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Abstract: Herein, we report a facile synthetic methodology for the preparation of 2,3-dialkylquinolines
from anilines and propionaldehydes. This cyclization involved environmentally friendly Nafion®

NR50 as an acidic catalyst with microwave irradiation as the heating source. A series of substituted
2-ethyl-3-methylquinolines were prepared from various anilines and propionaldehyde derivatives
through this protocol with good to excellent yields. Some new chemical structures were confirmed by
X-ray single-crystal diffraction analysis and the related data were provided. The plausible reaction
mechanism studies are also discussed.

Keywords: nafion; quinoline; microwave irradiation

1. Introduction

A quinoline scaffold is a versatile synthetic building block in various natural prod-
ucts [1–5], exceptional pharmaceuticals [6–8], physical materials [9–13], and is an important
intermediate for asymmetric synthesis [14–18]. Functionalized quinolines are broadly
used in agrochemicals [19,20], dyes [21,22], and some biologically active molecules for
antimalarial [23–25], anticancer [26–30], antiviral [31], antifungal [32], anti-bacterial [33],
and anti-inflammatory functions [34,35]. In particular, since the 17th century, the quinoline
alkaloid quinine has been viewed historically as the first cure for treating or preventing
malaria, [36,37]. Recently, some reports indicated that some quinoline-containing com-
pounds are potentially active SARS-CoV-2 inhibitors [38–40], and some quinoline-derived
drugs, as shown in Scheme 1, are currently being investigated as a possible cure for COVID-
19 infection [41,42]. Numerous classical methodologies for the construction of the quinoline
skeleton, such as the Combes reaction, the Conrad–Limpach–Knorr reaction, the Doebner–
Von Miller reaction, the Friedlander reaction, the Povaror reaction, the Pfitzinger reaction,
and the Skraup reaction have been well documented [43–47].

Scheme 1. Some quinoline-based antimalarial drugs.

Alkylated quinolines display some meaningful activity against cancer, inflammation,
malaria, and tuberculosis [48–52]. Among them, 2-alkylquinolines show better activities
compared to the other alkyl-substituted quinolines. The alkyl groups at the C-2 position are
adjacent to the quinoline nitrogen atom, which increases the lipophilicity and promotes cell
permeability [53]. Although the synthesis of 2,3-dialkylated quinolines involving readily
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available starting materials such as aldehydes, ketones, alkenes, alkynes, cyclobutanes, or
allyl alcohols is broadly reported [54–67], the protocol to synthesize alkylated quinolines
poses a challenge to medicinal chemists.

In continuation of our investigations toward the synthesis of nitrogen-containing
heterocyclic compounds [68–71], we recently provided a synthetic route for the Friedländer
quinoline synthesis from 2-aminobenzophenone and acetylacetone catalyzed by Nafion®

NR50 particles under microwave irradiation ((1) in Scheme 2) [69]. Nafion® is a com-
mercially available synthetic polymer particle which possesses ionic properties [72]. Its
unique ionic properties result from the copolymerization of incorporating perfluorovinyl
ether groups terminated with sulfonate groups onto a tetrafluoroethylene (PTFE) skele-
ton [73]. The chemical structure of Nafion® NR50 is shown in Scheme 2. Considering the
importance of alkylated quinolines in medicinal chemistry, the efficiency of microwave
irradiation and recyclable features of Nafion® NR50 in green chemistry, the development
of a facile synthetic protocol is of great interest. Herein, we provide an efficient synthetic
protocol for the preparation of a 2-ethyl-3-methylquinoline skeleton from aniline and
propionaldehyde using Nafion® NR50 with good to excellent yields under microwave
irradiation ((2) in Scheme 2). Four chemical structures are confirmed by X-ray single-crystal
diffraction analysis.

Scheme 2. Nafion® NR50-mediated synthesis of quinolines.

2. Results and Discussion

Initially, we conducted the investigation with the cyclization of readily available
aniline 1a and propionaldehyde 2a as model substrates in the solvent under microwave
irradiation (T = 150 ◦C), and the related results are summarized in Table 1. By using
liquid acids, such as AcOH (acetic acid), TFA (trifluoroacetic acid), and TfOH (triflic acid),
quinoline 1a was obtained at 15% to 40% yield (entries 1–3). The involvement of substituted
sulfonic acids, including MsOH (methansulfonic acid), BsOH (benzenesulfonic acid), and
p-TsOH.H2O (p-toluenesulfonic acid) provided product 3a in similar yields (entries 4–6).
Other metal triflates such as AgOTf, Bi(OTf)3, Fe(OTf)2, Fe(OTf)3, and Sn(OTf)2 were also
examined in this reaction, as shown in entries 7–11, and the isolated yields of 3a were
lower than that obtained after using sulfonic acids. Other Lewis acids including BF3.OEt2,
InCl3, and AlCl3 promoted the reactions, and the isolated yields are shown in entries 12–14.
Among these entries, BF3.OEt2 showed the best performance. According to our previous
work [69], we further examined the environmentally friendly solid acid Nafion® NR50, and
the desired product 3a was obtained at 93% yield (entry 15). However, only a 30% yield of
3a was observed when liquid Nafion® NR117 was used as an acid catalyst (entry 16). No
better yields were observed by changing the reaction solvents (entries 17–20). Changing the
heating source from microwave irradiation to normal hot plate, the yield was decreased to
40% yield. It is possible that the boiling point of propionaldehyde is lower than the reaction
temperature, and the reaction was conducted in the open system (entry 21). Considering the
green chemistry concept and environmentally friendly nature, we selected Nafion® NR50
as acid and ethanol as a solvent under microwave irradiation as the best reaction condition
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for this synthetic protocol. Microwave irradiation has attracted considerable attention in
the past decade for increasing reaction efficiency [74,75]. Therefore, we confirmed that the
condition of entry 15 is the most suitable condition in this double intermolecular cyclization
for the construction of the corresponding 2-ethyl-3-methylquinolines.

Table 1. Optimization of the reaction conditions a.

Entry Acid Solvent Yields b

entry 1 AcOH EtOH 25
entry 2 TFA EtOH 15 c

entry 3 TfOH EtOH 40
entry 4 MsOH EtOH 35
entry 5 BsOH EtOH 38
entry 6 p-TsOH EtOH 39
entry 7 AgOTf EtOH 45
entry 8 Bi(OTf)3 EtOH 30
entry 9 Fe(OTf)2 EtOH 28

entry 10 Fe(OTf)3 EtOH 29
entry 11 Sn(OTf)2 EtOH 32
entry 12 BF3OEt2 EtOH 55
entry 13 InCl3 EtOH 23
entry 14 AlCl3 EtOH 33
entry 15 Nafion® NR50 EtOH 93
entry 16 Nafion® NR117 EtOH 30
entry 17 Nafion® NR50 CH2Cl2 36
entry 18 Nafion® NR50 toluene 17 c

entry 19 Nafion® NR50 1,4-dioxane 77
entry 20 Nafion® NR50 DMF 65

entry 21 d Nafion® NR50 EtOH 40
a Reaction conditions: 1a (2.0 mmol), 2a (4.2 mmol), acid (0.1 mmol), solvent (5 mL). b Isolated yields. c We
obtained 45% of N-propylamine. d Hot plate as heating source.

After obtaining the optimal reaction conditions, the scope of the reaction with respect
to various anilines was evaluated. As shown in Scheme 3, a variety of commercially
available anilines, 1b–1p, were investigated with propionaldehyde 2a in this intermolecular
reaction. The anilines containing both electron-withdrawing groups (EWGs) and electron-
donating groups (EDGs) on different positions successfully gave good to excellent yields of
the corresponding quinolines 3b–3p. The structure of 3p was confirmed by single-crystal
X-ray crystallography [76].

Quinolinyl ketones are regarded as a versatile directing group by the cooperation of
transition metal catalysts for activating the organic transformation [77–82]. A variety of
2-aminobenzophenone 4 were subjected to react with propionaldehyde 2a in the optimized
reaction condition. As shown in Scheme 4, a wide range of 2-aminobenzophenones could
be used in this cyclization. Various substituted groups at different positions of the Ar1

and Ar2 rings smoothly delivered good to excellent yields of the desired 8-substituted
quinolinyl ketones 5 in 2 h. Not only non-substituted 2-aminobenzophenone 4a, but
some functional groups such as chloro- (4b), bromo- (4c), methyl- (4d), dimethoxy- (4e),
phenyl- (4f), p-methoxyphenyl- (4g) and p-fluorophenyl- (4h) on the Ar1 ring; fluoro- (4i),
chloro- (4j), bromo- (4k), methyl- (4l), methoxy- (4m), trimethoxy- (4n) on Ar2, and both
EWGs dichloro- (4o) and both EWGs multimethoxy- (4p-4s) on the Ar1 and Ar2 rings
were well tolerated in this transformation. The related 8-substituted quinolinyl ketones
5 are illustrated in Scheme 4. The structures of 5a, 5b, and 5d were also confirmed by
single-crystal X-ray crystallography [76].
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Scheme 3. Synthesis of 3. Reaction conditions: 1 (1.0 mmol), 2a (2.1 mmol), Nafion® NR50 (0.1 mmol),
EtOH (10 mL). Isolated yields.

Scheme 4. The synthesis of 5. Reaction conditions: 4 (1.0 mmol), 2a (2.1 mmol), Nafion® NR50
(0.1 mmol), and EtOH (10 mL). Isolated yields.
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We next investigated the scope of substituents on the terminal of propionaldehyde by
using aniline 1a and 2-aminobenzophenone 4a as the model aminobenzene substrate. Four
propionaldehyde analogues were investigated, including valeraldehyde 2b, isovaleralde-
hyde 2c, 3-phenylpropionaldehyde 2d and 4,4,4-trifluorobutyraldehyde 2e. As illustrated
in Scheme 5, changing the substituted group on propionaldehydes 2 did not influence the
preparation of corresponding quinolines 6a–6h and gave modest to good yields. Based
on our previous experience for the synthesis of quinolines by Friedländer reaction from
2-aminobenzophenone 4a with monocarbonyl synthons [69], it is possible that the electron-
withdrawing CF3 group on 2e change in α-methylene reactivity could also access the
Friedländer-type protocol to prepare the desired quinoline 7 by decreasing to one equiva-
lent (Scheme 6). Friedländer quinoline synthesis is the reaction of 2-aminobenzaldehyde
with acetylaldehyde to generate quinoline skeleton. In 2020, we developed a Nafion® NR50-
catalyzed Friedländer quinoline synthesis; the related mechanism was also reported [69].

Scheme 5. The synthesis of 6. Reaction conditions: 1a or 4a (1.0 mmol), 2a (2.1 mmol), Nafion® NR50
(0.1 mmol), and EtOH (10 mL). Reaction time: 1 h for 6a–6d and 2 h for 6e–6h. Isolated yields.

Scheme 6. The Friedländer quinoline synthesis of 7.

Based on the results of current assays, compounds 1a and 2a are selected as model
substrates to speculate the possible mechanism for the desired quinoline 3a synthesis, as
shown in Scheme 7. To start with, the first 1.0 equiv. of propionaldehyde 2a was protonated
by Nafion® NR50 and reacted with 1a to produce intermediate I, then proton transfer
occurred to form intermediate II. The keto-enol tautomerization of the second 1.0 equiva-
lent of 2a conducted with intermediate II to generate intermediate III via a consecutive
intramolecular cyclization. Dehydration was then performed in acidic conditions to give
an intermediate IV. The aromatic cyclization of intermediate IV was performed under
microwave irradiation to produce the desired quinoline 3a.
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Scheme 7. A plausible mechanism for the synthesis of quinoline 3a.

To observe the efficiency of the environmentally friendly Nafion® NR50 particles, the
recycling experiments were conducted at least 10 times, and the corresponding yields are
shown in Figure 1. Photos of the physical states for every experiment are provided in
Table S1 in the Supporting Information. The recovered Nafion® NR50 particles was reused
10 times in the reaction of 1a and 2a. Although the shapes of particles became different, no
obvious yield change was observed.

Figure 1. Recycling experiments.

On the basis of the abovementioned results, four new chemical structures are con-
firmed by single-crystal X-ray crystallography. The corresponding crystal structures of 3p,
5a, 5b and 5d, and related data are described in Table 2. Furthermore, no alert A and B are
presented in the checkcif output, as reported in the Supplementary Materials file.
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Table 2. Crystal data for compounds 3p, 5a, 5b and 5d.

Compound 3p Compound 5a

Compound 5b Compound 5d
CCDC number 1940046 (3p) 2002378 (5a) 2013112 (5b) 2039753 (5d)
Crystal system Monoclinic Triclinic Triclinic Monoclinic

Space group C 2/c P-1 P-1 P 21/c
a (Å) 20.8096 (12) 8.4108 (3) 7.4420 (3) 13.2934 (5)
b (Å) 8.4535 (5) 8.9126 (3) 10.3406 (3) 14.2302 (5)
c (Å) 15.3108 (16) 10.9019 (4) 10.7949 (4) 8.6189 (3)
α (◦) 90 103.454 (2) 103.4120 (10) 90
β (◦) 128.6800 (10) 97.603 (2) 100.533 (2) 108.5200 (10)
γ (◦) 90 111.8150 (10) 90.7170 (10) 90

Volume (Å3)/Z 2102.6 (3)/8 715.90 (4)/2 793.14 (5)/2 1545.98 (10)/4
Temperature (K) 100.0 (2) 100.0 (2) 100.0 (2) 100.0 (2)
Dcalcd (Mg/m3) 1.240 1.277 1.297 1.243

Absorption
coefficient (mm−1) 0.075 0.079 0.242 0.076

F(000)/GOF 832/1.022 292/1.027 324/1.092 616/1.041
Crystal size (mm) 0.139 × 0.103 × 0.099 0.238 × 0.208 × 0.149 0.365 × 0.351 × 0.319 0.214 × 0.202 × 0.094

Theta range for data
collection (◦) 2.687 to 28.345 2.586 to 27.103 2.028 to 33.138 2.158 to 27.098

Reflections collected 28,515 31,756 45,950 43,540
Independent reflections 2620 (R = 0.1270) 3168 (R = 0.0684) 6054 (R = 0.0386) 3392 (R = 0.0506)

3. Experimental Section
3.1. General Information

All reagents and solvents were commercially available (Sigma-Aldrich, St. Louis,
MO, USA) and used without further purification. Reactions were routinely performed
using the Discover SP system (2010 version, CEM Corporation, Matthews, NC, USA) in
the sealed reaction vessels in standard mode with the temperature monitored using a
vertically focused IR sensor. All reactions were monitored by TLC on silica gel 60 F254
(Merck) with detection by UV light. Column chromatography was performed using silica
gel (200–300 mesh). Products in organic solvents were dried with anhydrous magnesium
sulfate before concentration in vacuo. Melting points were determined with a MP-2D
(Mandarin In Scientific, New Taipei, Taiwan) melting apparatus. 1H and 13C NMR spectra
were recorded on a Bruker AVIII 500 MHz instruments operating at 500 and at 125 MHz,
respectively. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = dou-
blet, t = triplet, m = multiplet, br = broad), coupling constants (Hz) and integration. HRMS
were obtained on a Waters LCT Premier XE (Waters Corp., Manchester, UK) instrument
equipped with an electrospray source. The X-ray intensity data were measured at low
temperature 100 K using Mo Kα radiation diffractometer equipped with a kappa geometry
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goniometer and corrected for absorption effects using the numerical method (SADABS).
The yields are provided in mol% and the corresponding product weights are also shown.

3.2. General Procedure for the Synthesis of Skeletons 3, 5, 6 and 7

A mixture of anilines 1 or 4 (1.0 mmol), substituted propionaldehydes 2 (2.1 mmol),
Nafion® NR50 (0.1 mmol) in ethanol (10 mL), in a dried 35 mL microwave vial at 25 ◦C.
The mixture was subjected to a microwave irradiation instrument and stirred at 150 ◦C for
skeleton between 1 and 2 h. The consumption of the starting materials were confirmed by
TLC. The reaction was cooled to 25 ◦C, the mixture of crude product was transferred to
a 100 mL round bottom flask, and the solvent was concentrated to afford crude product
under reduced pressure. Purification on silica gel (hexanes/EtOAc = 4/1–1/1) afforded
compounds 3a–3p, 5a–5s, 6a–6h and 7.

4. Data
4.1. 2-Ethyl-3-methylquinoline (3a)

Yield = 93% (159 mg); colorless solid; mp = 63–64 ◦C; HRMS (ESI, M+ + H) calcd for
C12H14N 172.1126, found 172.1125; 1H NMR (500 MHz, CDCl3): δ 8.02 (d, J = 8.5 Hz, 1H),
7.79 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 2.98 (q,
J = 8.5 Hz, 2H), 2.45 (s, 3H), 1.37 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 163.20,
146.59, 135.62, 129.30, 128.44, 128.18, 127.24, 126.59, 125.49, 29.42, 19.01, 12.76. The NMR
spectroscopic data of this compound are consistent with reported literature [83].

4.2. 2-Ethyl-8-methoxy-3-methylquinoline (3b)

Yield = 92% (185 mg); colorless solid; mp = 84–85 ◦C; HRMS (ESI, M+ + H) calcd
for C13H16NO 202.1232, found 202.1229; 1H NMR (500 MHz, CDCl3): δ 7.80 (s, 1H), 7.35
(t, J = 8.0 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 4.07 (s, 3H), 3.06 (q,
J = 7.5 Hz, 2H), 2.49 (s, 3H), 1.37 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 162.39,
154.97, 138.47, 135.90, 129.94, 128.50, 125.64, 118.71, 106.80, 56.04, 29.82, 19.06, 13.13. The
NMR spectroscopic data of this compound are consistent with reported literature [84].

4.3. 2-Ethyl-7-methoxy-3-methylquinoline (3c)

Yield = 90% (181 mg); brown gum; HRMS (ESI, M+ + H) calcd for C13H16NO 202.1226,
found 202.1232; 1H NMR (500 MHz, CDCl3): δ 7.74 (s, 1H), 7.57 (d, J = 9.0 Hz, 1H), 7.36 (d,
J = 2.5 Hz, 1H), 7.10 (dd, J = 2.5, 9.0 Hz, 1H), 3.93 (s, 3H), 2.96 (q, J = 7.5 Hz, 2H), 2.44 (s,
3H), 1.36 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 163.46, 159.90, 148.15, 135.64,
127.66, 126.90, 122.39, 118.60, 106.73, 55.42, 29.52, 18.83, 12.95. The NMR spectroscopic data
of this compound are consistent with reported literature [59].

4.4. 2-Ethyl-6-methoxy-3-methylquinoline (3d)

Yield = 91% (183 mg); brown gum; HRMS (ESI, M+ + H) calcd for C13H16NO 202.1226,
found 202.1222; 1H NMR (500 MHz, CDCl3): δ 7.91 (d, J = 9.5 Hz, 1H), 7.70 (s, 1H), 7.25
(dd, J = 2.5, 9.5 Hz, 1H), 6.95 (d, J = 3.0 Hz, 1H), 3.88 (s, 3H), 2.94 (q, J = 8.0 Hz, 2H), 2.44 (s,
3H), 1.34 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 160.62, 157.07, 142.60, 134.72,
129.88, 129.58, 128.07, 120.59, 104.43, 55.36, 29.18, 19.04, 12.87. The NMR spectroscopic data
of this compound are consistent with reported literature [67].

4.5. 2-Ethyl-3-methyl-8-phenylquinoline (3e)

Yield = 88% (217 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C18H18N 248.1434,
found 248.1430; 1H NMR (500 MHz, CDCl3): δ 7.91 (d, J = 8.0 Hz, 2H), 7.87 (s, 1H), 7.76–7.70
(m, 2H), 7.57–7.51 (m, 3H), 7.44 (t, J = 7.0 Hz, 1H), 2.97 (q, J = 7.5 Hz, 2H), 2.49 (s, 3H), 1.40
(t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 162.09, 143.86, 139.67, 139.63, 135.34,
131.08 (2×), 129.32, 128.90, 127.64, 127.44 (2×), 126.86, 126.37, 125.34, 28.99, 18.90, 11.59.
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4.6. 6-Cyclohexyl-2-ethyl-3-methylquinoline (3f)

Yield = 93% (235 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C18H24N 254.1903,
found 254.1904; 1H NMR (500 MHz, CDCl3): δ 7.95 (d, J = 8.5 Hz, 1H), 7.74 (s, 1H), 7.49 (dd,
J = 1.5, 8.5 Hz, 1H), 7.46 (s, 1H), 2.96 (q, J = 7.5 Hz, 2H), 2.68–2.59 (m, 1H), 2.43 (s, 3H), 1.94
(d, J = 12.5 Hz, 2H), 1.87 (d, J = 12.5 Hz, 2H), 1.77 (d, J = 12.5 Hz, 1H), 1.55–1.23 (m, 8H);
13C NMR (125 MHz, CDCl3): δ 162.27, 145.46, 145.22, 135.43, 129.02, 128.43, 128.13, 127.24,
123.11, 44.32, 34.32 (2×), 29.33, 26.79 (2×), 26.08, 18.98, 12.91. The NMR spectroscopic data
of this compound are consistent with reported literature [85].

4.7. 6-Benzyl-2-ethyl-3-methylquinoline (3g)

Yield = 88% (230 mg); brown gum; HRMS (ESI, M+ + H) calcd for C19H20N 262.1590,
found 252.1589; 1H NMR (500 MHz, CDCl3): δ 8.01 (d, J = 9.0 Hz, 1H), 7.73 (s, 1H), 7.51–7.45
(m, 2H), 7.37–7.30 (m, 2H), 7.28–7.21 (m, 3H), 4.15 (s, 2H), 3.00 (q, J = 7.5 Hz, 2H), 2.46 (s,
3H), 1.41 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 162.55, 145.43, 140.65, 138.29,
135.27, 129.90, 129.27, 128.86 (2×), 128.48, 128.38 (2×), 127.19, 126.06, 125.69, 41.69, 29.29,
18.93, 12.78.

4.8. 8-(Benzyloxy)-2-ethyl-3-methylquinoline (3h)

Yield = 89% (247 mg); brown gum; HRMS (ESI, M+ + H) calcd for C19H20NO 278.1539,
found 278.1545; 1H NMR (500 MHz, CDCl3): δ 7.79 (s, 1H), 7.57 (d, J = 7.5 Hz, 2H), 7.38 (t,
J = 8.0 Hz, 2H), 7.33–7.27 (m, 3H), 7.03–6.95 (m, 1H), 5.46 (s, 2H), 3.07 (q, J = 7.5 Hz, 2H),
2.48 (s, 3H), 1.44 (t, J = 8.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 162.05, 153.97, 138.88,
137.49, 135.56, 129.84, 128.57, 128.37 (2×), 127.46, 126.85 (2×), 125.47, 119.26, 110.07, 70.93,
29.43, 18.99, 12.69.

4.9. 2-Ethyl-8-fluoro-3-methylquinoline (3i)

Yield = 90% (170 mg); colorless solid; mp = 65–66 ◦C; HRMS (ESI, M+ + H) calcd for
C12H13FN 190.1027, found 190.1022; 1H NMR (500 MHz, CDCl3): δ 7.76 (s, 1H), 7.41 (d,
J = 8.0 Hz, 1H), 7.35–7.19 (m, 2H), 2.99 (q, J = 7.5 Hz, 2H), 2.43 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H);
13C NMR (125 MHz, CDCl3): δ 163.62, 157.60 (d, J = 253.625 Hz), 136.64 (d, J = 11.125 Hz),
135.21 (d, J = 2.25 Hz), 130.51, 128.94 (d, J = 1.375 Hz), 125.12 (d, J = 8.0 Hz), 122.19 (d,
J = 4.25 Hz), 122.22 (d, J = 19.125 Hz), 29.45, 18.98, 12.66. The NMR spectroscopic data of
this compound are consistent with reported literature [59].

4.10. 2-Ethyl-6-fluoro-3-methylquinoline (3j)

Yield = 91% (172 mg); brown gum; HRMS (ESI, M+ + H) calcd for C12H13FN 190.1027,
found 190.1022; 1H NMR (500 MHz, CDCl3): δ 8.02–7.94 (m, 1H), 7.70 (s, 1H), 7.37–7.31
(m, 1H), 7.27–7.23 (m, 1H), 2.94 (q, J = 7.5 Hz, 2H), 2.43 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H); 13C
NMR (125 MHz, CDCl3): δ 162.42 (d, J = 2.0 Hz), 159.92 (d, J = 244.5 Hz), 143.61, 134.89 (d,
J = 4.875 Hz), 130.82 (d, J = 9.0 Hz), 130.28, 127.69 (d, J = 10.0 Hz), 118.10 (d, J = 25.375 Hz),
109.54 (d, J = 21.5 Hz), 29.21, 18.97, 12.56. The NMR spectroscopic data of this compound
are consistent with reported literature [59].

4.11. 6-Chloro-2-ethyl-3-methylquinoline (3k)

Yield = 88% (180 mg); brown gum; HRMS (ESI, M+ + H) calcd for C12H13ClN 206.0731,
found 206.0726; 1H NMR (500 MHz, CDCl3): δ 7.89 (d, J = 9.0 Hz, 1H), 7.57 (s, 1H), 7.54 (s,
1H), 7.46 (dd, J = 1.5, 8.5 Hz, 1H), 2.90 (q, J = 7.5 Hz, 2H), 2.37 (s, 3H), 1.32 (t, J = 8.0 Hz, 3H);
13C NMR (125 MHz, CDCl3): δ 163.35, 144.79, 134.41, 130.91, 130.34, 130.02, 128.86, 127.69,
125.16, 29.20, 18.91, 12.40. The NMR spectroscopic data of this compound are consistent
with reported literature [59].

4.12. 8-Bromo-2-ethyl-3-methylquinoline (3l)

Yield = 92% (229 mg); colorless solid; mp = 50–51 ◦C; HRMS (ESI, M+ + H) calcd for
C12H13BrN 250.0226, found 250.0221; 1H NMR (500 MHz, CDCl3): δ 7.91 (d, J = 7.5 Hz,
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1H), 7.74 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 3.00 (q, J = 7.5 Hz, 2H), 2.44
(s, 3H), 1.46 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 163.85, 143.34, 135.49, 131.64,
130.48, 128.29, 126.49, 125.80, 124.41, 29.16, 18.74, 11.89.

4.13. 6-Bromo-2-ethyl-3-methylquinoline (3m)

Yield = 89% (222 mg); colorless solid; mp = 53–54 ◦C; HRMS (ESI, M+ + H) calcd for
C12H13BrN 250.0226, found 250.0220; 1H NMR (500 MHz, CDCl3): δ 7.83 (d, J = 9.0 Hz,
1H), 7.75 (s, 1H), 7.62 (s, 1H), 7.60 (s, 1H), 2.91 (q, J = 7.5 Hz, 2H), 2.40 (s, 3H), 1.33 (t,
J = 8.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 163.57, 145.02, 134.36, 131.45, 130.37, 130.20,
128.54, 128.28, 119.08, 29.28, 18.98, 12.42. The NMR spectroscopic data of this compound
are consistent with reported literature [84].

4.14. 2-Ethyl-3-methyl-8-(trifluoromethyl)quinoline (3n)

Yield = 86% (206 mg); white solid; mp = 68–69 ◦C; HRMS (ESI, M+ + H) calcd for
C13H13F3N 240.1000, found 240.0997; 1H NMR (500 MHz, CDCl3): δ 7.95 (d, J = 7.0 Hz,
1H), 7.87 (d, J = 8.0 Hz, 1H), 7.84 (s, 1H), 7.46 (t, J = 7.5 Hz, 1H), 2.90 (q, J = 7.0 Hz, 2H), 2.47
(s, 3H), 1.45 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 163.62, 142.95, 134.90, 131.07,
130.65, 127.57, 127.20 (q, J = 28.875 Hz), 126.44 (q, J = 5.5 Hz), 124.36 (q, J = 271.875 Hz),
124.05, 29.11, 18.98, 11.30.

4.15. 2-Ethyl-3-methyl-6-(trifluoromethyl)quinoline (3o)

Yield = 90% (215 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C13H13F3N 240.0995,
found 240.0992; 1H NMR (500 MHz, CDCl3): δ 8.09 (d, J = 9.0 Hz, 1H), 7.96 (s, 1H), 7.83 (s,
1H), 7.75 (dd, J = 1.5, 8.5 Hz, 1H), 2.98 (q, J = 7.5 Hz, 2H), 2.46 (s, 3H), 1.37 (t, J = 7.5 Hz, 3H);
13C NMR (125 MHz, CDCl3): δ 165.65, 147.53, 136.06, 130.93, 129.61, 127.36 (q, J = 32.25 Hz),
126.15, 124.58 (q, J = 4.25 Hz), 124.20 (q, J = 270.5 Hz), 123.85 (q, J = 2.625 Hz), 29.47,
19.00, 12.38. The NMR spectroscopic data of this compound are consistent with reported
literature [86].

4.16. 2-Ethyl-3-methylquinoline-8-carbonitrile (3p)

Yield = 85% (167 mg); colorless solid; mp = 121–122 ◦C; HRMS (ESI, M+ + H) calcd for
C13H13N2 197.1073, found 197.1073; 1H NMR (500 MHz, CDCl3): δ 7.92 (d, J = 7.0 Hz, 1H),
7.87 (d, J = 7.0 Hz, 1H), 7.79 (s, 1H), 7.43 (t, J = 7.0 Hz, 1H), 2.96 (q, J = 7.0 Hz, 2H), 2.44 (s,
3H), 1.41 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 165.38, 145.62, 135.13, 133.94,
131.58, 126.91, 124.60, 117.58, 112.02, 29.03, 18.90, 11.52. Single-crystal X-ray diagram:
crystal of 3p was grown by slow diffusion of EtOAc into a solution of 3p in CH2Cl2 to yield
colorless prisms. The compound crystallizes in the monoclinic crystal system, space group
C 2/c, a = 20.8096(12) Å, α = 90◦; b = 8.4535(5) Å, β = 128.6800(10)◦; c = 15.3108(16) Å,
γ = 90◦. V = 2102.6(3) Å3, Z = 8, dcalcd = 1.240 Mg/m3, F(000) = 832, 2θ range 2.687–28.345,
R indices (all data) R1 = 0.0971, wR2 = 0.1285. CCDC number is 2016728.

4.17. (2-Ethyl-3-methylquinolin-8-yl)(phenyl)methanone (5a)

Yield = 88% (242 mg); colorless solid; mp = 129–130 ◦C; HRMS (ESI, M+ + H) calcd
for C19H18NO 276.1383, found 276.1381; 1H NMR (500 MHz, CDCl3): δ 7.84 (d, J = 8.0 Hz,
1H), 7.83 (s, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.74 (dd, J = 1.5, 7.5 Hz, 1H), 7.53 (t, J = 7.5 Hz,
1H), 7.50 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 2.71 (q, J = 7.5 Hz, 2H), 2.41 (s, 3H),
0.90 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 199.14, 162.68, 144.27, 139.13, 138.62,
134.63, 132.35, 130.21, 129.76 (2×), 128.89, 127.91 (2×), 127.55, 126.98, 125.05, 28.62, 19.01,
10.64. Single-crystal X-ray diagram: crystal of 5a was grown by slow diffusion of EtOAc
into a solution of 5a in CH2Cl2 to yield colorless prisms. The compound crystallizes in the
triclinic crystal system, space group P -1, a = 8.4108(3) Å, α = 103.454(2)◦; b = 8.9126(3) Å,
β = 97.603(2)◦; c = 10.9019(3) Å, γ = 111.8150(10)◦. V = 715.90(4) Å3, Z = 2, dcalcd = 1.277
Mg/m3, F(000) = 292, 2θ range 2.586–27.103, R indices (all data) R1 = 0.0607, wR2 = 0.1047.
CCDC number is 2002378.
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4.18. (6-Chloro-2-ethyl-3-methylquinolin-8-yl)(phenyl)methanone (5b)

Yield = 89% (275 mg); white solid; mp = 117–118 ◦C; HRMS (ESI, M+ + H) calcd for
C19H17ClNO 310.0993, found 310.0993; 1H NMR (500 MHz, CDCl3): δ 7.76 (d, J = 2.5 Hz,
1H), 7.74 (d, J = 7.0 Hz, 1H), 7.73 (s, 1H), 7.70 (s, 1H), 7.65 (d, J = 2.0 Hz, 1H), 7.51 (t,
J = 7.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 2H), 2.68 (q, J = 7.5 Hz, 2H), 2.37 (s, 3H), 0.87 (t, J = 7.5 Hz,
3H); 13C NMR (125 MHz, CDCl3): δ 197.30, 162.98, 142.55, 140.17, 138.43, 133.63, 132.67,
131.30, 130.62, 129.66 (2×), 127.98 (2×), 127.87, 127.71, 127.23, 28.50, 18.93, 10.43. Single-
crystal X-ray diagram: crystal of 5b was grown by slow diffusion of EtOAc into a solution
of 5b in CH2Cl2 to yield colorless prisms. The compound crystallizes in the triclinic crystal
system, space group P -1, a = 7.4420(3) Å, α = 103.4120(10)◦; b = 10.3406(3) Å, β = 100.533(2)◦;
c = 10.7949(4) Å, γ = 90.7170(10)◦. V = 793.14(5) Å3, Z = 2, dcalcd = 1.297 Mg/m3, F(000) = 324,
2θ range 2.028–33.138, R indices (all data) R1 = 0.0482, wR2 = 0.1123. CCDC number is
2013112.

4.19. (6-Bromo-2-ethyl-3-methylquinolin-8-yl)(phenyl)methanone (5c)

Yield = 91% (321 mg); yellow solid; mp = 141–142 ◦C; HRMS (ESI, M+ + H) calcd for
C19H17BrNO 354.0488, found 354.0489; 1H NMR (500 MHz, CDCl3): δ 7.96 (d, J = 2.0 Hz,
1H), 7.77 (d, J = 2.0 Hz, 1H), 7.75–7.71 (m, 3H), 7.51 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 2H),
2.68 (q, J = 7.5 Hz, 2H), 2.39 (s, 3H), 0.88 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3):
δ 197.22, 163.18, 142.83, 140.32, 138.47, 133.55, 132.71, 131.32, 130.60, 130.39, 129.72 (2×),
128.25, 128.02 (2×), 118.58, 28.59, 18.99, 10.45.

4.20. (2-Ethyl-3,6-dimethylquinolin-8-yl)(phenyl)methanone (5d)

Yield = 86% (249 mg); yellow solid; mp = 132–133 ◦C; HRMS (ESI, M+ + H) calcd for
C20H20NO 290.1539, found 290.1547; 1H NMR (500 MHz, CDCl3): δ 7.76 (d, J = 8.0 Hz, 2H),
7.72 (s, 1H), 7.58 (d, J = 8.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 2.68
(q, J = 7.5 Hz, 2H), 2.54 (s, 3H), 2.37 (s, 3H), 0.88 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz,
CDCl3): δ 199.23, 161.61, 142.84, 139.12, 138.30, 134.75, 134.03, 132.25, 130.04, 129.71 (2×),
129.57, 127.87, 127.83 (2×), 127.01, 28.43, 21.39, 18.95, 10.62. Single-crystal X-ray diagram:
crystal of 5d was grown by slow diffusion of EtOAc into a solution of 5d in CH2Cl2 to yield
colorless prisms. The compound crystallizes in the monoclinic crystal system, space group
P 21/c, a = 13.2934(5) Å, α = 90◦; b = 14.2302(5) Å, β = 108.5200(10)◦; c = 8.6189(3) Å, γ = 90◦.
V = 1545.98(10) Å3, Z = 4, dcalcd = 1.243 Mg/m3, F(000) = 616, 2θ range 2.158–27.098, R
indices (all data) R1 = 0.0479, wR2 = 0.0968. CCDC number is 2039753.

4.21. (2-Ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)(phenyl)methanone (5e)

Yield = 84% (282 mg); white solid; mp = 130–131 ◦C; HRMS (ESI, M+ + H) calcd for
C21H22NO3 336.1594, found 336.1596; 1H NMR (500 MHz, CDCl3): δ 8.09 (s, 1H), 7.73 (d,
J = 8.0 Hz, 2H), 7.59 (s, 1H), 7.49 (t, J = 7.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 2H), 4.05 (s, 3H), 4.01
(s, 3H), 2.65 (q, J = 7.5 Hz, 2H), 2.39 (s, 3H), 0.81 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz,
CDCl3): δ 198.42, 160.70, 147.30, 143.70, 140.30, 139.45, 134.28, 132.18, 130.11, 129.74 (2×),
128.61, 127.80 (2×), 122.41, 116.58, 61.31, 56.79, 28.30, 19.19, 10.41.

4.22. (2-Ethyl-3-methyl-6-phenylquinolin-8-yl)(phenyl)methanone (5f)

Yield = 88% (309 mg); yellow solid; mp = 140–141 ◦C; HRMS (ESI, M+ + H) calcd for
C25H22NO 352.1696, found 352.1694; 1H NMR (500 MHz, CDCl3): δ 8.03 (d, J = 1.5 Hz,
1H), 8.00 (d, J = 2.0 Hz, 1H), 7.87 (s, 1H), 7.82 (d, J = 7.5 Hz, 2H), 7.74 (d, J = 7.5 Hz, 2H),
7.53–7.47 (m, 3H), 7.42–7.38 (m, 3H), 2.73 (q, J = 7.0 Hz, 2H), 2.42 (s, 3H), 0.93 (t, J = 7.5 Hz,
3H); 13C NMR (125 MHz, CDCl3): δ 198.94, 162.73, 143.67, 139.99, 139.03, 138.99, 137.82,
134.84, 132.45, 130.57, 129.81 (2×), 128.92 (2×), 127.94 (2×), 127.68, 127.31 (2×), 127.26,
127.10, 126.43, 28.62, 19.03, 10.69.
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4.23. (2-Ethyl-6-(4-methoxyphenyl)-3-methylquinolin-8-yl)(phenyl)methanone (5g)

Yield = 83% (316 mg); yellow solid; mp = 96–97 ◦C; HRMS (ESI, M+ + H) calcd for
C26H24NO2 382.1802, found 382.1805; 1H NMR (500 MHz, CDCl3): δ 7.96 (dd, J = 2.0,
6.0 Hz, 2H), 7.86–7.78 (m, 3H), 7.66 (d, J = 8.5 Hz, 2H), 7.54–7.48 (m, 1H), 7.38 (t, J = 8.0 Hz,
2H), 7.02 (d, J = 9.0 Hz, 2H), 3.86 (s, 3H), 2.72 (q, J = 7.5 Hz, 2H), 2.40 (s, 3H), 0.92 (t,
J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 199.03, 162.36, 159.44, 143.38, 139.02, 138.82,
137.40, 134.70, 132.40, 130.47, 129.79 (2×), 128.33 (2×), 127.91 (2×), 127.30, 126.88, 125.62,
114.36 (2×), 55.31, 28.56, 19.00, 10.68.

4.24. (2-Ethyl-6-(4-fluorophenyl)-3-methylquinolin-8-yl)(phenyl)methanone (5h)

Yield = 87% (321 mg); yellow solid; mp = 146–147 ◦C; HRMS (ESI, M+ + H) calcd for
C25H21FNO 370.1602, found 370.1602; 1H NMR (500 MHz, CDCl3): δ 7.96 (d, J = 2.0 Hz,
1H), 7.93 (d, J = 2.0 Hz, 1H), 7.85 (s, 1H), 7.81 (s, 1H), 7.80 (s, 1H), 7.69–7.66 (m, 2H), 7.52
(t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 2H), 7.17 (t, J = 8.5 Hz, 2H), 2.72 (q, J = 7.0 Hz, 2H),
2.41 (s, 3H), 0.91 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 198.87, 162.82, 162.66
(d, J = 245.875 Hz), 143.58, 139.05 (d, J = 26.375 Hz), 136.85, 136.14 (d, J = 3.125 Hz), 134.76,
132.50, 130.71, 129.79 (2×), 128.92 (d, J = 8.125 Hz, 2×), 127.96 (2×), 127.24, 126.89, 126.27,
115.83 (d, J = 21.5 Hz, 2×), 28.62, 19.03, 10.65.

4.25. (2-Ethyl-3-methylquinolin-8-yl)(4-fluorophenyl)methanone (5i)

Yield = 89% (261 mg); yellow solid; mp = 124–125 ◦C; HRMS (ESI, M+ + H) calcd for
C19H17FNO 294.1289, found 294.1288; 1H NMR (500 MHz, CDCl3): δ 7.86–7.81 (m, 2H),
7.80–7.75 (m, 2H), 7.71 (d, J = 7.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 8.5 Hz, 2H),
2.72 (q, J = 7.0 Hz, 2H), 2.40 (s, 3H), 0.92 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3):
δ 197.52, 165.33 (d, J = 252.125 Hz), 162.73, 144.09, 138.23, 135.54 (d, J = 2.625 Hz), 134.66,
132.30 (d, J = 9.25 Hz, 2×, 130.29, 129.05, 127.57, 126.96, 125.08, 114.95 (d, J = 21.75 Hz, 2×),
28.58, 18.96, 10.63.

4.26. (4-Chlorophenyl)(2-ethyl-3-methylquinolin-8-yl)methanone (5j)

Yield = 90% (278 mg); White solid; mp = 127–128 ◦C; HRMS (ESI, M+ + H) calcd for
C19H17ClNO 310.0993, found 310.0998; 1H NMR (500 MHz, CDCl3): δ 7.84 (d, J = 8.5 Hz,
1H), 7.82 (s, 1H), 7.72 (d, J = 7.0 Hz, 1H), 7.68 (d, J = 8.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H),
7.33 (d, J = 8.5 Hz, 2H), 2.72 (q, J = 7.0 Hz, 2H), 2.40 (s, 3H), 0.91 (t, J = 7.0 Hz, 3H); 13C
NMR (125 MHz, CDCl3): δ 197.90, 162.76, 144.10, 138.58, 137.98, 137.58, 134.66, 131.08 (2×),
130.33, 129.21, 128.18 (2×), 127.71, 126.96, 125.10, 28.59, 18.97, 10.59.

4.27. (4-Bromophenyl)(2-ethyl-3-methylquinolin-8-yl)methanone (5k)

Yield = 88% (311 mg); yellow solid; mp = 117–118 ◦C; HRMS (ESI, M+ + H) calcd for
C19H17BrNO 354.0488, found 354.0496; 1H NMR (500 MHz, CDCl3): δ 7.85 (d, J = 8.5 Hz,
1H), 7.83 (s, 1H), 7.72 (dd, J = 1.0, 7.0 Hz, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.53 (t, J = 8.0 Hz,
1H), 7.50 (d, J = 8.5 Hz, 2H), 2.72 (q, J = 7.0 Hz, 2H), 2.41 (s, 3H), 0.91 (t, J = 7.0 Hz, 3H); 13C
NMR (125 MHz, CDCl3): δ 198.13, 162.80, 144.12, 138.02, 137.94, 134.67, 131.22 (2×), 131.18
(2×), 130.36, 129.25, 127.76, 127.33, 126.98, 125.12, 28.62, 19.00, 10.60.

4.28. (2-Ethyl-3-methylquinolin-8-yl)(p-tolyl)methanone (5l)

Yield = 85% (246 mg); yellow solid; mp = 104–105 ◦C; HRMS (ESI, M+ + H) calcd for
C20H20BrNO 290.1539, found 290.1543; 1H NMR (500 MHz, CDCl3): δ 7.83 (s, 1H), 7.82
(d, J = 7.5 Hz, 1H), 7.68–7.65 (m, 3H), 7.51 (t, J = 7.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 2.74
(q, J = 7.0 Hz, 2H), 2.41 (s, 3H), 2.39 (s, 3H), 0.95 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz,
CDCl3): δ 198.69, 162.72, 144.26, 143.16, 138.91, 136.46, 134.65, 130.15, 130.00 (2×), 128.64
(2×), 128.59, 127.23, 126.99, 124.98, 28.69, 21.65, 19.01, 10.83.
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4.29. (2-Ethyl-3-methylquinolin-8-yl)(4-methoxyphenyl)methanone (5m)

Yield = 86% (262 mg); yellow solid; mp = 95–96 ◦C; HRMS (ESI, M+ + H) calcd for
C20H20BrNO2 306.1489, found 306.1485; 1H NMR (500 MHz, CDCl3): δ 7.82 (s, 1H), 7.81 (d,
J = 8.5 Hz, 1H), 7.75 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 7.0 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 6.85
(d, J = 8.5 Hz, 2H), 3.84 (s, 3H), 2.75 (q, J = 7.5 Hz, 2H), 2.41 (s, 3H), 0.99 (t, J = 7.5 Hz, 3H);
13C NMR (125 MHz, CDCl3): δ 197.54, 163.13, 162.75, 144.19, 139.00, 134.68, 132.22 (2×),
131.97, 130.12, 128.45, 127.11, 126.98, 124.99, 113.15 (2×), 55.37, 28.69, 19.00, 10.96.

4.30. (2-Ethyl-3-methylquinolin-8-yl)(2,3,4-trimethoxyphenyl)methanone (5n)

Yield = 87% (318 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C22H24NO4 366.1700,
found 366.1696; 1H NMR (500 MHz, CDCl3): δ 7.79 (s, 1H), 7.78 (d, J = 7.5 Hz, 2H), 7.50 (t,
J = 7.5 Hz, 1H), 7.45 (d, J = 9.0 Hz, 1H), 6.68 (d, J = 9.0 Hz, 1H), 3.89 (s, 3H), 3.75 (s, 3H), 3.27
(s, 3H), 2.69 (q, J = 7.5 Hz, 2H), 2.37 (s, 3H), 0.90 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz,
CDCl3): δ 197.01, 162.14, 156.84, 153.74, 144.06, 141.70, 140.50, 134.72, 129.84, 128.83, 128.79,
127.39, 126.73, 126.19, 125.07, 106.46, 60.98, 60.69, 56.04, 28.49, 18.95, 10.62.

4.31. (6-Chloro-2-ethyl-3-methylquinolin-8-yl)(2-chlorophenyl)methanone (5o)

Yield = 83% (285 mg); yellow solid; mp = 123–124 ◦C; HRMS (ESI, M+ + H) calcd for
C19H16Cl2NO 344.0604, found 344.0606; 1H NMR (500 MHz, CDCl3): δ 7.93 (d, J = 2.5 Hz,
1H), 7.83 (d, J = 2.0 Hz, 1H), 7.70 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.38–7.33 (m, 2H), 7.30–7.25
(m, 1H), 2.62 (q, J = 7.5 Hz, 2H), 2.36 (s, 3H), 0.77 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz,
CDCl3): δ 196.28, 163.07, 142.55, 140.59, 139.30, 133.78, 132.05, 131.41, 131.25, 130.94, 130.49,
130.15, 130.05, 129.09, 127.82, 126.45, 28.61, 19.01, 10.24.

4.32. (2-Ethyl-6-methoxy-3-methylquinolin-8-yl)(4-methoxyphenyl)methanone (5p)

Yield = 85% (285 mg); yellow solid; mp = 176–177 ◦C; HRMS (ESI, M+ + H) calcd for
C21H22NO3 336.1594, found 336.1591; 1H NMR (500 MHz, CDCl3): δ 8.22 (s, 1H), 7.73 (d,
J = 9.0 Hz, 2H), 7.67 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 8.5 Hz, 3H), 4.03 (s, 3H), 3.84 (s, 3H),
2.72 (q, J = 7.0 Hz, 2H), 2.41 (s, 3H), 0.93 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3):
δ 197.19, 162.83, 162.77, 156.42, 145.28, 132.75, 132.19 (2×), 131.40, 129.47, 129.08, 128.71,
118.83, 112.98 (2×), 102.91, 55.79, 55.36, 28.61, 19.09, 10.80.

4.33. (2-Ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)(p-tolyl)methanone (5q)

Yield = 84% (293 mg); yellow solid; mp = 92–93 ◦C; HRMS (ESI, M+ + H) calcd for
C22H24NO3 350.1751, found 350.1749; 1H NMR (500 MHz, CDCl3): δ 8.09 (s, 1H), 7.65
(d, J = 8.0 Hz, 2H), 7.53 (s, 1H), 7.16 (d, J = 8.0 Hz, 2H), 4.04 (s, 3H), 4.00 (s, 3H), 2.67 (q,
J = 7.0 Hz, 2H), 2.40 (s, 3H), 2.38 (s, 3H), 0.87 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3):
δ 197.95, 160.71, 147.24, 143.38, 142.99, 140.27, 136.69, 134.68, 130.06, 130.00 (2×), 128.60,
128.52 (2×), 122.41, 116.23, 61.29, 56.77, 28.36, 21.59, 19.18, 10.59.

4.34. (3,4-Dimethoxyphenyl)(2-ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)methanone (5r)

Yield = 85% (336 mg); yellow solid; mp = 141–142 ◦C; HRMS (ESI, M+ + H) calcd for
C23H26NO5 396.1806, found 396.1805; 1H NMR (500 MHz, CDCl3): δ 8.08 (s, 1H), 7.59 (d,
J = 1.5 Hz, 1H), 7.48 (s, 1H), 7.13 (dd, J = 1.5, 8.5 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 4.03 (s, 3H),
3.98 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 2.70 (q, J = 7.5 Hz, 2H), 2.40 (s, 3H), 0.94 (t, J = 7.5 Hz,
3H); 13C NMR (125 MHz, CDCl3): δ 196.81, 160.85, 152.85, 148.59, 147.16, 143.15, 140.27,
134.71, 132.12, 130.05, 128.64, 126.07, 122.43, 115.98, 111.14, 109.50, 61.28, 56.76, 55.95, 55.92,
28.42, 19.20, 10.98.

4.35. (2-Ethyl-6,7-dimethoxy-3-methylquinolin-8-yl)(3,4,5-trimethoxyphenyl)methanone (5s)

Yield = 84% (357 mg); yellow solid; mp = 121–122 ◦C; HRMS (ESI, M+ + H) calcd for
C24H28NO6 426.1911, found 426.1912; 1H NMR (500 MHz, CDCl3): δ 8.08 (s, 1H), 7.52 (s,
1H), 7.02 (s, 2H), 4.03 (s, 3H), 3.99 (s, 3H), 3.88 (s, 3H), 3.72 (s, 6H), 2.69 (q, J = 7.0 Hz, 2H),
2.39 (s, 3H), 0.92 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 196.95, 160.88, 152.54
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(2×), 147.10, 143.52, 142.11, 140.24, 134.43, 134.02, 130.04, 128.69, 122.40, 116.43, 107.69 (2×),
61.25, 60.79, 56.74, 56.17 (2×), 28.31, 19.17, 10.86.

4.36. 2-Butyl-3-propylquinoline (6a)

Yield = 86% (195 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C16H22N 228.1747,
found 228.1741; 1H NMR (500 MHz, CDCl3): δ 8.02 (d, J = 8.5 Hz, 1H), 7.83 (s, 1H), 7.70 (d,
J = 8.0 Hz, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 3.01–2.95 (m, 2H), 2.80–2.73
(m, 2H), 1.83–1.68 (m, 4H), 1.55–1.46 (m, 2H), 1.04 (t, J = 7.5 Hz, 3H), 0.99 (t, J = 7.5 Hz, 3H);
13C NMR (125 MHz, CDCl3): δ 162.23, 146.47, 134.77, 133.79, 128.41, 128.24, 127.15, 126.81,
125.44, 35.59, 34.36, 31.82, 23.53, 23.00, 14.02, 13.99. The NMR spectroscopic data of this
compound are consistent with reported literature [60].

4.37. 2-Isobutyl-3-isopropylquinoline (6b)

Yield = 85% (193 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C16H22N 228.1747,
found 228.1746; 1H NMR (500 MHz, CDCl3): δ 8.03 (d, J = 8.5 Hz, 1H), 7.94 (s, 1H), 7.73 (d,
J = 8.0 Hz, 1H), 7.62–7.59 (m, 1H), 7.45–7.42 (m, 1H), 3.36–3.30 (m, 1H), 2.93 (d, J = 7.5 Hz,
2H), 2.31–2.25 (m, 1H), 1.33 (d, J = 7.0 Hz, 6H), 1.01 (d, J = 6.5 Hz, 6H); 13C NMR (125 MHz,
CDCl3): δ 160.68, 146.12, 140.67, 131.44, 128.46, 128.25, 127.21, 126.96, 125.42, 44.05, 29.31,
28.73, 23.79 (2×), 22.57 (2×). The NMR spectroscopic data of this compound are consistent
with reported literature [87].

4.38. 3-Benzyl-2-phenethylquinoline (6c)

Yield = 83% (268 mg); white solid; mp = 102–103 ◦C; HRMS (ESI, M+ + H) calcd for
C24H22N 324.1747, found 324.1749; 1H NMR (500 MHz, CDCl3): δ 8.10 (d, J = 8.5 Hz, 1H),
7.77 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.34–7.15
(m, 8H), 7.12 (d, J = 7.5 Hz, 2H), 4.09 (s, 2H), 3.29–3.19 (m, 2H), 3.16–3.04 (m, 2H); 13C NMR
(125 MHz, CDCl3): δ 161.20, 146.85, 141.93, 139.26, 136.35, 132.43, 128.88 (2×), 128.78, 128.66
(2×), 128.53 (3×), 128.32 (2×), 127.12, 127.10, 126.48, 125.89, 125.86, 38.68, 37.69, 35.28. The
NMR spectroscopic data of this compound are consistent with reported literature [85].

4.39. 3-(2,2,2-Trifluoroethyl)-2-(3,3,3-trifluoropropyl)quinoline (6d)

Yield = 89% (273 mg); white solid; mp = 92–93 ◦C; HRMS (ESI, M+ + H) calcd for
C14H12F6N 308.0869, found 308.0870; 1H NMR (500 MHz, CDCl3): δ 8.07 (s, 1H), 8.03
(d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.76–7.70 (m, 1H), 7.57–7.52 (m, 1H), 3.62 (q,
J = 10.0 Hz, 2H), 3.30–3.22 (m, 2H), 2.94–281 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 157.16,
147.30, 138.82, 130.09, 128.82, 127.41 (q, J = 274.625 Hz), 127.31, 126.73, 126.65, 125.58 (q,
J = 272.0 Hz), 121.97, 36.47 (q, J = 90 Hz), 31.87 (q, J = 28.75 Hz), 27.40.

4.40. (2-Butyl-3-propylquinolin-8-yl)(phenyl)methanone (6e)

Yield = 84% (278 mg); yellow solid; mp = 68–69 ◦C; HRMS (ESI, M+ + H) calcd for
C23H26NO 332.2009, found 332.2005; 1H NMR (500 MHz, CDCl3): δ 7.85 (dd, J = 1.5, 8.0 Hz,
1H), 7.83 (s, 1H), 7.79–7.74 (m, 2H), 7.71 (dd, J = 1.5, 7.0 Hz, 1H), 7.55–7.48 (m, 2H), 7.36 (t,
J = 7.5 Hz, 2H), 2.71 (q, J = 7.0 Hz, 4H), 1.75–1.64 (m, 2H), 1.39–1.31 (m, 2H), 1.17–1.08 (m,
2H), 1.03 (t, J = 7.0 Hz, 3H), 0.72 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3): δ 199.18,
161.84, 144.12, 139.06, 138.58, 134.54, 133.84, 132.36, 129.73 (2×), 128.98, 127.93 (2×), 127.42,
126.83, 124.95, 34.46, 34.30, 29.33, 23.08, 22.34, 14.02, 13.94.

4.41. (2-Isobutyl-3-isopropylquinolin-8-yl)(phenyl)methanone (6f)

Yield = 86% (285 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C23H26NO 332.2009,
found 332.2003; 1H NMR (500 MHz, CDCl3): δ 7.95 (s, 1H), 7.87 (dd, J = 1.5, 8.5 Hz, 1H),
7.80–7.73 (m, 2H), 7.70 (dd, J = 1.5, 7.0 Hz, 1H), 7.54–7.47 (m, 2H), 7.36 (t, J = 8.0 Hz, 2H),
3.29–3.20 (m, 1H), 2.66 (d, J = 7.0 Hz, 2H), 1.91–1.83 (m, 1H), 1.31 (d, J = 6.5 Hz, 6H), 0.68 (d,
J = 6.5 Hz, 6H); 13C NMR (125 MHz, CDCl3): δ 199.26, 160.62, 143.87, 141.17, 138.96, 138.67,
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132.33, 130.74, 129.67 (2×), 129.03, 127.94 (2×), 127.22, 126.92, 124.90, 43.54, 28.56, 27.28,
23.50 (2×), 22.47 (2×).

4.42. (3-Benzyl-2-phenethylquinolin-8-yl)(phenyl)methanone (6g)

Yield = 85% (363 mg); yellow solid; mp = 137–138 ◦C; HRMS (ESI, M+ + H) calcd for
C31H26NO 428.2009, found 428.2009; 1H NMR (500 MHz, CDCl3): δ 7.90–7.77 (m, 4H), 7.76
(s, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.36–7.30
(m, 2H), 7.29–7.24 (m, 1H), 7.21–7.16 (m, 2H), 7.15–7.09 (m, 3H), 6.94 (d, J = 7.5 Hz, 2H),
4.04 (s, 2H), 3.01 (t, J = 8.0 Hz, 2H), 2.62 (t, J = 8.0 Hz, 2H); 13C NMR (125 MHz, CDCl3):
δ 198.93, 160.78, 144.30, 142.26, 139.14, 138.71, 138.49, 135.32, 133.10, 132.49, 129.73 (2×),
129.30, 128.91 (2×), 128.64 (2×), 128.38 (2×), 128.09 (2×), 128.04 (3×), 126.82, 126.49, 125.54,
125.32, 38.44, 36.85, 32.88.

4.43. Phenyl(3-(2,2,2-trifluoroethyl)-2-(3,3,3-trifluoropropyl)quinolin-8-yl)methanone (6h)

Yield = 88% (362 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C21H16F6NO
412.1131, found 412.1123; 1H NMR (500 MHz, CDCl3): δ 8.10 (s, 1H), 7.96 (dd, J = 2.0,
8.5 Hz, 1H), 7.91 (dd, J = 2.0, 8.5 Hz, 1H), 7.75–7.69 (m, 2H), 7.68–7.63 (m, 1H), 7.56–7.52 (m,
1H), 7.40 (t, J = 8.0 Hz, 2H), 3.56 (q, J = 10.0 Hz, 2H), 3.03–2.97 (m, 2H), 2.11–1.99 (m, 2H);
13C NMR (125 MHz, CDCl3): δ 198.32, 157.04, 144.56, 139.20, 138.53, 138.42, 132.69, 129.95,
129.79, 129.43 (2×), 128.18 (2×), 127.43 (q, J = 274.375 Hz), 126.36, 125.44 (q, J = 275.75 Hz),
122.65, 122.63, 36.21 (q, J = 30.25 Hz), 30.07 (q, J = 28.625 Hz), 27.17.

4.44. 4-Phenyl-3-(2,2,2-trifluoroethyl)quinoline (7)

Yield = 90% (258 mg); yellow gum; HRMS (ESI, M+ + H) calcd for C17H13F3N 288.0995,
found 288.0992; 1H NMR (500 MHz, CDCl3): δ 8.98 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.74–
7.68 (m, 1H), 7.57–7.49 (m, 3H), 7.47–7.37 (m, 2H), 7.27 (dd, J = 2.0, 8.0 Hz, 2H), 3.42 (q,
J = 10.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 151.67, 149.24, 147.58, 135.35, 129.51 (d,
J = 20.25 Hz), 129.37 (2×), 129.19, 128.76, 128.64 (2×), 128.47, 127.59, 126.82 (d, J = 35.5 Hz),
125.45 (q, J = 275.875 Hz), 120.97 (d, J = 2.125 Hz), 35.23 (q, J = 30.25 Hz).

5. Conclusions

In summary, an environmentally friendly and atom-economical synthetic route is
reported for the preparation of functionalized 2,3-dialkylquinolines from substituted ani-
lines and functionalized propionaldehydes using Nafion® NR50 as an acidic catalyst. The
reaction worked well with various substituted anilines and propionaldehydes and pro-
vided the corresponding quinolines in good to excellent yields. A series of quinolinyl
ketones were also synthesized, indicating that this reaction features good functional group
tolerance. Moreover, the Nafion® NR50 particles could be repeatedly used and exhibit
good efficiency, demonstrating their environmentally friendly properties. Four structures
were confirmed by single-crystal X-ray crystallography. Further investigations of Nafion®

NR50 particles are currently underway in our group.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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and X-ray analysis data for 3p, 5a, 5b and 5d (PDF).
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