Recent Developments in Rh Heterogeneous Catalysts
Author Contributions
Funding
Conflicts of Interest
References
- Hegedus, L.L.; Summers, J.C.; Schlatter, J.C.; Baron, K. Poison-resistant catalysts for the simultaneous control of hydrocarbon, carbon monoxide, and nitrogen oxide emissions. J. Catal. 1979, 56, 321–335. [Google Scholar] [CrossRef]
- Yao, H.C.; Yu, Y.C. Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal. 1984, 86, 254–265. [Google Scholar] [CrossRef]
- Unland, M.I. Isocyanate intermediates in the reaction of NO and CO over noble metal catalysts. J. Catal. 1973, 31, 459–465. [Google Scholar] [CrossRef]
- Solymosi, F.; Sárkány, J. An Infrared Study of the Surface Interaction between NO and CO on Rh/Al2O3 Catalysts. Appl. Surf. Sci. 1979, 3, 68–82. [Google Scholar] [CrossRef]
- Kiss, J.; Solymosi, F. Surface Behaviour of NCO Species on Rh(111) and Polycrystalline Rh. Surface. Surf. Sci. 1983, 135, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Kiss, J.; Solymosi, F. The Effect of Adsorbed Oxygen on the Stability of NCO on Rh(111) Studied by Reflection Absorption Infrared Spectroscopy. J. Catal. 1998, 179, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Sexton, B.A.; Somorjai, G.A. The hydrogenation of CO and CO2 over polycrystalline rhodium: Correlation of surface composition, kinetics and product distributions. J. Catal. 1977, 46, 167–189. [Google Scholar] [CrossRef] [Green Version]
- Fisher, I.A.; Bell, A.T. A Comparative Study of CO and CO2 Hydrogenation over Rh/SiO2. J. Catal. 1996, 162, 54–65. [Google Scholar] [CrossRef]
- Solymosi, F.; Erdőhelyi, A. Hydrogenation of CO2 to CH4 over alumina -supported noble metal. J. Mol. Catal. 1980, 8, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Solymosi, F.; Kutsán, G.; Erdőhelyi, A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt-metals. Catal. Lett. 1991, 11, 149–156. [Google Scholar] [CrossRef]
- Solymosi, F.; Kiss, J.; Kovács, I. Adsorption and Decomposition of HCOOH on Potassium Promoted Rh(111) Surfaces. J. Phys. Chem. 1988, 92, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Mavrikakis, M.; Barteau, A.A. Oxygenate reaction pathways on transition metal surfaces. J. Mol. Catal. Chem. 1998, 131, 135–147. [Google Scholar] [CrossRef]
- Sheng, P.Y.; Yee, A.; Bowmaker, G.A.; Idriss, H. H2 Production from Ethanol over Rh-Pt/CeO2 Catalysts: The Role of Rh for the Efficient Dissociation of the Carbon-Carbon Bond. J. Catal. 2002, 208, 393–403. [Google Scholar] [CrossRef]
- Varga, E.; Pusztai, P.; Oszkó, A.; Baán, K.; Erdőhelyi, A.; Kónya, Z.; Kiss, J. Stability and Temperature-Induced Agglomeration of Rh nanoparticles Supported on CeO2. Langmuir 2016, 32, 2761–2770. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.-H.; Hsu, P.-W.; Hung, T.-C.; Liao, G.-J.; Chern, Z.-Y.; Lai, Y.-L.; Yu, L.-C.; Hsu, Y.-J.; Wang, J.-H.; Chen, P.; et al. Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film. Catalysts 2019, 9, 971. [Google Scholar] [CrossRef] [Green Version]
- Idriss, H.; Llorca, J. Low Temperature Infrared Study of Carbon Monoxide Adsorption on Rh/CeO2. Catalysts 2019, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Ferencz, Z.; Erdőhelyi, A.; Baán, K.; Oszkó, A.; Óvári, L.; Kónya, Z.; Papp, C.; Steinrück, H.-P.; Kiss, J. Effects of Support and Rh Additive on Co-Based Catalysts in the Ethanol Steam Reforming Reaction. ACS Catal. 2014, 4, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Ferencz, Z.; Baán, K.; Oszkó, A.; Kónya, Z.; Kecskés, T.; Erdőhelyi, A. Dry reforming of CH4 on Rh doped Co/Al2O3 catalysts. Catal. Today 2014, 228, 123–130. [Google Scholar] [CrossRef]
- Kukovecz, Á.; Kordás, K.; Kiss, J.; Kónya, Z. Atomic Scale Characterization and Surface Chemistry of Metal Modified Titanate Nanotubes and Nanowires. Surf. Sci. Rep. 2016, 71, 473–546. [Google Scholar] [CrossRef] [Green Version]
- Kiss, J.; Sápi, A.; Tóth, M.; Kukovecz, Á.; Kónya, Z. Rh-induced Support Transformation and Rh Incorporation in Titanate Structures and Their Influence on Catalytic Activity. Catalysts 2020, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- Erdőhelyi, A. Hydrogenation of carbon Dioxide on Supported Rh Catalysts. Catalysts 2020, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Erdőhelyi, A. Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal. Catalysts 2021, 11, 159. [Google Scholar] [CrossRef]
- Karadeniz, H.; Karakaya, C.; Tischer, S.; Deutschmann, O. Numerical Simulation of Methane and Propane Reforming Over a Porous Rh/Al2O3 Catalyst in Stagnation-Flows: Impact of Internal and External Mass Transfer Limitations on Species Profiles. Catalysts 2020, 10, 915. [Google Scholar] [CrossRef]
- Kirkwood, K.; Jackson, S.D. Hydrogenation and Hydrodeoxygenation of Oxygen-Substituted Aromatics over Rh/silica: Catechol, Resorcinol and Hydroquinone. Catalysts 2020, 10, 584. [Google Scholar] [CrossRef]
- Rufete-Beneite, M.; Roman-Martinez, M.C. Unraveling Toluene Conversion during the Liquid Phase Hydrogenation of Cyclohexene (in Toluene) with Rh Hybrid Catalysts. Catalysts 2019, 9, 973. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Gracia, J.R.; Fierro-Gonzales, J.C.; Handy, B.E.; Hinojosa-Reyes, L.; De Haro Del Rio, D.A.; Luicio, C.J.; Valle Cervantes, S.; Flores-Escamilla, G.A. An In Situ Infrared Study of CO2 Hydrogenation to Formic Acid by Using Rhodium Supported on Titanate Nanotubes as Catalysts. Chem. Sel. 2019, 4, 4206–4216. [Google Scholar]
- Moret, S.; Dyson, P.J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun. 2014, 5, 4017. [Google Scholar] [CrossRef] [Green Version]
- Fink, C.; Laurenczy, G. A precious catalyst: Rhodium-catalyzed formic acid dehydrogenation in water. Eur. J. Inorg. Chem. 2019, 19, 2381–2387. [Google Scholar] [CrossRef]
- Yu, Z.; An, X.; Kurnia, I.; Yoshida, A.; Yang, X.; Hao, X.; Abudula, A.; Fang, Y.; Guan, G. Full Spectrum Decomposition of Formic Acid over γ-Mo2N Based Catalysts: From Dehydration to Dehydrogenation. ACS Catal. 2020, 10, 5353–5361. [Google Scholar] [CrossRef]
- Halasi, G.; Schubert, G.; Solymosi, F. Photodecomposition of formic acid on N-doped and metal-modified TiO2: Production of CO-free H2. J. Phys. Chem. C 2012, 116, 15396–15405. [Google Scholar] [CrossRef] [Green Version]
- Kovács, I.; Kiss, J.; Kónya, Z. The Potassium-Induced Decomposition Pathway of HCOOH on Rh(111). Catalysts 2020, 10, 675. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiss, J.; Kovács, I. Recent Developments in Rh Heterogeneous Catalysts. Catalysts 2021, 11, 416. https://doi.org/10.3390/catal11040416
Kiss J, Kovács I. Recent Developments in Rh Heterogeneous Catalysts. Catalysts. 2021; 11(4):416. https://doi.org/10.3390/catal11040416
Chicago/Turabian StyleKiss, János, and Imre Kovács. 2021. "Recent Developments in Rh Heterogeneous Catalysts" Catalysts 11, no. 4: 416. https://doi.org/10.3390/catal11040416
APA StyleKiss, J., & Kovács, I. (2021). Recent Developments in Rh Heterogeneous Catalysts. Catalysts, 11(4), 416. https://doi.org/10.3390/catal11040416