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Abstract: Advanced two-dimensional (2D) ultrathin nanomaterials’ unique structural and electronic
properties and their applications in the photo-, photoelectro-, and electro-catalysis fields present
timely topics related to the development of sustainable energy. This critical review briefly summarizes
the state-of-the-art progress on 2D ultrathin nanomaterials. In this mini review, we started with
the synthesis of 2D ultrathin nanomaterials. Then, various strategies for tailoring the electronic
and configuration structures of these nanomaterials in the new energy catalysis field are surveyed,
where the emphasis is mainly on structure-activity relationships. The advancements of versatile
2D ultrathin nanomaterials in the fields of hydrogen evolution, carbon dioxide conversion, and
dinitrogen fixation for sustainable energy were also discussed. Finally, the existing challenges and
future research directions in this promising field are presented.
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1. Introduction

With the increasing consumption of fossil fuels and the expediting process of in-
dustrialization in recent decades, the aggravated environmental damage and energy
problems have forced the urgent need to develop sustainable and green energy [1–3].
Photo/electrochemical energy conversion technology, including hydrogen evolution from
water splitting, carbon dioxide conversion, and dinitrogen fixation, etc. is considered to
be a practical measure for renewable fuel generation with the merits of mild, economi-
cal, and low-emission characteristics [4–8]. However, the sluggish redox kinetics of the
photo/electrocatalytic systems leads to a suboptimal total energy conversion efficiency, es-
pecially from further industrial-scale applications. As a consequence, the reasonable design
of highly efficient catalysts is of great importance to enhance the overall performance.

The groundbreaking work on graphene in 2004 indicates that enormous efforts have
been devoted to exploring the two-dimensional (2D) ultrathin nanomaterial [9]. The nano-
materials of this type are a feature of the atomic thickness (typically less than 5 nm), which
has attracted extensive research interest in the fields of optoelectronics, catalysis, and
energy storage [10–12]. When reducing the thickness of 2D bulk materials to the single
or few atoms scale, the local atomic structure will change, including bond angle, bond
length, coordination number, and surface atom disorder degree. Furthermore, thanks to the
ultrathin structures, drastic increased specific surface area, mechanical flexibility, charge
migration rate, and intrinsic quantum confinement effect make 2D ultrathin nanomaterials
exhibit diversified physical and chemical properties [13]. For example, the interfacial elec-
tron transfer resistance in electrochemistry would be greatly decreased via strengthening
the close contact with the electrode substrate due to the flexible feature of 2D ultrathin
nanomaterials. Besides, high transport mobility of the in-plane electrons would favor
an expeditious electron migration process, thus boosting the electrocatalytic activity. On
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the other hand, highly exposed reactive sites arising from the high specific surface area
ensure sufficient adsorption and activation centers for substrate molecules. The large
surface-to-volume ratio also favors the elevated solar light capture ability and charge
carrier migration and transfer rates from the interior to the surface. Meanwhile, the plenti-
ful coordination-unsaturated atoms of ultrathin nanosheets could serve as surface-active
sites as well, which induces the enhanced catalytic activity. In previous reported litera-
tures, Sun et al. exhaustively summarized the characterizations on the factors affecting
the active sites of 2D ultrathin materials, including the techniques of X-ray absorption
fine structure spectroscopy, high-resolution transmission electron microscope, positron
annihilation spectroscopy, and electron spin resonance [14]. In addition to 2D materials,
single-atom catalysts have gradually become an emerging frontier in the field of catalysis.
Wang et al. focused on the concept of a new category of catalysts with the integration of
2D materials and single-atom catalysts for catalysis applications [15]. Consequently, 2D
nanomaterials with an ultrathin thickness are one of the most potential candidates for
fabricating highly efficient energy conversion systems, as presented in Figure 1. A review
on the steerable fabrication of 2D ultrathin nanomaterials and their activity optimization
strategies for the energy-related photo/electrochemical applications is highly desired to
impel the leap-forward development of this emerging field.
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Figure 1. Schematic overview of 2D ultrathin nanomaterials topics covered in this review, including
the fabrication approaches, modification strategies, and sustainable energy applications.

In this mini review, we briefly summarize the top-down approaches and bottom-up ap-
proaches for the synthesis of 2D ultrathin nanomaterials. In addition, several modification
strategies for tuning the catalytic performance in the applications for new energy catalysis
are also discussed. Furthermore, the existing challenges and future research directions in
this promising field are also presented.

2. The Synthesis of 2D Ultrathin Nanomaterials

A principal classification of 2D ultrathin nanomaterials for photo/electrochemical
energy catalysis can be classified as the following types: layered double hydroxides (LDH),
transition metal dichalcogenides (TMDCs), transition metal phosphides (TMPs), metal-
organic frameworks (MOFs), metal carbides and nitrides (MXenes), oxyhalides, metal-free
catalysts, and others [16–21]. Broad attention has been paid to exploring the universal
strategies for the preparation of high-quality 2D ultrathin nanosheet materials. Generally,
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the most frequently used synthetic methods include physical vapor deposition (PVD), chem-
ical vapor deposition (CVD), liquid/gas exfoliation, surfactant self-assembly, mechanical
cleavage, template-directing, chemical etching, etc.

PVD synthesis, with the advantage of low power consumption, high throughput,
thickness uniformity, and repeatability, has inherent qualities in the large-scale process-
ing of van der Waals materials. Zhou et al. used the PVD method under atmospheric
pressure to grow high-quality monolayered α-In2Se3 on the SiO2/Si substrate in a short
amount of time, heating the In2Se3 powder to 850 ◦C in 30 min (Figure 2a) [22]. However,
harsh requirements for the synthetic temperature, type of nanomaterials, and experimental
environment limit the application scenarios of the PVD method, even for large-scale appli-
cations. Apart from the top-down approach of PVD, the CVD method is also regarded as
an effective bottom-up approach for the preparation of high-quality ultrathin nanomate-
rials, such as MoTe2, MoS2, CdS, and so on [23–25]. Similarly, the low catalyst yield and
specific fabrication requirements also greatly weakened the application potential of CVD
technology in the preparation of non-layered 2D ultrathin materials. In addition to the
PVD method, mechanical cleavage, chemical etching, and liquid/gas exfoliation methods
are the other approaches for the exfoliation of bulk materials with interlayer van der Waals
force. Lukowski et al. reported metallic WS2 nanosheets via facile chemical exfoliation from
WS2 nanostructures synthesized by CVD, including a simple and fast microwave-assisted
intercalation reaction method [26]. Yang et al. chose isopropanol as the dispersion medium
to produce few-layered carbon nitride nanosheets with a thickness of around 2 nm via a
simple liquid phase exfoliation (Figure 2b) [27]. Except for the graphitic carbon nitride, a
series of catalysts such as black phosphorus and molybdenum disulfide established that
the liquid exfoliation process had the merits of facile control, environment-friendliness,
and an easy scale-up. However, extremely low yields of monolayers severely restricted the
application of the liquid exfoliation method. Recently, Zhu et al. strove for an efficient and
scalable synthesis of ultrathin hexagonal boron nitride nanosheets via a combination of
high temperature gas exfoliation and cryogenic liquid nitrogen gasification (Figure 2c) [28].
The thickness of the obtained ultrathin boron nitride nanosheets mainly centered around
1–5 layers after 10 repeated cycles, and the yield could be maintained at 16–20% by weight.
This novel thermal expansion triggered gas exfoliation method effectively improved the
defects of liquid phase exfoliation.

Differing from the bulk materials with interlayer van der Waals force, it is difficult to
directly obtain the ultrathin nanosheet structure of the non-layered structural materials
through top-down approaches due to the anisotropy of crystal growth. Hence, bottom-up
strategies have been put forward for the fabrication of 2D ultrathin nanosheets by assem-
bling small building blocks, such as self-assembly strategies, template-based approaches,
and surfactant self-assembly strategies, etc. [29–32]. These strategies are more control-
lable, more uniform, and higher yield, showing broader prospects of material preparation.
According to a “template-assisted oriented growth” strategy, Cheng and his co-workers
created freestanding transition-metal oxide α-Fe2O3 nanosheets with a half-unit-cell thick-
ness, as displayed in Figure 3 [33]. During the synthesis process, CuO nanoplate served as
the base template for the growth of Fe hydroxide nanosheets. After the template etching
treatment, the half-unit-cell α-Fe2O3 nanosheets could be achieved by further heating
treated dehydrogenation. The surfactant self-assembly approach was regarded as an-
other important strategy for building 2D ultrathin nanomaterials. The monolayer Bi2WO6
could be configured in two ways: sandwich substructure ([BiO]+-[WO4]2−-[BiO]+) and
non-sandwich substructure ([Bi2O2]2+-[WO4]2−). Zhou et al. developed a cetyltrimethy-
lammonium bromide (CTAB)-assisted bottom-up route for the fabrication of monolayer
Aurivillius oxide Bi2WO6 photocatalyst with a sandwich substructure (Figure 4) [34]. The
Br− ions from CTAB firmly bonded to the monolayer surface, making the surface negatively
charged. Furthermore, the stack of monolayers was impeded by the hydrophobic chains of
CTA+ ions and Coulomb repulsion forces. Moreover, our group reported a facile polyvinyl
pyrrolidone (PVP) surfactant-assisted solvothermal method for the controllable formation
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of a series of bismuth oxyhalide (BiOX, X = Cl, Br, I) nanosheets with atomic level thick-
ness [35–38]. Thanks to the repulsive force among polyvinyl groups, the passivation layers
around BiOX hamper the crystal growth along the c-axis, so the ultrathin structure could
be obtained. According to these targeted preparation strategies, assorted nanomaterials
with ultrathin, even single-layer structures, are achievable to be further synthesized.
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ultrathin nanosheets triggered by thermal expansion [28]. Copyright 2016, Wiley-VCH.
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50 nm (e,h), 5 nm (insets in (e)) and 1 nm (insets in (h)) [34]. Copyright 2015, Nature Publishing Group.

3. Regulations on Ultrathin Nanomaterials for Energy Catalysis

2D ultrathin nanomaterials have attracted growing attention in sustainable energy
development for their exceptional features of captivating electrical conductivity, large
surface area, and high mechanical flexibility. To further enhance the catalytic activities for
sustainable energy production, various strategies such as surface modification, vacancy en-
gineering, alloying, heterojunction, elements doping, and single atoms anchoring have been
adopted to modulate the optical, electronic, and chemical characteristics of 2D ultrathin
nanosheet materials [39–43].

Directly converting CO2 molecules into high value-added fuels and chemical feedstock
by using sustainable solar energy and renewable electricity is a promising clean approach
to address the energy crisis and greenhouse effect. However, the extremely high thermo-
dynamic stability and C=O bond dissociation energy (>750 kJ/mol) of the CO2 molecule
seriously limits the conversion efficiency and selectivity for the vast majority of bulk ma-
terials. 2D ultrathin structural catalysts have aroused a growing interest for their unique
surface and electronic properties. Recently, different modification strategies have been
employed for the construction of highly efficient CO2 reduction reaction systems. Tang et al.
developed a graphdiyne-decorated bismuth subcarbonate (marked as BOC@GDY) catalyst
for CO2 electrochemical reduction (Figure 5) [44]. The electron-rich nature of GDY can re-
duce the reduction potential of Bi(III) to Bi(0), allowing more active sites for CO2 reduction.
Relative to bulk BOC and BOC, the smaller Tafel slope and Nyquist plot of BOC@GDY
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indicated that a smaller charge transfer resistance and faster reaction kinetics were realized.
The electrochemical CO2 reduction results in Figure 5g revealed that BOC@GDY had a high
formate selectivity (>91%) over a wide potential window of −0.65 to −1.1 V vs. reversible
hydrogen electrode (RHE). Zhao et al. reported a surface reconstruction phenomenon on
defect-rich ultrathin palladium nanosheets (donated as Pd NSs) during an aqueous CO2
electrochemical reduction reaction [45]. A series of Pd NSs with different sizes in diagonal
length (20, 50, and 120 nm) were studied. Interestingly, hexagonal Pd NSs with dominant
(111) facet transformed into an irregular, wrinkled structure, accompanying by more ex-
posed (100) facet. The resulting structural transformation increased the surface density of
active sites and reduced the CO binding strength on the Pd surface, boosting the yield of
CO from CO2 electroreduction. In addition, loading isolated metal atoms on the ultrathin
nanosheets was also an effective method for the improvement of CO2 reduction activity
due to the high metal utilization and numerous catalytically active sites. Si et al. employed
a complex-exchange strategy to successfully anchor Au single atoms to ultrathin ZnIn2S4
nanosheets (Au/ZnIn2S4), enabling the precise tuning of CH4 yield and selectively [46].
Relative to Au nanoparticles, Au single atoms possess abundant low-coordinated sites,
which is beneficial for the adsorption and activation of CO2 molecules, interfacial charge
transfer, as well as the inhibition of the intermediate *CO desorption and stabilization of
intermediate *CH3 (Figure 6). Under visible light irradiation (λ > 420 nm), Au/ZnIn2S4
catalyst showed that the yield of CH4 was 275 µmol g−1 h−1, and selectivity was up to
77%. These above studies demonstrated that 2D ultrathin nanomaterials were an effective
alternative for building the highly efficient CO2 reduction systems.
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Study for the influence of GDY and the catalytic mechanism of BOC@GDY for ECR. (d) Tafel plots
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over commercial Bi, bulk-BOC, BOC, and BOC@GDY [44]. Copyright 2021, Elsevier.
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Ammonia, an essential component of the global economy, is widely used for the
synthesis of crucial chemicals, including nitrogen fertilizer, pharmaceuticals, synthetics,
etc. Moreover, ammonia is one of the great potential carriers for green hydrogen storage
due to its high energy density, safety, and being non-flammable. It is also easy to liquefy
storage. However, due to the extremely stable N≡N bonds, industrial ammonia production
remains heavily reliant on the harsh Haber-Bosch process, which requires high temperature
and high pressure. It is critical and urgent to develop alternative pathways for artifi-
cial dinitrogen fixation using photo/electrocatalysis under atmospheric pressure. Zhao
et al. demonstrated a simple co-precipitation method for the preparation of MIIMIII-LDH
(MII = Mg, Zn, Ni, Cu; MIII = Al, Cr) nanosheet photocatalysts with oxygen vacancies and
their successful application in photocatalytic nitrogen reduction at ambient temperature
and pressure [47]. In the presence of pure water, the CuCr-LDH ultrathin nanosheet ex-
hibited an extraordinarily high ammonia yield under visible light irradiation. Positron
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annihilation spectroscopy and X-ray absorption fine structure measurements revealed
that oxygen vacancies induced the distortions in the MO6 octahedra of the LDH ultrathin
nanosheets, advancing the improved photocatalytic performance. Density functional the-
ory (DFT) calculations further clarified the structure-activity relationship in the CuCr-LDH
system in terms of oxygen vacancies doping and compressive strain. A newly created
defect level from the unoccupied Cr 3D orbitals likely served as electron-trapping sites
to facilitate electron transfer from LDH to nitrogen. In addition, the electronic structures
of CuCr-LDHs with and without defects were quite different for their mutative surface
composition and structure, which in turn changed their adsorption energy for nitrogen
on the surface of defect-free CuCr-pure, CuCr-VO and CuCr-VO-Strain (VO defined as
oxygen vacancies). The existence of oxygen vacancies and strained bonding in CuCr-LDH
synergistically modulated the bandgap structure and charge transfer behavior, boosting
the nitrogen photoreduction activity. For the investigation of dinitrogen electroreduction,
molybdenum carbide (Mo2C) nanodots embedded in ultrathin carbon nanosheets were
successfully synthesized via a molten salt method. According to the experiments and
DFT calculation results, Cheng et al. considered the increased ammonia yield was mainly
derived from the unique electronic structure and abundant nitrogen adsorption active sites
of Mo2C nanodots, strengthening the cleavage of the nitrogen-nitrogen triple bond and
hydrogenation (Figure 7) [48]. Moreover, a possible evolution path for ammonia synthesis
on Mo2C nanodots was also proposed.
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Hydrogen is a credible candidate for the replacement of fossil fuels and energy feed-
stock for fuel cells. It is desirable to develop sustainable routes, such as electrocatalytic
or photocatalytic processes to produce hydrogen. Among various 2D materials, graphitic
carbon nitride (g-C3N4) material is regarded as a promising catalyst both for photochemi-
cal and electrochemical hydrogen evolution reactions owing to its good light absorption,
suitable energy band structure, easily tunable structure, and high nitrogen content. In
2009, Wang et al. first applied g-C3N4 materials in the research of photo-splitting water for
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hydrogen production [49]. Since then, a research boom in carbon nitride has been launched.
Jin et al. fabricated an efficient 2D/2D g-C3N4 and molybdenum nitride (g-C3N4@MoN)
heterojunction electrocatalyst via an interface engineering strategy for the alkaline hydro-
gen evolution reaction [50]. The formation of dual active sites in g-C3N4@MoN profited by
the unique hybrid structure is relevant to the enhanced electrocatalytic hydrogen evolution
performance, in which N sites from g-C3N4 expedited Had adsorption and Mo atoms from
MoN expedited OHad adsorption, respectively. Furthermore, combining metal oxide, metal
sulfide, and phosphide materials with g-C3N4 ultrathin nanosheets to form heterojunction
is also a valid approach for constructing highly efficient energy conversion systems [51–53].
Besides, Cao and co-workers synthesized WSe2 monolayer nanosheets with intrinsic Se
vacancies using a mechanical exfoliation method, followed by annealing treatment under
different reaction temperatures [54]. The absent Se atoms enabled more exposed basal
planes, enhancing the stabilization of hydrogen atoms on exposed W atoms. In order to
broaden the application of BiOX materials in photocatalytic hydrogen evolution reactions, a
bismuth-rich strategy was employed to modulate the electronic structure of BiOCl ultrathin
nanosheets [55]. A bilayer junction was then established between monolayer MoS2 and
monolayer Bi12O17Cl2 to provide the hydrogen evolution sites (Figure 8a). Simultaneously,
a directional and efficient photogenerated electrons transfer was achieved via the formed
interfacial Bi-S bonds in MoS2/Bi12O17Cl2. MoS2/Bi12O17Cl2 bilayer junction photocatalyst
exhibited an unprecedented hydrogen evolution rate of 33 mmol h−1 g−1 under visible
light irradiation, as shown in Figure 8b.
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4. Summary and Prospects

Developing highly efficient and cost-effective energy conversion systems is a critical
component for advancing energy transformation and building a safe, green, and sustainable
energy system. Recently, 2D ultrathin nanomaterial have been regarded as one of the most
promising candidates for sustainable energy production due to their easily modulated
components and electronic structures, even the outstanding performance in energy and
environment researches. In this review, we have summarized the steerable fabrication of
2D ultrathin nanomaterials through the two main approaches, top-down and bottom-up.
Moreover, the activity optimization strategies for the energy-related photo/electrochemical
applications were also discussed, including surface vacancy engineering, single atoms
loading, alloying, heterojunction construction, surface reconstruction, element doping, etc.
Despite the breakthrough progress, there are several unexplored aspects still need to be
studied, which will have significant scope in future.

A major challenge for the scale-up of ultrathin nanomaterials for industrial appli-
cations is the inability to achieve large-scale production with a highly controllable layer
thickness. The corresponding methods need to be improved to realize the manufacture
and storage of the nanomaterials with an ultrathin structure. The long-term stability and
durability of the catalysts is another core issue that limits practical applications. In addition,
with regard to photocatalysis, the ultrathin nanomaterials tend to agglomerate due to the
presence of a loose powder during the reaction. Immobilizing the nanomaterials onto
suitable substrates, like nickel foam and carbon fiber paper, offers a promising way to
substantially increase ease of use. Moreover, theoretical understanding of the catalytic
mechanisms in 2D ultrathin nanomaterials is still superficial and unclear, especially for
CO2 reduction and dinitrogen fixation systems. Current established model structures are
still not clear to clarify the adsorption and activation of the substrate molecules, multi-
electron transfer process, evolution of intermediates, as well as the dissociation products.
Therefore, more fundamental and deep insight into catalytic mechanism are highly desired
to distinctly reveal the structure-activity relationships in different catalytic systems.
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