Environmentally Friendly Nafion-Catalyzed Synthesis of Substituted 2-Ethyl-3-Methylquinolines from Aniline and Propionaldehyde under Microwave Irradiation
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Information
3.2. General Procedure for the Synthesis of Skeletons 3, 5, 6 and 7
4. Data
4.1. 2-Ethyl-3-methylquinoline (3a)
4.2. 2-Ethyl-8-methoxy-3-methylquinoline (3b)
4.3. 2-Ethyl-7-methoxy-3-methylquinoline (3c)
4.4. 2-Ethyl-6-methoxy-3-methylquinoline (3d)
4.5. 2-Ethyl-3-methyl-8-phenylquinoline (3e)
4.6. 6-Cyclohexyl-2-ethyl-3-methylquinoline (3f)
4.7. 6-Benzyl-2-ethyl-3-methylquinoline (3g)
4.8. 8-(Benzyloxy)-2-ethyl-3-methylquinoline (3h)
4.9. 2-Ethyl-8-fluoro-3-methylquinoline (3i)
4.10. 2-Ethyl-6-fluoro-3-methylquinoline (3j)
4.11. 6-Chloro-2-ethyl-3-methylquinoline (3k)
4.12. 8-Bromo-2-ethyl-3-methylquinoline (3l)
4.13. 6-Bromo-2-ethyl-3-methylquinoline (3m)
4.14. 2-Ethyl-3-methyl-8-(trifluoromethyl)quinoline (3n)
4.15. 2-Ethyl-3-methyl-6-(trifluoromethyl)quinoline (3o)
4.16. 2-Ethyl-3-methylquinoline-8-carbonitrile (3p)
4.17. (2-Ethyl-3-methylquinolin-8-yl)(phenyl)methanone (5a)
4.18. (6-Chloro-2-ethyl-3-methylquinolin-8-yl)(phenyl)methanone (5b)
4.19. (6-Bromo-2-ethyl-3-methylquinolin-8-yl)(phenyl)methanone (5c)
4.20. (2-Ethyl-3,6-dimethylquinolin-8-yl)(phenyl)methanone (5d)
4.21. (2-Ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)(phenyl)methanone (5e)
4.22. (2-Ethyl-3-methyl-6-phenylquinolin-8-yl)(phenyl)methanone (5f)
4.23. (2-Ethyl-6-(4-methoxyphenyl)-3-methylquinolin-8-yl)(phenyl)methanone (5g)
4.24. (2-Ethyl-6-(4-fluorophenyl)-3-methylquinolin-8-yl)(phenyl)methanone (5h)
4.25. (2-Ethyl-3-methylquinolin-8-yl)(4-fluorophenyl)methanone (5i)
4.26. (4-Chlorophenyl)(2-ethyl-3-methylquinolin-8-yl)methanone (5j)
4.27. (4-Bromophenyl)(2-ethyl-3-methylquinolin-8-yl)methanone (5k)
4.28. (2-Ethyl-3-methylquinolin-8-yl)(p-tolyl)methanone (5l)
4.29. (2-Ethyl-3-methylquinolin-8-yl)(4-methoxyphenyl)methanone (5m)
4.30. (2-Ethyl-3-methylquinolin-8-yl)(2,3,4-trimethoxyphenyl)methanone (5n)
4.31. (6-Chloro-2-ethyl-3-methylquinolin-8-yl)(2-chlorophenyl)methanone (5o)
4.32. (2-Ethyl-6-methoxy-3-methylquinolin-8-yl)(4-methoxyphenyl)methanone (5p)
4.33. (2-Ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)(p-tolyl)methanone (5q)
4.34. (3,4-Dimethoxyphenyl)(2-ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)methanone (5r)
4.35. (2-Ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)(3,4,5-trimethoxyphenyl)methanone (5s)
4.36. 2-Butyl-3-propylquinoline (6a)
4.37. 2-Isobutyl-3-isopropylquinoline (6b)
4.38. 3-Benzyl-2-phenethylquinoline (6c)
4.39. 3-(2,2,2-Trifluoroethyl)-2-(3,3,3-trifluoropropyl)quinoline (6d)
4.40. (2-Butyl-3-propylquinolin-8-yl)(phenyl)methanone (6e)
4.41. (2-Isobutyl-3-isopropylquinolin-8-yl)(phenyl)methanone (6f)
4.42. (3-Benzyl-2-phenethylquinolin-8-yl)(phenyl)methanone (6g)
4.43. Phenyl(3-(2,2,2-trifluoroethyl)-2-(3,3,3-trifluoropropyl)quinolin-8-yl)methanone (6h)
4.44. 4-Phenyl-3-(2,2,2-trifluoroethyl)quinoline (7)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2007, 24, 223–246. [Google Scholar] [CrossRef]
- Michael, J.P. Quinoline, quinazoline and acridonealkaloids. Nat. Prod. Rep. 2008, 25, 166–187. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.-F.; Morris-Natschke, S.L.; Liu, Y.-Q.; Guo, X.; Xu, X.-S.; Goto, M.; Li, J.-C.; Yang, G.-Z.; Lee, K.-H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 2018, 38, 775–828. [Google Scholar] [CrossRef] [PubMed]
- Teja, C.; Khan, F.R.N. Radical Tranformations towards the Synthesis of Quinoline: A Review. Chem. Asian J. 2020, 15, 4153–4167. [Google Scholar] [CrossRef] [PubMed]
- Harry, N.A.; Ujwaldev, S.M.; Anikumar, G. Recent Advances and Prospects in the Metal-free Synthesis of Quinolines. Org. Biomol. Chem. 2020, 18, 9775–9790. [Google Scholar] [CrossRef] [PubMed]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J.-M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; et al. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010, 466, 935–940. [Google Scholar] [CrossRef]
- Rouffet, M.; de Oliveira, C.A.F.; Udi, Y.; Agrawal, A.; Sagi, I.; McCammon, J.A.; Cohen, S.M. From Sensors to Silencers: Quinoline- and Benzimidazole-Sulfonamides as Inhibitors for Zinc Proteases. J. Am. Chem. Soc. 2010, 132, 8232–8233. [Google Scholar] [CrossRef]
- Zhang, X.; Shetty, A.S.; Jenekhe, S.A. Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interface in emission in semiconducting polymer/polymer heterojunctions. Macromolecules 2000, 33, 2069–2082. [Google Scholar] [CrossRef]
- Jenekhe, S.A.; Lu, L.; Alam, M.M. New conjugated polymers with donor-acceptor architectures: Synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 2001, 34, 7315–7324. [Google Scholar] [CrossRef]
- Kim, J.I.; Shin, I.-S.; Kim, H.; Lee, J.-K. Efficient Electrogenerated Chemiluminescence from Cyclometalated Iridium(III) Complexes. J. Am. Chem. Soc. 2005, 127, 1614–1615. [Google Scholar] [CrossRef] [PubMed]
- Calus, S.; Gondek, E.; Danel, A.; Jarosz, B.; Pokladko, M.; Kityk, A.V. Electroluminescence of 6-R-1,3-Diphenyl-1H-pyrazolo[3,4-b]-quinoline-Based Organic Light-Emitting Diodes (R = F, Br, Cl, CH3, C2H3 and N(C6H5)2). Mater. Lett. 2007, 61, 3292–3295. [Google Scholar] [CrossRef]
- Li, C.; Shih, H.-H.; Jiang, X.; Sun, P.; Pan, Y.; Cheng, C.-H. Synthesis, Characterization, and Electroluminescent Properties of Iridium Complex Containing 4-Phenylbenzoquinoline Ligand. Synth. Met. 2009, 159, 2070–2074. [Google Scholar] [CrossRef]
- Biddle, M.M.; Lin, M.; Scheidt, K.A. Catalytic Enantioselective Synthesis of Flavanones and Chromanones. J. Am. Chem. Soc. 2007, 129, 3830–3831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sigman, M.S. Palladium(II)-Catalyzed Enantioselective Aerobic Dialkoxylation of 2-Propenyl Phenols: A Pronounced Effect of Copper Additives on Enantioselectivity. J. Am. Chem. Soc. 2007, 129, 3076–3077. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Palladium-catalyzed asymmetric hydrogenation of 3-phthalimido substituted quinolines. Chem. Commun. 2014, 50, 9588–9590. [Google Scholar] [CrossRef]
- Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. Highly Enantioselective Iridium-Catalyzed Hydrogenation of Heteroaromatic Compounds, Quinolines. J. Am. Chem. Soc. 2003, 125, 10536–10537. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Cai, C.; Yang, X.; Lv, Z.-C.; Schneider, U. Catalytic Asymmetric Reactions with N,O-Aminals. ACS Catal. 2016, 6, 5747–5763. [Google Scholar] [CrossRef]
- Ayl, M.R.E.; Ibrahim, M.M.; Okael, A.M.; Gherbawy, Y.A.M.H. Synthesis, Insecticidal, and Fungicidal Screening of Some New Quinoline Derivatives. Russ. J. Bioorg. Chem. 2014, 40, 214–227. [Google Scholar]
- Aribi, F.; Panossian, A.; Vors, J.-P.; Pazenok, S.; Leroux, F.R. 2,4-Bis(fluoroalkyl)quinoline-3-carboxylates as Tools for the Development of Potential Agrochemical Ingredients. Eur. J. Org. Chem. 2018, 2018, 3792–3802. [Google Scholar] [CrossRef]
- Malathi, M.; Mohan, P.S.; Butcher, R.J.; Venil, C.K. Benzimidazole quinoline derivatives-An effective green fluorescent dye for bacterial imaging. Can. J. Chem. 2009, 87, 1692–1703. [Google Scholar] [CrossRef]
- Koścień, E.; Gondek, E.; Pokladko, M.; Jarosz, B.; Vlokh, R.O.; Kityk, A.V. Photoluminescence of 1,3-dimethyl pyrazoloquinoline derivatives. Mater. Chem. Phys. 2009, 114, 860–867. [Google Scholar] [CrossRef]
- Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem. 2010, 45, 3245–3264. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.W.; Ackermans, K.; Lambregts, J.; Maes, B.U.W.; Orru, R.V.A.; Ruijter, E. Modular Three-Component Synthesis of 4-Aminoquinolines via an Imidoylative Sonogashira/Cyclization Cascade. J. Org. Chem. 2018, 83, 854–861. [Google Scholar] [CrossRef]
- Pinheiro, L.C.S.; Feitosa, L.M.; Gandi, M.O.; Silveira, F.F.; Boechat, N. The Development of Novel Compounds against Malaria: Quinolines, Triazolpyridines, Pyrazolopyridines and Pyrazolopyrimidines. Molecules 2019, 24, 4095. [Google Scholar] [CrossRef] [PubMed]
- Gakhar, G.; Ohira, T.; Shi, A.; Hua, D.H.; Nguyen, T.A. Antitumor effect of substituted quinolines in breast cancer cells. Drug Dev. Res. 2008, 69, 526–534. [Google Scholar] [CrossRef]
- Datta, J.; Ghoshal, K.; Denny, W.A.; Gamage, S.A.; Brooke, D.G.; Phiasivongsa, P.; Redkar, S.; Jacob, S.T. A New Class of Quinoline-Based DNA Hypomethylating Agents Reactivates Tumor Suppressor Genes by Blocking DNA Methyltransferase 1 Activity and Inducing Its Degradation. Cancer Res. 2009, 69, 4277–4285. [Google Scholar] [CrossRef] [PubMed]
- Venditto, V.J.; Simanek, E.E. Cancer Therapies Utilizing the Camptothecins: A Review of in Vivo Literature. Mol. Pharm. 2010, 7, 307–349. [Google Scholar] [CrossRef]
- Ding, Y.; Nguyen, T.D.T.; Hua, D.H.; Nguyen, T.A. The effect of the PQ1 anti-breast cancer agent on normal tissues. Anticancer Drugs 2012, 23, 897–905. [Google Scholar] [CrossRef]
- Marganakop, S.B.; Kamble, R.R.; Hoskeri, J.; Prasad, D.J.; Meti, G.Y. Facile Synthesis of Novel Quinoline Derivatives as Anticancer Agents. Med. Chem. Res. 2014, 23, 2727–2735. [Google Scholar] [CrossRef]
- Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem. 2009, 17, 1948–1956. [Google Scholar] [CrossRef]
- Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-Based Antifungals. Curr. Med. Chem. 2010, 17, 1960–1973. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives. J. Med. Chem. 2001, 44, 2374–2377. [Google Scholar] [CrossRef]
- Roma, G.; Braccio, M.D.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]-triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem. 2000, 35, 1021–1035. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Tung, C.-W.; Peng, S.-I.; Chen, Y.-L.; Tzeng, C.-C.; Cheng, C.-M. Discovery of Pyrazolo[4,3-c]quinoline Derivatives as Potential Anti-Inflammatory Agents through Inhibiting of NO Production. Molecules 2018, 23, 1036. [Google Scholar] [CrossRef]
- De Oliveira, A.R.M.; Szczerbowski, D. Quinina: 470 anos de história, controvérsias e desenvolvimento. Quim. Nova 2009, 32, 1971–1974. [Google Scholar] [CrossRef][Green Version]
- Murie, V.E.; Nishimura, R.H.V.; Rolim, L.A.; Vessecchi, R.; Lopes, N.P.; Clososki, G.C. Base-Controlled Regioselective Functionalization of Chloro-Substituted Quinolines. J. Org. Chem. 2018, 83, 871–880. [Google Scholar] [CrossRef]
- Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a lesstoxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020, 6, 1–4. [Google Scholar] [CrossRef]
- Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficiency in treatment of COVID-19 associated pneumonia in clinical studies. BioSci. Trends 2020, 14, 72–73. [Google Scholar] [CrossRef]
- Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. Asystematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care 2020, 57, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Bujuq, N.A. Methods of Synthesis of Remdesivir, Favipiravir, Hydroxychloro-quine, and Chloroquine: Four Small Molecules Repurposed for Clinical Trials during the Covid-19 Pandemic. Synthesis 2020, 52, 3735–3750. [Google Scholar] [CrossRef]
- NIH COVID-19 Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/antiviral-therapy/ (accessed on 20 June 2021).
- Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; do Carmo Carreiras, M.; Soriano, E. Recent Advances in the Friedländer Reaction. Chem. Rev. 2009, 109, 2652–2671. [Google Scholar] [CrossRef]
- Bharate, J.B.; Vishwakarma, R.A.; Bharate, S.B. Metal-free domino one-pot protocols for quinoline synthesis. RSC Adv. 2015, 5, 42020–42053. [Google Scholar] [CrossRef]
- Ramann, G.; Cowen, B. Recent Advances in Metal-Free Quinoline Synthesis. Molecules 2016, 21, 986. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kour, P.; Kumar, A. A review on transition-metal mediated synthesis of quinolines. J. Chem. Sci. 2018, 130, 73. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, H.; Deng, G.-J.; Huang, H. Copper-Catalyzed Formal [3 + 3] Annulations of Arylketoximes and o-Fluorobenzaldehydes: An Entry to Quinoline Compounds. Org. Lett. 2021, 23, 936–942. [Google Scholar] [CrossRef]
- Jain, R.; Vaitilingam, B.; Nayyar, A.; Palde, P.B. Substituted 4-methylquinolines as a new class of anti-tuberculosis agents. Bioorg. Med. Chem. Lett. 2003, 13, 1051–1054. [Google Scholar] [CrossRef]
- Jain, M.; Vangapanda, S.; Sachdeva, S.; Singh, S.; Singh, P.P.; Jena, G.B.; Tikoo, K.; Ramarao, P.; Kaul, C.L.; Jain, R. Discovery of a Bulky 2-tert-Butyl Group Containing Primaquine Analogue That Exhibits Potent Blood-Schizontocidal Antimalarial Activities and Complete Elimination of Methemoglobin Toxicity. J. Med. Chem. 2004, 47, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Mai, A.; Rotili, D.; Tarantino, D.; Ornaghi, P.; Tosi, F.; Vicidomini, C.; Sbardella, G.; Nebbioso, A.; Miceli, M.; Altucci, L.; et al. Small-Molecule Inhibitors of Histone Acetyltransferase Activity: Identification and Biological Properties. J. Med. Chem. 2006, 49, 6897–6907. [Google Scholar] [CrossRef]
- Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem. 2011, 18, 1488–1508. [Google Scholar] [CrossRef]
- Ding, Y.; Nguyen, T.A. PQ1, a quinoline derivative, induces apoptosis in T47D breast cancer cells through activation of caspase-8 and caspase-9. Apoptosis 2013, 18, 1071–1082. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Watanabe, S.; Matsumura, Y.; Tokuoka, Y.; Yokoyama, A. Oxovanadium complexes with quinoline and pyridinone ligands: Syntheses of the complexes and effect of alkyl chains on their apoptosis-inducing activity in leukemia cells. Bioorg. Med. Chem. 2012, 20, 3058–3064. [Google Scholar] [CrossRef]
- Beller, M.; Thiel, O.; Trauthwein, H.; Hartung, C.G. Amination of Aromatic Olefins with Anilines: A New Domino Synthesis of Quinolines. Chem. Eur. J. 2000, 6, 2513–2522. [Google Scholar] [CrossRef]
- McNaughton, B.R.; Miller, B.L. A Mild and Efficient One-Step Synthesis of Quinolines. Org. Lett. 2003, 4, 4257–4259. [Google Scholar] [CrossRef]
- O’Byrne, A.; Evans, P. Rapid synthesis of the tetrahydroquinoline alkaloids: Angustureine, cuspareine and galipinine. Tetrahedron 2008, 64, 8067–8072. [Google Scholar] [CrossRef]
- Shan, G.; Sun, X.; Xia, Q.; Rao, Y. A Facile Synthesis of Substituted 2-Alkylquinolines through [3 + 3] Annulation between 3-Ethoxycyclobutanones and Aromatic Amines at Room Temperature. Org. Lett. 2011, 13, 5770–5773. [Google Scholar] [CrossRef]
- Monrad, R.N.; Madsen, R. Ruthenium-catalysed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols. Org. Biomol. Chem. 2011, 9, 610–615. [Google Scholar] [CrossRef]
- Matsubara, Y.; Hirakawa, S.; Yamaguchi, Y.; Yoshida, Z.-I. Assembly of substituted 2-alkylquinolines by a sequential palladium-catalyzed C-N and C-C bond formation. Angew. Chem. Int. Ed. 2011, 50, 7670–7673. [Google Scholar] [CrossRef]
- He, L.; Wang, J.-Q.; Gong, Y.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Titania-Supported Iridium Subnanoclusters as an Efficient Heterogeneous Catalyst for Direct Synthesis of Quinolines from Nitroarenes and Aliphatic Alcohols. Angew. Chem. Int. Ed. 2011, 50, 10216–10220. [Google Scholar] [CrossRef]
- Ji, X.; Huang, H.; Li, Y.; Chen, H.; Jiang, H. Palladium-Catalyzed Sequential Formation of C-C Bonds: Efficient Assembly of 2-Substituted and 2,3-Disubstituted Quinolines. Angew. Chem. Int. Ed. 2012, 51, 7292–7296. [Google Scholar] [CrossRef]
- Verma, S.; Verma, D.; Jain, S.L. Magnetically separable palladium–graphene nanocomposite as heterogeneous catalyst for the synthesis of 2-alkylquinolines via one pot reaction of anilines with alkenyl ethers. Tetrahedron Lett. 2014, 55, 2406–2409. [Google Scholar] [CrossRef]
- Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Gold-Catalyzed Synthesis of Quinolines from Propargyl Silyl Ethers and Anthranils through the Umpolung of a Gold Carbene Carbon. Angew. Chem. Int. Ed. 2016, 55, 12688–12692. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Yang, H.; Jiang, G. Assembly of Diversely Substituted Quinolines via Aerobic Oxidative Aromatization from Simple Alcohols and Anilines. J. Org. Chem. 2017, 82, 3287–3290. [Google Scholar] [CrossRef]
- Li, Y.; Cao, X.; Liu, Y.; Wan, J.-P. Regioselective three-component synthesis of 2,3-disubstituted quinolines via the enaminon modified Povarov reaction. Org. Biomol. Chem. 2017, 15, 9585–9589. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Xiang, J.; Cui, J.; Hu, B.; Yang, L.; Tang, Y. HOAc-Assisted Synthesis of 2,3-Disubstituted Quinolines from Arylamine and Aliphatic Aldehyde in Water. ChemistrySelect 2019, 4, 9392–9395. [Google Scholar] [CrossRef]
- Ali, S.; Gattu, R.; Singh, V.; Mondal, S.; Khan, A.T.; Dubey, G.; Bharatam, P.V. Reaction behaviour of arylamines with nitroalkenes in the presence of bismuth (III) triflate: An easy access to 2,3-dialkylquinolines. Org. Biomol. Chem. 2020, 18, 1785–1793. [Google Scholar] [CrossRef]
- Chan, C.-K.; Lai, C.-Y.; Lo, W.-C.; Cheng, Y.-T.; Chang, M.-Y.; Wang, C.-C. p-TsOH-mediated synthesis of substituted 2,4-diaryl-3-sulfonylquinolines from functionalized 2-aminobenzophenones and aromatic β-ketosulfones under microwave irradiation. Org. Biomol. Chem. 2020, 18, 305–315. [Google Scholar] [CrossRef]
- Chan, C.-K.; Lai, C.-Y.; Wang, C.-C. Environmentally Friendly Nafion-Mediated Friedländer Quinoline Synthesis under Microwave Irradiation: Application to One-Pot Synthesis of Substituted Quinolinyl Chalcones. Synthesis 2020, 52, 1779–1794. [Google Scholar] [CrossRef]
- Chan, C.-K.; Lai, C.-Y.; Wang, C.-C. TMSOTf-catalyzed synthesis of substituted quinazolines using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. Org. Biomol. Chem. 2020, 18, 7201–7212. [Google Scholar] [CrossRef]
- Asressu, K.H.; Chan, C.-K.; Wang, C.-C. One-Pot Synthesis of 1,5-Diketones under a Transition-Metal-Free Condition: Application in the Synthesis of 2,4,6-Triaryl Pyridine Derivatives. ACS Omega 2021, 6, 7296–7311. [Google Scholar] [CrossRef]
- Church, S. Del. firm installs fuel cell. The News Journal, 6 January 2007; p. B7. [Google Scholar]
- Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4585. [Google Scholar] [CrossRef]
- Antonetti, C.; Fulignati, S.; Licursi, D.; Galletti, A.M.R. Turning Point toward the Sustainable Production of 5-Hydroxymethyl-2-furaldehyde in Water: Metal Salts for Its Synthesis from Fructose and Inulin. ACS Sustain. Chem. Eng. 2019, 7, 6830–6838. [Google Scholar] [CrossRef]
- Biancalana, L.; Fulignati, S.; Antonetti, C.; Zacchini, S.; Provinciali, G.; Pampaloni, G.; Galletti, A.M.R.; Marchetti, F. Ruthenium p-cymene complexes with α-diimine ligands as catalytic precursors for the transfer hydrogenation of ethyl levulinate to γ-valerolactone. New J. Chem. 2018, 42, 17574–17586. [Google Scholar] [CrossRef]
- CCDC 1940046 (3p), 2002378 (5a), 2013112 (5b) and 2039753 (5d) Contain the Supplementary Crystallographic Data for this Paper. Available online: www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 20 June 2021).
- Ko, S.; Kang, B.; Chang, S. Cooperative Catalysis by Ru and Pd for the Direct Coupling of a Chelating Aldehyde with Iodoarenes or Organostannanes**. Angew. Chem. Int. Ed. 2005, 44, 455–457. [Google Scholar] [CrossRef]
- Rathbun, C.M.; Johnson, J.B. Rhodium-Catalyzed Acylation with Quinolinyl Ketones: Carbon-Carbon Single Bond Activation as the Turnover-Limiting Step of Catalysis. J. Am. Chem. Soc. 2011, 133, 2031–2033. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Zuo, S.; Liu, L.; Zhang, X.; Wang, J. Direct Exchange of a Ketone Methyl or Aryl Group to Another Aryl Group through C-C Bond Activation Assisted by Rhodium Chelation**. Angew. Chem. Int. Ed. 2012, 51, 12334–12338. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, S.; Chen, W.; Zhang, X.; Tan, K.; Tian, Y.; Wang, J. Catalytic Formation of Ketones from Unactivated Esters through Rhodium Chelation-Assisted C−O Bond Activation. J. Org. Chem. 2013, 78, 8217–8231. [Google Scholar] [CrossRef]
- Dennis, J.M.; Compagner, C.T.; Dorn, S.K.; Johnson, J.B. Rhodium-Catalyzed Interconversion of Quinolinyl Ketones with Boronic Acids via C–C Bond Activation. Org. Lett. 2016, 18, 3334–3337. [Google Scholar] [CrossRef]
- Gregerson, C.E.; Trentadue, K.N.; Phipps, E.J.T.; Kirsch, J.K.; Reed, K.M.; Dyke, G.D.; Jansen, J.H.; Otteman, C.B.; Stachowski, J.L.; Johnson, J.B. Oxidative coupling of Michael acceptors with aryl nucleophiles produced through rhodium-catalyzed C–C bond activation†. Org. Biomol. Chem. 2017, 15, 5944–5948. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, S.; Wang, S.; Wang, H.; Zhai, H. Blue-light-promoted carbon-carbon double bond isomerization and its application in the syntheses of quinolones. Org. Biomol. Chem. 2017, 15, 6349–6352. [Google Scholar] [CrossRef]
- Shao, T.; Yin, Y.; Lee, R.; Zhao, X.; Chai, G.; Jiang, Z. Sequential photoredox catalysis for cascade aerobic decarboxylative povarov and oxidative dehydrogenation reactions of N-aryl α-amino acids. Adv. Synth. Catal. 2018, 360, 1754–1760. [Google Scholar] [CrossRef]
- Jacob, J.; Jones, W.D. Selective conversion of diallylanilines and arylimines to quinolones. J. Org. Chem. 2003, 68, 3563–3568. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jones, W.-D. Mechanistic Investigation of the Cobalt-Catalyzed Selective Conversion of Diallylanilines to Quinolines Involving C−N and C−H Activations. J. Am. Chem. Soc. 2007, 129, 10707–10713. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-S.; Lee, N.-Y.; Kim, T.-J.; Shim, S.-C. Ruthenium-catalyzed formal alkyl group transfer: Synthesis of quinolines from nitroarenes and alkylammonium halides. J. Heterocycl. Chem. 2004, 41, 423–429. [Google Scholar] [CrossRef]
Entry | Acid | Solvent | Yields b |
---|---|---|---|
entry 1 | AcOH | EtOH | 25 |
entry 2 | TFA | EtOH | 15 c |
entry 3 | TfOH | EtOH | 40 |
entry 4 | MsOH | EtOH | 35 |
entry 5 | BsOH | EtOH | 38 |
entry 6 | p-TsOH | EtOH | 39 |
entry 7 | AgOTf | EtOH | 45 |
entry 8 | Bi(OTf)3 | EtOH | 30 |
entry 9 | Fe(OTf)2 | EtOH | 28 |
entry 10 | Fe(OTf)3 | EtOH | 29 |
entry 11 | Sn(OTf)2 | EtOH | 32 |
entry 12 | BF3OEt2 | EtOH | 55 |
entry 13 | InCl3 | EtOH | 23 |
entry 14 | AlCl3 | EtOH | 33 |
entry 15 | Nafion® NR50 | EtOH | 93 |
entry 16 | Nafion® NR117 | EtOH | 30 |
entry 17 | Nafion® NR50 | CH2Cl2 | 36 |
entry 18 | Nafion® NR50 | toluene | 17 c |
entry 19 | Nafion® NR50 | 1,4-dioxane | 77 |
entry 20 | Nafion® NR50 | DMF | 65 |
entry 21 d | Nafion® NR50 | EtOH | 40 |
Compound 3p | Compound 5a | |||
Compound 5b | Compound 5d | |||
CCDC number | 1940046 (3p) | 2002378 (5a) | 2013112 (5b) | 2039753 (5d) |
Crystal system | Monoclinic | Triclinic | Triclinic | Monoclinic |
Space group | C 2/c | P-1 | P-1 | P 21/c |
a (Å) | 20.8096 (12) | 8.4108 (3) | 7.4420 (3) | 13.2934 (5) |
b (Å) | 8.4535 (5) | 8.9126 (3) | 10.3406 (3) | 14.2302 (5) |
c (Å) | 15.3108 (16) | 10.9019 (4) | 10.7949 (4) | 8.6189 (3) |
α (°) | 90 | 103.454 (2) | 103.4120 (10) | 90 |
β (°) | 128.6800 (10) | 97.603 (2) | 100.533 (2) | 108.5200 (10) |
γ (°) | 90 | 111.8150 (10) | 90.7170 (10) | 90 |
Volume (Å3)/Z | 2102.6 (3)/8 | 715.90 (4)/2 | 793.14 (5)/2 | 1545.98 (10)/4 |
Temperature (K) | 100.0 (2) | 100.0 (2) | 100.0 (2) | 100.0 (2) |
Dcalcd (Mg/m3) | 1.240 | 1.277 | 1.297 | 1.243 |
Absorption coefficient (mm−1) | 0.075 | 0.079 | 0.242 | 0.076 |
F(000)/GOF | 832/1.022 | 292/1.027 | 324/1.092 | 616/1.041 |
Crystal size (mm) | 0.139 × 0.103 × 0.099 | 0.238 × 0.208 × 0.149 | 0.365 × 0.351 × 0.319 | 0.214 × 0.202 × 0.094 |
Theta range for data collection (°) | 2.687 to 28.345 | 2.586 to 27.103 | 2.028 to 33.138 | 2.158 to 27.098 |
Reflections collected | 28,515 | 31,756 | 45,950 | 43,540 |
Independent reflections | 2620 (R = 0.1270) | 3168 (R = 0.0684) | 6054 (R = 0.0386) | 3392 (R = 0.0506) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, C.-K.; Lai, C.-Y.; Wang, C.-C. Environmentally Friendly Nafion-Catalyzed Synthesis of Substituted 2-Ethyl-3-Methylquinolines from Aniline and Propionaldehyde under Microwave Irradiation. Catalysts 2021, 11, 877. https://doi.org/10.3390/catal11080877
Chan C-K, Lai C-Y, Wang C-C. Environmentally Friendly Nafion-Catalyzed Synthesis of Substituted 2-Ethyl-3-Methylquinolines from Aniline and Propionaldehyde under Microwave Irradiation. Catalysts. 2021; 11(8):877. https://doi.org/10.3390/catal11080877
Chicago/Turabian StyleChan, Chieh-Kai, Chien-Yu Lai, and Cheng-Chung Wang. 2021. "Environmentally Friendly Nafion-Catalyzed Synthesis of Substituted 2-Ethyl-3-Methylquinolines from Aniline and Propionaldehyde under Microwave Irradiation" Catalysts 11, no. 8: 877. https://doi.org/10.3390/catal11080877
APA StyleChan, C.-K., Lai, C.-Y., & Wang, C.-C. (2021). Environmentally Friendly Nafion-Catalyzed Synthesis of Substituted 2-Ethyl-3-Methylquinolines from Aniline and Propionaldehyde under Microwave Irradiation. Catalysts, 11(8), 877. https://doi.org/10.3390/catal11080877