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Rh-based catalysts successfully catalyze bond making and bond breaking reactions in
most cases. Rhodium (Rh) has been one of the focuses of catalyst research from industrial
and environmental points of view from the middle of seventies. This ascertainment is valid
even nowadays, which is reflected in this Special Issue, too. Rh is one of the most impor-
tant components of three-way catalysts [1,2]. A three-way catalyst oxidizes exhaust gas
pollutants—both hydrocarbons (HC) and carbon monoxide (CO)—and reduces nitrogen
oxides (NOx) into harmless components, such as water (H2O), nitrogen (N2) and carbon
dioxide (CO2). Therefore, the mechanism of the reaction of NO with CO was extensively
studied on oxide supported Rh catalysts, and it was established that isocyanate (NCO)
surface complex is a real reaction intermediate [3–6]. The CO and CO2 hydrogenation
with hydrogen and methane is also an important issue from the past to the present. These
reactions may result in reducing the poisoning and in producing compounds that are more
valuable. Significant attention has been paid to the relations between catalytic activity,
reaction mechanism and intermediates [7–11]. Furthermore, it was revealed that supported
Rh was a promising catalyst for carrying out the transformation of oxo-hydrocarbons
(alcohols, aldehydes) producing hydrogen as a potential fuel. It is an important conclusion
that Rh plays an important role in the dissociation of carbon–carbon bonds [12,13].

Despite the high cost of rhodium metal, its superior catalytic properties at low tem-
perature still make it indispensable to understand the interaction between the metal and
the support, to check the surface compounds formed during the reaction, and to show the
elementary steps of the reaction, and as additives appear to be unavoidable for the devel-
opment of an effective and stable catalyst. Considering this economic demand, several
important attempts are made to reduce the expenses. These efforts are reflected in the recent
studies and in this Special Issue, too. Firstly, the amount and the size of the Rh catalyst can
be minimized with the optimal preparation circumstances; secondly, the applied second
adatom may increase the catalytic efficiency of the Rh nanoparticles. Finally, the new
generation support materials for Rh may increase the catalytic performance in many cases.
Following these efforts, methods are developed for the deposition of Rh, which results in
nanosized distribution of the metal on the supports; the thermal stability and reactivity of
Rh nanoclusters were studied, especially on CeO2 and on an ultrathin alumina film [14,15].
The infrared study of carbon monoxide adsorption greatly helps in the mapping of mor-
phology and oxidation states of Rh nanoparticles prepared on supports [16]. Very recently,
it turned out, in several cases, that the adatom, similar to cobalt, significantly enhanced
the Rh activity in the steam reforming of ethanol. The catalytic activity of 0.1% Rh + 2%
Co on ceria exceeded the activity of 5%Rh/CeO2 catalysts [17]. A similar promoting effect
was observed in the dry reforming of methane using alumina supported Rh-Co bimetallic
catalysts [18]. The physical–chemical properties and the morphology of the support may
determine the nature of the interaction between rhodium and the support. It has been
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recently demonstrated, by several examples in the literature, including the papers in the
present Special Issue, that different nanostructured supports, such as titania, may modify
the activity and selectivity of rhodium in CO2 hydrogenation, water–gas shift reactions and
in ethanol transformation [19,20]. Furthermore, it was demonstrated in two reviews that
different oxide supports changed not only the conversion, but the selectivity and the mech-
anism of CO2 hydrogenation and the dry reforming of methane when Rh-based catalysts
were used [21,22]. The numerical simulation of methane and other reforming alkanes was
carried out over the Rh/Al2O3 catalyst in stagnation flows, emphasizing the importance of
the impact of internal and external mass transfer [23]. The study of catalytic reactions of
hydrogenation, including hydrodeoxygenation, was extended to several aromatics in the
gas phase [24] and in liquid medium on Rh-based catalysts [25].

Very recently, it was demonstrated that titanate nanotubes influenced the reaction
path in CO2 hydrogenation in the presence of sodium. A significant amount of formic
acid (HCOOH) was produced [26]. Several studies were published on the importance
of formic acid recently [27–29]. It turned out that HCOOH is an important chemical for
renewable energy systems and H2 can be applied for fuel cell vehicles; formic acid is a good
candidate as a H2 storage compound. The importance of HCOOH for fuel cell application
can nowadays be demonstrated by an increased number of patents. Due to this direction,
the investigations of catalytic decomposition and surface chemistry of HCOOH on different
catalysts, including Rh, are renewed [30,31].

In conclusion, this Special Issue clearly shows the importance of the optimization
of size and chemical environment of Rh nanoparticles. It is demonstrated that the type
of the support changes the conversion and the selectivity of the studied Rh catalyzed
reactions. Finally, we would like to remember that Prof. Frigyes Solymosi was one of
the great scientists who (with his research group) successfully took part in the research
of Rh-catalyzed reactions from the early seventies up to very recently. Unfortunately, he
passed away when we just started structuring this Special Issue. His 90th birthday would
have fallen in March this year.
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