Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation
Abstract
1. Introduction
2. Results and Discussion
2.1. Paraben Degradation
2.2. Methylisothiazolinone Degradation
2.3. Degradation of Parabens with MIT
2.4. Evidence of the Fe-MIT Complex Formation
3. Materials and Methods
3.1. Materials
3.2. Reactions
3.3. Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Jablonska, E.; Ratajczak-Wrona, W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. Environ. Res. 2021, 198, 110488. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-H.; Yu, B.; Zhang, Z.-F.; Ma, W.-L. Occurrence of parabens in outdoor environments: Implications for human exposure assessment. Environ. Pollut. 2021, 282, 117058. [Google Scholar] [CrossRef] [PubMed]
- Vale, F.; Sousa, C.A.; Sousa, H.; Santos, L.; Simoes, M. Parabens as emerging contaminants: Environmental persistence, current practices and treatment processes. J. Clean. Prod. 2022, 347, 131244. [Google Scholar] [CrossRef]
- Amat, A.M.; Arques, A.; Lopez-Perez, M.F.; Nacher, M.; Palacios, S. Effect of Methylisothiazolinone on Biological Treatment: Efficiency of SBRs and Bioindicative Studies. Environ. Eng. Sci. 2015, 32, 479–485. [Google Scholar] [CrossRef]
- Silva, V.; Silva, C.; Soares, P.; Garrido, E.M.; Borges, F.; Garrido, J. Isothiazolinone Biocides: Chemistry, Biological and Toxicity Profiles. Molecules 2020, 25, 991. [Google Scholar] [CrossRef]
- Abad-Gil, L.; Lucas-Sanchez, S.; Jesus Gismera, M.; Teresa Sevilla, M.; Procopio, J.R. Determination of paraben-, isothiazolinone- and alcohol-type preservatives in personal care products by HPLC with dual (diode-array and fluorescence) detection. Microchem. J. 2021, 160, 105613. [Google Scholar] [CrossRef]
- Pastor-Nieto, M.A.; Alcantara-Nicolas, F.; Melgar-Molero, V.; Perez-Mesonero, R.; Vergara-Sanchez, A.; Martin-Fuentes, A.; Gonzalez-Munoz, P.; de Eusebio-Murillo, E. Preservatives in Personal Hygiene and Cosmetic Products, Topical Medications and Household cleaners Spain. Actas Dermo-Sifiliogr. 2017, 108, 758–770. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Yu, X.; Sui, Q.; Lyu, S.; Zhao, W.; Liu, J.; Cai, Z.; Yu, G.; Barcelo, D. Municipal Solid Waste Landfills: An Underestimated Source of Pharmaceutical and Personal Care Products in the Water Environment. Environ. Sci. Technol. 2020, 54, 9757–9768. [Google Scholar] [CrossRef]
- Marin, M.L.; Lhiaubet-Vallet, V.; Santos-Juanes, L.; Soler, J.; Gomis, J.; Argues, A.; Amat, A.M.; Miranda, M.A. A photophysical approach to investigate the photooxidation mechanism of pesticides: Hydroxyl radical versus electron transfer. Appl. Catal. B-Environ. 2011, 103, 48–53. [Google Scholar] [CrossRef]
- Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett. 2018, 16, 947–967. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Ahile, U.J.; Wuana, R.A.; Itodo, A.U.; Sha’Ato, R.; Dantas, R.F. A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies. Sci. Total Environ. 2020, 710, 134872. [Google Scholar] [CrossRef]
- Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl. Catal. B-Environ. 2017, 209, 358–371. [Google Scholar] [CrossRef]
- Santos-Juanes, L.; Amat, A.M.; Arques, A. Strategies to Drive Photo-Fenton Process at Mild Conditions for the Removal of Xenobiotics from Aqueous Systems. Curr. Org. Chem. 2017, 21, 1074–1083. [Google Scholar] [CrossRef]
- Soriano-Molina, P.; Miralles-Cuevas, S.; Oller, I.; Garcia Sanchez, J.L.; Sanchez Perez, J.A. Contribution of temperature and photon absorption on solar photo-Fenton mediated by Fe3+-NTA for CEC removal in municipal wastewater. Appl. Catal. B-Environ. 2021, 294, 120251. [Google Scholar] [CrossRef]
- Klamerth, N.; Malato, S.; Agueera, A.; Fernandez-Alba, A. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Res. 2013, 47, 833–840. [Google Scholar] [CrossRef]
- Tolardo, V.; Garcia-Ballesteros, S.; Santos-Juanes, L.; Vercher, R.; Amat, A.M.; Arques, A.; Laurenti, E. Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action. Water Air Soil Pollut. 2019, 230, 140. [Google Scholar] [CrossRef]
- Caram, B.; Garcia-Ballesteros, S.; Santos-Juanes, L.; Argues, A.; Garcia-Einschlag, F.S. Humic like substances for the treatment of scarcely soluble pollutants by mild photo-Fenton process. Chemosphere 2018, 198, 139–146. [Google Scholar] [CrossRef]
- Garcia Ballesteros, S.; Costante, M.; Vicente, R.; Mora, M.; Amat, A.M.; Arques, A.; Carlos, L.; Garcia Einschlag, F.S. Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: A fluorescence EEM-PARAFAC study. Photochem. Photobiol. Sci. 2017, 16, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Chen, Y.; Hu, J.; Lu, G.; Zeng, L.; Choi, W.; Zhu, M. Complexes of Fe(III)-organic pollutants that directly activate Fenton-like processes under visible light. Appl. Catal. B-Environ. 2021, 283, 119663. [Google Scholar] [CrossRef]
- Sciscenko, I.; Mora, M.; Mico, P.; Escudero-Onate, C.; Oller, I.; Arques, A. EEM-PARAFAC as a convenient methodology to study fluorescent emerging pollutants degradation: (fluoro)quinolones oxidation in different water matrices. Sci. Total Environ. 2022, 852, 158338. [Google Scholar] [CrossRef]
- Zuniga-Benitez, H.; Penuela, G.A. Methylparaben removal using heterogeneous photocatalysis: Effect of operational parameters and mineralization/biodegradability studies. Environ. Sci. Pollut. Res. 2017, 24, 6022–6030. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Photocatalytic removal of parabens and halogenated products in wastewater: A review. Environ. Chem. Lett. 2021, 19, 3789–3819. [Google Scholar] [CrossRef]
- Tay, K.S.; Rahman, N.A.; Bin Abas, M.R. Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation. Chemosphere 2010, 81, 1446–1453. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A. Removal of Emerging Contaminants by Fenton and UV-Driven Advanced Oxidation Processes. Water Air Soil Pollut. 2015, 226, 273. [Google Scholar] [CrossRef]
- Zuniga-Benitez, H.; Munoz-Calderon, A.; Penuela, G.A. Removal of a mix of benzophenones and parabens using solar photo-Fenton and a cylinder parabolic collector in aqueous solutions. J. Environ. Chem. Eng. 2018, 6, 7347–7357. [Google Scholar] [CrossRef]
- Yang, Z.-W.; Wang, W.-L.; Lee, M.-Y.; Wu, Q.-Y.; Guan, Y.-T. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. Environ. Pollut. 2022, 294, 118626. [Google Scholar] [CrossRef]
- Russo, D.; Cochran, K.H.; Westerman, D.; Puma, G.L.; Marotta, R.; Andreozzi, R.; Richardson, S.D. Ultrafast photodegradation of isoxazole and isothiazolinones by UV254 and UV254/H2O2 photolysis in a microcapillary reactor. Water Res. 2020, 169, 115203. [Google Scholar] [CrossRef]
- Huang, N.; Shao, W.-T.; Wang, W.-L.; Wang, Q.; Chen, Z.-Q.; Wu, Q.-Y.; Hu, H.-Y. Removal of methylisothiazolinone biocide from wastewater by VUV/UV advanced oxidation process: Kinetics, mechanisms and toxicity. J. Environ. Manag. 2022, 315, 115107. [Google Scholar] [CrossRef] [PubMed]
- Gomis, J.; Carlos, L.; Prevot, A.B.; Teixeira, A.C.S.C.; Mora, M.; Amat, A.M.; Vicente, R.; Argues, A. Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catal. Today 2015, 240, 39–45. [Google Scholar] [CrossRef]
- Moreno-Andres, J.; Valles, I.; Garcia-Negueroles, P.; Santos-Juanes, L.; Arques, A. Enhancement of Iron-Based Photo-Driven Processes by the Presence of Catechol Moieties. Catalysts 2021, 11, 372. [Google Scholar] [CrossRef]
- Perron, N.R.; Wang, H.C.; DeGuire, S.N.; Jenkins, M.; Lawson, M.; Brumaghim, J.L. Kinetics of iron oxidation upon polyphenol binding. Dalton Trans. 2010, 39, 9982–9987. [Google Scholar] [CrossRef]
Compound | Fenton at pH 2.8 | Photo-Fenton at pH 2.8 | Photo-Fenton at pH 5 | Photo-Fenton at pH 5 with HLS |
---|---|---|---|---|
Methylparaben | 0.134 | 0.223 | 0.0025 | 0.0095 |
Ethylparaben | 0.177 | 0.236 | 0.0023 | 0.0109 |
Propylparaben | 0.181 | 0.237 | 0.0026 | 0.0116 |
Isobutylparaben | 0.165 | 0.238 | 0.0024 | 0.0119 |
Benzylparaben | 0.230 | 0.311 | 0.0038 | 0.0167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte-Alvarado, V.; Santos-Juanes, L.; Arques, A.; Amat, A.M. Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation. Catalysts 2022, 12, 1390. https://doi.org/10.3390/catal12111390
Duarte-Alvarado V, Santos-Juanes L, Arques A, Amat AM. Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation. Catalysts. 2022; 12(11):1390. https://doi.org/10.3390/catal12111390
Chicago/Turabian StyleDuarte-Alvarado, Victoria, Lucas Santos-Juanes, Antonio Arques, and Ana María Amat. 2022. "Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation" Catalysts 12, no. 11: 1390. https://doi.org/10.3390/catal12111390
APA StyleDuarte-Alvarado, V., Santos-Juanes, L., Arques, A., & Amat, A. M. (2022). Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation. Catalysts, 12(11), 1390. https://doi.org/10.3390/catal12111390