, Y.; Su, S.; et al. Effect of temperature on Shenfu coal pyrolysis process related to its chemical structure transformation. Fuel Process. Technol. 2021, 213. [Google Scholar] [CrossRef]
- Tangstad, M.; Beukes, J.P.; Steenkamp, J.; Ringdalen, E. 14—Coal-based reducing agents in ferroalloys and silicon production. In New Trends in Coal Conversion; Suárez-Ruiz, I., Diez, M.A., Rubiera, F., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 405–438. [Google Scholar] [CrossRef]
- Martín, M.M. Chapter 5—Syngas. In Industrial Chemical Process Analysis and Design; Martín, M.M., Ed.; Elsevier: Boston, MA, USA, 2016; pp. 199–297. [Google Scholar] [CrossRef]
- Santamaria, L.; Beirow, M.; Mangold, F.; Lopez, G.; Olazar, M.; Schmid, M.; Li, Z.; Scheffknecht, G. Influence of temperature on products from fluidized bed pyrolysis of wood and solid recovered fuel. Fuel 2021, 283, 118922. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Q.; Xia, H.; Cheng, S. Effect of pyrolysis temperature on pyrolysis of pine saw dust and application of bio-char. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Zhao, B.F.; Yang, H.J.; Zhang, H.M.; Zhong, C.Q.; Wang, J.W.; Zhu, D.; Guan, H.B.; Sun, L.Z.; Yang, S.X.; Chen, L.; et al. Study on hydrogen-rich gas production by biomass catalytic pyrolysis assisted with magnetic field. J. Anal. Appl. Pyrolysis 2021, 157. [Google Scholar] [CrossRef]
Catalytic Temperature (°C) | No Catalyst (800) | 500 | 600 | 700 | 800 |
---|---|---|---|---|---|
H2/CO (−) | 0.47 | 0.58 | 0.59 | 0.60 | 0.65 |
Syngas (H2 + CO) (%) | 45.48 | 48.71 | 55.09 | 67.04 | 69.55 |
Dry gas yield (Nm3/kg) | 0.36 | 0.41 | 0.47 | 0.48 | 0.74 |
Carbon conversion (wt%) | 34.23 | 36.72 | 41.11 | 44.62 | 61.43 |
LHV (MJ/Nm3) | 12.4 | 12.13 | 12.50 | 13.75 | 12.72 |
Sample | Proximate Analysis (wt%) | Ultimate Analysis (wt%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Moisture | Volatile | Fixed Carbon | Ash | C | H | N | S | O * | |
Pine Sawdust | 9.18 | 62.23 | 15.77 | 11.82 | 46.36 | 5.75 | 2.26 | 0.35 | 47.28 |
Samples | BET Surface Area (m2/g) | Micropore Surface Area (m2/g) | External Surface Area (m2/g) | Pore Volume (cm2/g) |
---|---|---|---|---|
Dolomite | 0.32 | 0.14 | 0.31 | 0.07 |
Calcined dolomite | 9.97 | 1.75 | 8.24 | 2.28 |
Catalyst | CaO | MgO | SiO2 | Fe2O3 | Al2O3 | Na2O |
---|---|---|---|---|---|---|
Calcined dolomite | 53.2 | 38.7 | 2.97 | 0.71 | 0.83 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Xu, J.; Wu, Y. Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite. Catalysts 2022, 12, 131. https://doi.org/10.3390/catal12020131
Xu T, Xu J, Wu Y. Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite. Catalysts. 2022; 12(2):131. https://doi.org/10.3390/catal12020131
Chicago/Turabian StyleXu, Tao, Jue Xu, and Yongping Wu. 2022. "Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite" Catalysts 12, no. 2: 131. https://doi.org/10.3390/catal12020131
APA StyleXu, T., Xu, J., & Wu, Y. (2022). Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite. Catalysts, 12(2), 131. https://doi.org/10.3390/catal12020131