Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Morphology and Structure
2.2. Electrochemical Performance in Acidic Solution
2.3. Electrochemical Performance in Alkaline Solution
2.4. Structure–Performance Analysis of Ni5P4-NiP2-Ni2P/NC
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Ni(bpy)(NO3)2/g-C3N4/Ni(dmgH)2 Composites
3.3. Synthesis of Nitrogen-Doped Carbon-Twined Ni Nanoparticles
3.4. Synthesis of Nitrogen-Doped Carbon/Carbon Nanotube Network Entangled with Nickel Phosphides Nanoparticles
3.5. Characterization Techniques
3.6. Electrochemical Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.-Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-Derived Electrocatalysts for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, W.; Feng, X.; Zhu, L.; Fang, Q.; Li, S.; Wang, L.; Li, Z.; Kou, Z. A Chainmail Effect of Ultrathin N-Doped Carbon Shell on Ni2P Nanorod Arrays for Efficient Hydrogen Evolution Reaction Catalysis. J. Colloid Interface Sci. 2022, 607, 281–289. [Google Scholar] [CrossRef] [PubMed]
- El-Refaei, S.M.; Russo, P.A.; Pinna, N. Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS Appl. Mater. Interfaces 2021, 13, 22077–22097. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Chen, Y.; Huang, Z.; Su, J.; Diao, Z.; Guo, L. Composition-Dependent Catalytic Activities of Noble-Metal-Free NiS/Ni3S4 for Hydrogen Evolution Reaction. J. Phys. Chem. C 2016, 120, 14581–14589. [Google Scholar] [CrossRef]
- Li, Y.; Dai, T.; Wu, Q.; Lang, X.; Zhao, L.; Jiang, Q. Design Heterostructure of NiS-NiS2 on NiFe Layered Double Hydroxide with Mo Doping for Efficient Overall Water Splitting. Mater. Today Energy 2022, 23, 100906. [Google Scholar] [CrossRef]
- Wu, X.; Yang, B.; Li, Z.; Lei, L.; Zhang, X. Synthesis of Supported Vertical NiS2 Nanosheets for Hydrogen Evolution Reaction in Acidic and Alkaline Solution. RSC Adv. 2015, 5, 32976–32982. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Q.; Wang, D.; Yang, X.; Sun, X. Self-Supported Nickel Nitride as an Efficient High-Performance Three-Dimensional Cathode for the Alkaline Hydrogen Evolution Reaction. Electrochim. Acta 2016, 191, 841–845. [Google Scholar] [CrossRef]
- Yu, L.; Song, S.; McElhenny, B.; Ding, F.; Luo, D.; Yu, Y.; Chen, S.; Ren, Z. A Universal Synthesis Strategy to Make Metal Nitride Electrocatalysts for Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 19728–19732. [Google Scholar] [CrossRef]
- Zhai, L.; Benedict Lo, T.W.; Xu, Z.-L.; Potter, J.; Mo, J.; Guo, X.; Tang, C.C.; Edman Tsang, S.C.; Lau, S.P. In Situ Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium. ACS Energy Lett. 2020, 5, 2483–2491. [Google Scholar] [CrossRef]
- Liu, P.; Rodriguez, J.A. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. J. Am. Chem. Soc. 2005, 127, 14871–14878. [Google Scholar] [CrossRef]
- Brazzolotto, D.; Gennari, M.; Queyriaux, N.; Simmons, T.R.; Pécaut, J.; Demeshko, S.; Meyer, F.; Orio, M.; Artero, V.; Duboc, C. Nickel-Centred Proton Reduction Catalysis in a Model of [NiFe] Hydrogenase. Nat. Chem. 2016, 8, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.-S.; Jang, J.-H.; Kim, E.-G.; Chung, Y.-H.; Yoo, S.J.; Lee, Y.-K. The Nature of Active Sites of Ni2P Electrocatalyst for Hydrogen Evolution Reaction. J. Catal. 2015, 326, 92–99. [Google Scholar] [CrossRef]
- Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X. Easily-Prepared Dinickel Phosphide (Ni2P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution. Phys. Chem. Chem. Phys. 2014, 16, 5917–5921. [Google Scholar] [CrossRef] [Green Version]
- He, S.; He, S.; Bo, X.; Wang, Q.; Zhan, F.; Wang, Q.; Zhao, C. Porous Ni2P/C Microrods Derived from Microwave-Prepared MOF-74-Ni and Its Electrocatalysis for Hydrogen Evolution Reaction. Mater. Lett. 2018, 231, 94–97. [Google Scholar] [CrossRef]
- Yan, L.; Dai, P.; Wang, Y.; Gu, X.; Li, L.; Cao, L.; Zhao, X. In Situ Synthesis Strategy for Hierarchically Porous Ni2P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 11642–11650. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, H.; Li, X.; Liu, L.; Xu, H.; Qiu, H.; Wang, Y. Novel Peapod-like Ni2P Nanoparticles with Improved Electrochemical Properties for Hydrogen Evolution and Lithium Storage. Nanoscale 2015, 7, 1446–1453. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Yan, Z.; Chen, X.; Cheng, F.; Weiss, P.S.; Chen, J. Porous Multishelled Ni2P Hollow Microspheres as an Active Electrocatalyst for Hydrogen and Oxygen Evolution. Chem. Mater. 2017, 29, 8539–8547. [Google Scholar] [CrossRef]
- Liu, C.; Gong, T.; Zhang, J.; Zheng, X.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Engineering Ni2P-NiSe2 Heterostructure Interface for Highly Efficient Alkaline Hydrogen Evolution. Appl. Catal. B Environ. 2020, 262, 118245. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Nguyen, V.-H.; Pham, L.M.T.; Vu, T.Y. Three-Dimensional Ni2P-MoP2 Mesoporous Nanorods Array as Self-Standing Electrocatalyst for Highly Efficient Hydrogen Evolution. Int. J. Hydrogen Energy 2020, 45, 15063–15075. [Google Scholar] [CrossRef]
- Jin, M.; Zhang, X.; Shi, R.; Lian, Q.; Niu, S.; Peng, O.; Wang, Q.; Cheng, C. Hierarchical CoP@Ni2P Catalysts for pH-Universal Hydrogen Evolution at High Current Density. Appl. Catal. B Environ. 2021, 296, 120350. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, D.; Fu, Y.; Wen, M.; Jiang, X.; Lv, X.; Li, M.; Gao, L.; Liu, S.; Wang, M.; et al. Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 4689–4696. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Sun, K.; Wang, X.; Liu, Y.; Pan, Y.; Liu, Z.; Cao, D.; Song, Y.; Liu, S.; Liu, C. Three-Dimensional-Networked Ni2P/Ni3S2 Heteronanoflake Arrays for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. Nano Energy 2018, 51, 26–36. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Adv. Funct. Mater. 2021, 31, 2006484. [Google Scholar] [CrossRef]
- Liu, T.; Li, A.; Wang, C.; Zhou, W.; Liu, S.; Guo, L. Interfacial Electron Transfer of Ni2P-NiP2 Polymorphs Inducing Enhanced Electrochemical Properties. Adv. Mater. 2018, 30, 1803590. [Google Scholar] [CrossRef]
- Hong, W.; Lv, C.; Sun, S.; Chen, G. Fabrication and Study of the Synergistic Effect of Janus Ni2P/Ni5P4 Embedded in N-Doped Carbon as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Catal. Sci. Technol. 2020, 10, 1023–1029. [Google Scholar] [CrossRef]
- Ding, G.; Zhang, Y.; Dong, J.; Xu, L. Fabrication of Ni2P/Ni5P4 Nanoparticles Embedded in Three-Dimensional N-Doped Graphene for Acidic Hydrogen Evolution Reaction. Mater. Lett. 2021, 299, 130071. [Google Scholar] [CrossRef]
- Wang, X.; Kolen’ko, Y.V.; Bao, X.-Q.; Kovnir, K.; Liu, L. One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angew. Chem. Int. Ed. 2015, 54, 8188–8192. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Ma, L.; Guo, Y.; Sun, J.; Zhang, N.; Jiang, R. Water-Induced Formation of Ni2P-Ni12P5 Interfaces with Superior Electrocatalytic Activity toward Hydrogen Evolution Reaction. Small 2021, 17, 2006770. [Google Scholar] [CrossRef]
- Shi, H.; Yu, Q.; Liu, G.; Hu, X. Promoted Electrocatalytic Hydrogen Evolution Performance by Constructing Ni12P5-Ni2P Heterointerfaces. Int. J. Hydrogen Energy 2021, 46, 17097–17105. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, D.; Zheng, Y.; Vasileff, A.; Qiao, S.-Z. Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catal. 2018, 8, 6707–6732. [Google Scholar] [CrossRef]
- Cai, W.; Liu, W.; Sun, H.; Li, J.; Yang, L.; Liu, M.; Zhao, S.; Wang, A. Ni5P4-NiP2 Nanosheet Matrix Enhances Electron-Transfer Kinetics for Hydrogen Recovery in Microbial Electrolysis Cells. Appl. Energy 2018, 209, 56–64. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Ji, Y.; Yang, J.; Fan, K.; Ma, X.; Wang, C.; Shu, R.; Chen, Y. Surface Engineering Induced Hierarchical Porous Ni12P5-Ni2P Polymorphs Catalyst for Efficient Wide pH Hydrogen Production. Appl. Catal. B Environ. 2021, 282, 119609. [Google Scholar] [CrossRef]
- Yan, Y.; Lin, J.; Bao, K.; Xu, T.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Free-Standing Porous Ni2P-Ni5P4 Heterostructured Arrays for Efficient Electrocatalytic Water Splitting. J. Colloid Interface Sci. 2019, 552, 332–336. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, W.; Liu, D.; Liu, Y.; Liu, C. Carbon Nanotubes Decorated with Nickel Phosphide Nanoparticles as Efficient Nanohybrid Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 13087–13094. [Google Scholar] [CrossRef]
- Cong, Y.; Huang, S.; Mei, Y.; Li, T.-T. Metal-Organic Frameworks-Derived Self-Supported Carbon-Based Composites for Electrocatalytic Water Splitting. Chem. Eur. J. 2021, 27, 15866–15888. [Google Scholar] [CrossRef]
- Miao, M.; Hou, R.; Liang, Z.; Qi, R.; He, T.; Yan, Y.; Qi, K.; Liu, H.; Feng, G.; Xia, B.Y. Chainmail Catalyst of Ultrathin P-Doped Carbon Shell-Encapsulated Nickel Phosphides on Graphene towards Robust and Efficient Hydrogen Generation. J. Mater. Chem. A 2018, 6, 24107–24113. [Google Scholar] [CrossRef]
- Chen, L.; Wu, P.; Yang, S.; Qian, K.; Sun, W.; Wei, W.; Xu, Y.; Xie, J. Fabrication of CNTs Encapsulated Nickel-Nickel Phosphide Nanoparticles on Graphene for Remarkable Hydrogen Evolution Reaction Performance. J. Electroanal. Chem. 2019, 846, 113142. [Google Scholar] [CrossRef]
- Lan, W.; Li, D.; Wang, W.; Liu, Z.; Chen, H.; Xu, Y. Multi-Walled Carbon Nanotubes Reinforced Nickel Phosphide Composite: As an Efficient Electrocatalyst for Hydrogen Evolution Reaction by One-Step Powder Sintering. Int. J. Hydrogen Energy 2020, 45, 412–423. [Google Scholar] [CrossRef]
- Ren, J.-T.; Chen, L.; Wang, Y.-S.; Tian, W.-W.; Gao, L.-J.; Yuan, Z.-Y. FeNi Nanoalloys Encapsulated in N-Doped CNTs Tangled with N-Doped Carbon Nanosheets as Efficient Multifunctional Catalysts for Overall Water Splitting and Rechargeable Zn-Air Batteries. ACS Sustain. Chem. Eng. 2020, 8, 223–237. [Google Scholar] [CrossRef]
- Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and Photoelectrocatalytic Water Splitting by Porous g-C3N4 Nanosheets for Hydrogen Generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665. [Google Scholar] [CrossRef]
- Cao, S.-W.; Yuan, Y.-P.; Barber, J.; Loo, S.C.J.; Xue, C. Noble-Metal-Free g-C3N4/Ni(dmgH)2 Composite for Efficient Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Appl. Surf. Sci. 2014, 319, 344–349. [Google Scholar] [CrossRef]
- Yan, X.; Gu, M.; Wang, Y.; Xu, L.; Tang, Y.; Wu, R. In-Situ Growth of Ni Nanoparticle-Encapsulated N-Doped Carbon Nanotubes on Carbon Nanorods for Efficient Hydrogen Evolution Electrocatalysis. Nano Res. 2020, 13, 975–982. [Google Scholar] [CrossRef]
- Zhong, H.; Estudillo-Wong, L.A.; Gao, Y.; Feng, Y.; Alonso-Vante, N. Cobalt-Based Multicomponent Oxygen Reduction Reaction Electrocatalysts Generated by Melamine Thermal Pyrolysis with High Performance in an Alkaline Hydrogen/Oxygen Microfuel Cell. ACS Appl. Mater. Interfaces 2020, 12, 21605–21615. [Google Scholar] [CrossRef]
- Chang, J.; Zang, S.; Li, J.; Wu, D.; Lian, Z.; Xu, F.; Jiang, K.; Gao, Z. Nitrogen-Doped Porous Carbon Encapsulated Nickel Iron Alloy Nanoparticles, One-Step Conversion Synthesis for Application as Bifunctional Catalyst for Water Electrolysis. Electrochim. Acta 2021, 389, 138785. [Google Scholar] [CrossRef]
- Farooq, U.; Ahmed, J.; Alshehri, S.M.; Ahmad, T. High-Surface-Area Sodium Tantalate Nanoparticles with Enhanced Photocatalytic and Electrical Properties Prepared through Polymeric Citrate Precursor Route. ACS Omega 2019, 4, 19408–19419. [Google Scholar] [CrossRef]
- Farooq, U.; Phul, R.; Alshehri, S.M.; Ahmed, J.; Ahmad, T. Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Sci. Rep. 2019, 9, 4488. [Google Scholar] [CrossRef] [Green Version]
- Farooq, U.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Self-Assembled Interwoven Nanohierarchitectures of NaNbO3 and NaNb1-xTaxO3 (0.05 ≤ x ≤ 0.20): Synthesis, Structural Characterization, Photocatalytic Applications, and Dielectric Properties. ACS Omega 2022, 7, 16952–16967. [Google Scholar] [CrossRef]
- Kondo, T.; Casolo, S.; Suzuki, T.; Shikano, T.; Sakurai, M.; Harada, Y.; Saito, M.; Oshima, M.; Trioni, M.I.; Tantardini, G.F.; et al. Atomic-Scale Characterization of Nitrogen-Doped Graphite: Effects of Dopant Nitrogen on the Local Electronic Structure of the Surrounding Carbon Atoms. Phys. Rev. B 2012, 86, 035436. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Jia, H.; Fei, B.; Ha, Y.; Li, H.; Guo, Y.; Liu, M.; Wu, R. Charge Transfer Engineering via Multiple Heteroatom Doping in Dual Carbon-Coupled Cobalt Phosphides for Highly Efficient Overall Water Splitting. Appl. Catal. B Environ. 2020, 268, 118404. [Google Scholar] [CrossRef]
- Zhou, G.; Ma, Y.; Wu, X.; Lin, Y.; Pang, H.; Zhang, M.; Xu, L.; Tian, Z.; Tang, Y. Electronic Modulation by N Incorporation Boosts the Electrocatalytic Performance of Urchin-Like Ni5P4 Hollow Microspheres for Hydrogen Evolution. Chem. Eng. J. 2020, 402, 126302. [Google Scholar] [CrossRef]
- Li, Y.; Cai, P.; Ci, S.; Wen, Z. Strongly Coupled 3D Nanohybrids with Ni2P/Carbon Nanosheets as pH-Universal Hydrogen Evolution Reaction Electrocatalysts. ChemElectroChem 2017, 4, 340–344. [Google Scholar] [CrossRef]
- He, S.; He, S.; Gao, F.; Bo, X.; Wang, Q.; Chen, X.; Duan, J.; Zhao, C. Ni2P@Carbon Core-Shell Nanorod Array Derived from ZIF-67-Ni: Effect of Phosphorization Temperature on Morphology, Structure and Hydrogen Evolution Reaction Performance. Appl. Surf. Sci. 2018, 457, 933–941. [Google Scholar] [CrossRef]
- Tian, T.; Ai, L.; Jiang, J. Metal-Organic Framework-Derived Nickel Phosphides as Efficient Electrocatalysts toward Sustainable Hydrogen Generation from Water Splitting. RSC Adv. 2015, 5, 10290–10295. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-Phase Perovskite Oxide with Super-Exchange Induced Atomic-Scale Synergistic Active Centers Enables Ultrafast Hydrogen Evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous Graphitic Carbon Nitride Synthesized via Direct Polymerization of Urea for Efficient Sunlight-Driven Photocatalytic Hydrogen Production. Nanoscale 2012, 4, 5300–5303. [Google Scholar] [CrossRef]
- Ji, X.; Wang, K.; Zhang, Y.; Sun, H.; Zhang, Y.; Ma, T.; Ma, Z.; Hu, P.; Qiu, Y. MoC Based Mott-Schottky Electrocatalyst for Boosting the Hydrogen Evolution Reaction Performance. Sustain. Energy Fuels 2020, 4, 407–416. [Google Scholar] [CrossRef]
- Wang, X.; Kolen’ko, Y.V.; Liu, L. Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P-Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution. Chem. Commun. 2015, 51, 6738–6741. [Google Scholar] [CrossRef]
- Huo, S.; Yang, S.; Niu, Q.; Yang, F.; Song, L. Synthesis of Functional Ni2P/CC Catalyst and the Robust Performances in Hydrogen Evolution Reaction and Nitrate Reduction. Int. J. Hydrogen Energy 2020, 45, 4015–4025. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, X.; Han, J.; Zhong, J.; Zhang, T.; Yao, T.; Xu, C.; Gao, T.; Xi, S.; Liang, C.; et al. Phase-Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media. Angew. Chem. Int. Ed. 2021, 60, 259–267. [Google Scholar] [CrossRef]
- Chen, A.; Fu, L.; Xiang, W.; Wei, W.; Liu, D.; Liu, C. Facile Synthesis of Ni5P4 Nanosheets/Nanoparticles for Highly Active and Durable Hydrogen Evolution. Int. J. Hydrogen Energy 2021, 46, 11701–11710. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, M.; Song, X.; Zhong, H.; Estudillo-Wong, L.A.; Gao, Y.; Jin, T.; Huang, J.; Wang, Y.; Yang, J.; Feng, Y. Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions. Catalysts 2022, 12, 1650. https://doi.org/10.3390/catal12121650
Pei M, Song X, Zhong H, Estudillo-Wong LA, Gao Y, Jin T, Huang J, Wang Y, Yang J, Feng Y. Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions. Catalysts. 2022; 12(12):1650. https://doi.org/10.3390/catal12121650
Chicago/Turabian StylePei, Miaomiao, Xiaowei Song, Haihong Zhong, Luis Alberto Estudillo-Wong, Yingchun Gao, Tongmengyao Jin, Ju Huang, Yali Wang, Jun Yang, and Yongjun Feng. 2022. "Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions" Catalysts 12, no. 12: 1650. https://doi.org/10.3390/catal12121650
APA StylePei, M., Song, X., Zhong, H., Estudillo-Wong, L. A., Gao, Y., Jin, T., Huang, J., Wang, Y., Yang, J., & Feng, Y. (2022). Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions. Catalysts, 12(12), 1650. https://doi.org/10.3390/catal12121650