ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst
Abstract
:1. Introduction
2. Results and Discussion
Synthesis of Dimeric Cinchona Squaramides and Their Corresponding Polymers by ADMET Polymerization
3. Materials and Methods
3.1. Materials and General Considerations
3.2. Synthesis of Cinchona-Based Squaramide Containing the Chiral ADMET Polymer
3.2.1. Polymer P1
3.2.2. Representative Procedure for the Asymmetric Michael Reaction between β-Ketoesters and Trans-β-Nitrostyrene to Yield Nitroolefins Using P1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Itsuno, S.; Haraguchi, N. Catalyst Immobilization, Methods and Applications, Chapter 2; Benaglia, M., Puglisi, A., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 23–75. [Google Scholar]
- Itsuno, S.; Ullah, M.S. Flow Chemistry in Organic Synthesis, Science of Synthesis; Jamison, T.F., Koch, G., Eds.; Thieme: New York, NY, USA, 2018; pp. 347–380. [Google Scholar]
- Itsuno, S.; Paul, D.K.; Ishimoto, M.; Haraguchi, N. Designing Chiral Quaternary Ammonium Polymers: Novel Type of Polymeric Catalyst for Asymmetric Alkylation Reaction. Chem. Lett. 2010, 39, 86–87. [Google Scholar] [CrossRef]
- Itsuno, S.; Paul, D.K.; Salam, M.A.; Haraguchi, N. Main-Chain Ionic Chiral Polymers: Synthesis of Optically Active Quaternary Ammonium Sulfonate Polymers and Their Application in Asymmetric Catalysis. J. Am. Chem. Soc. 2010, 132, 2864–2865. [Google Scholar] [CrossRef]
- Parvez, M.M.; Haraguchi, N.; Itsuno, S. Molecular design of chiral quaternary ammonium polymers for asymmetric catalysis applications. Org. Biomol. Chem. 2012, 10, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, N.; Kiyono, H.; Takemura, Y.; Itsuno, S. Design of main-chain polymers of chiral imidazolidinone for asymmetric organocatalysis application. Chem. Commun. 2012, 48, 4011–4013. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, N.; Takenaka, N.; Najwa, A.; Takahara, Y.; Mun, M.K.; Itsuno, S. Synthesis of Main-Chain Ionic Polymers of Chiral Imidazolidinone Organocatalysts and Their Application to Asymmetric Diels–Alder Reactions. Adv. Synth. Catal. 2018, 360, 112–123. [Google Scholar] [CrossRef]
- Ullah, M.S.; Itsuno, S. Synthesis of cinchona alkaloid squaramide polymers as bifunctional chiral organocatalysts for the enantioselective Michael addition of β-ketoesters to nitroolefins. Mol. Catal. 2017, 438, 239–244. [Google Scholar] [CrossRef]
- Parvez, M.M.; Haraguchi, N.; Itsuno, S. Synthesis of Cinchona Alkaloid-Derived Chiral Polymers by Mizoroki–Heck Polymerization and Their Application to Asymmetric Catalysis. Macromolecules 2014, 47, 1922–1928. [Google Scholar] [CrossRef]
- Ullah, M.S.; Itsuno, S. Cinchona Squaramide-Based Chiral Polymers as Highly Efficient Catalysts in Asymmetric Michael Addition Reaction. ACS Omega 2018, 4573–4582. [Google Scholar] [CrossRef] [Green Version]
- Boratynski, P.J. Dimeric Cinchona alkaloids. Mol. Divers. 2015, 19, 385–422. [Google Scholar] [CrossRef] [Green Version]
- Lindmarkhamberg, M.; Wagener, K.B. Acyclic metathesis polymerization: The olefin metathesis reaction of 1,5-hexadiene and 1,9-decadiene. Macromolecules 1987, 20, 2949–2951. [Google Scholar] [CrossRef]
- Wagener, K.B.; Boncella, J.M.; Nel, J.G.; Duttweiler, R.P.; Hillmyer, M.A. The key to successful acyclic diene metathesis polymerization chemistry. Macromol. Chem. 1990, 191, 365–374. [Google Scholar] [CrossRef]
- Wagener, K.B.; Nel, J.G.; Konzelman, J.; Boncella, J.M. Acyclic diene metathesis copolymerization of 1,5-hexadiene and 1, 9-decadiene. Macromolecules 1990, 23, 5155–5157. [Google Scholar] [CrossRef]
- Wagener, K.B.; Boncella, J.M.; Nel, J.G. Acyclic diene metathesis copolymerization of 1,5-hexadiene and 1,9-decadiene. Macromolecules 1991, 24, 2649–2657. [Google Scholar] [CrossRef]
- Wagener, K.B.; Smith, D.W. Acyclic diene metathesis polymerization: Synthesis and characterization of unsaturated poly[carbo(dimethyl)silanes]. Macromolecules 1991, 24, 6073–6078. [Google Scholar] [CrossRef]
- Wagener, K.B.; Brzezinska, K. Acyclic diene metathesis (ADMET) polymerization: Synthesis of unsaturated polyethers. Macromolecules 1991, 24, 5273–5277. [Google Scholar] [CrossRef]
- Wagener, K.B.; Patton, J.T. Acyclic diene metathesis (ADMET) polymerization. Synthesis of unsaturated polycarbonates. Macromolecules 1993, 26, 249–253. [Google Scholar] [CrossRef]
- Portmess, J.D.; Wagener, K.B. Acyclic diene metathesis (ADMET) polymerization: The synthesis of unsaturated polyamines. J. Polym. Sci. Pol. Chem. 1996, 34, 1353–1357. [Google Scholar] [CrossRef]
- Wolfe, P.S.; Wagener, K.B. An ADMET route to unsaturated polyacetals. Macromol. Rapid Commun. 1998, 19, 305–308. [Google Scholar] [CrossRef]
- Wolfe, P.S.; Wagener, K.B. Investigation of Organoboronates in Metathesis Polymerization. Macromolecules 1999, 32, 7961–7967. [Google Scholar] [CrossRef]
- Brzezinska, K.R.; Schitter, R.; Wagener, K.B. Carbosilane/carbosiloxane-based ADMET homopolymers and copolymers possessing latent reactivity. J. Polym. Sci. Pol. Chem 2000, 38, 1544–1550. [Google Scholar] [CrossRef]
- Cummings, S.K.; Smith, D.W.; Wagener, K.B. Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater. Macromol. Rapid Commun. 1995, 16, 347–355. [Google Scholar] [CrossRef]
- Patton, J.T.; Boncella, J.M.; Wagener, K.B. Acyclic diene metathesis (ADMET) polymerization: The synthesis of unsaturated polyesters. Macromolecules 1992, 25, 3862–3867. [Google Scholar] [CrossRef]
- Hopkins, T.E.; Pawlow, J.H.; Koren, D.L.; Deters, K.S.; Solivan, S.M.; Davis, J.A.; Gomez, F.J.; Wagener, K.B. Chiral Polyolefins Bearing Amino Acids. Macromology 2001, 34, 7920–7922. [Google Scholar] [CrossRef]
- Ullah, M.S.; Itsuno, S. Synthesis of Cinchona Alkaloid Derived Chiral Squaramide Polymers by ADMET Polymerization and Their Application to Asymmetric Catalysis. Chem. Lett. 2018, 47, 1220–1223. [Google Scholar] [CrossRef]
- Song, C.E. Cinchona Alkaloids in Synthesis and Catalysis; Wiley: Weinheim, Germany, 2009. [Google Scholar]
- Jianga, L.; Chen, Y.C. Recent advances in asymmetric catalysis with cinchona alkaloid-based primary amines. Catal. Sci. Technol. 2011, 1, 354–365. [Google Scholar] [CrossRef]
- Yeboah, E.M.O.; Yeboah, S.O.; Singh, G.S. Recent applications of Cinchona alkaloids and their derivatives as catalysts in metal-free asymmetric synthesis. Tetrahedron 2011, 67, 1725–1762. [Google Scholar] [CrossRef]
- Marcelli, T. Organocatalysis: Cinchona catalysts. WIREs Comput. Mol. Sci. 2011, 1, 142–152. [Google Scholar] [CrossRef]
- Ingemann, S.; Hiemstra, H. Comprehensive Enantioselective Organocatalysis; Dalko, P.I., Ed.; Wiley: Weinheim, Germany, 2013; pp. 119–160. [Google Scholar]
- Itsuno, S.; Parvez, M.M.; Haraguchi, N. Polymeric chiral organocatalysts. Polym. Chem. 2011, 2, 1942–1949. [Google Scholar] [CrossRef]
- Itsuno, S.; Hassan, M.M. Polymer-immobilized chiral catalysts. RSC Adv. 2014, 4, 52023–52043. [Google Scholar] [CrossRef]
- Haraguchi, N.; Itsuno, S. Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis; Itsuno, S., Ed.; Wiley: Hoboken, NJ, USA, 2011; Volume 2, pp. 17–61. [Google Scholar]
- Malerich, J.P.; Hagihara, K.; Rawal, V.H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2008, 130, 14416–14417. [Google Scholar] [CrossRef] [Green Version]
- Tsakos, M.; Kokotos, C.G. Primary and secondary amine-(thio)ureas and squaramides and their applications in asymmetric organocatalysis. Tetrahedron 2013, 69, 10199–10222. [Google Scholar] [CrossRef]
- Zhao, B.L.; Du, D.M. Chiral Squaramide-Catalyzed Michael/Alkylation Cascade Reaction for the Asymmetric Synthesis of Nitro-Spirocyclopropanes. Eur. J. Org. Chem. 2015, 2015, 5350–5359. [Google Scholar] [CrossRef]
- Lee, J.W.; Ryu, T.H.; Oh, J.S.; Bae, H.Y.; Jang, H.B.; Song, C.E. Self-association-free dimeric cinchona alkaloid organocatalysts: Unprecedented catalytic activity, enantioselectivity and catalyst recyclability in dynamic kinetic resolution of racemic azlactones. Chem. Commun. 2009, 46, 7224–7226. [Google Scholar] [CrossRef]
- Rao, K.S.; Ramesh, P.; Chowhan, L.R.; Trivedi, R. Asymmetric Mannich reaction: Highly enantioselective synthesis of 3-amino-oxindoles via chiral squaramide based H-bond donor catalysis. RSC Adv. 2016, 6, 84242–84247. [Google Scholar] [CrossRef]
- Yang, W.; Du, D.M. Chiral Squaramide-Catalyzed Highly Enantioselective Michael Addition of 2-Hydroxy-1,4-naphthoquinones to Nitroalkene. Adv. Synth. Catal. 2011, 353, 1241–1246. [Google Scholar] [CrossRef]
- Konishi, H.; Lam, T.Y.; Malerich, J.P.; Rawal, V.H. Enantioselective α-Amination of 1,3-Dicarbonyl Compounds Using Squaramide Derivatives as Hydrogen Bonding Catalysts. Org. Lett. 2012, 12, 2028–2031. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Jia, Y.; Du, D.M. Squaramide-catalyzed enantioselective Michael addition of malononitrile to chalcones. Org. Biomol. Chem. 2012, 10, 332–338. [Google Scholar] [CrossRef]
- Yang, W.; Du, D.M. Highly Enantioselective Michael Addition of Nitroalkanes to Chalcones Using Chiral Squaramides as Hydrogen Bonding Organocatalysts. Org. Lett. 2010, 12, 5450–5453. [Google Scholar] [CrossRef]
- Yang, W.; Du, D.M. Cinchona-based squaramide-catalysed cascade aza-Michael–Michael addition: Enantioselective construction of functionalized spirooxindole tetrahydroquinolines. Chem. Commun. 2013, 49, 8842–8844. [Google Scholar] [CrossRef]
- Yang, W.; Du, D.M. Chiral squaramide-catalyzed highly diastereo- and enantioselective direct Michael addition of nitroalkanes to nitroalkenes. Chem. Commun. 2011, 47, 12706–12708. [Google Scholar] [CrossRef]
- Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef]
- Tripathi, C.B.; Kayal, S.; Mukherjee, S. Catalytic Asymmetric Synthesis of α,β-Disubstituted α,γ-Diaminophosphonic Acid Precursors by Michael Addition of α-Substituted Nitrophosphonates to Nitroolefins. Org. Lett. 2012, 14, 3296–3299. [Google Scholar] [CrossRef]
- Chhanda, S.A.; Itsuno, S. Design and synthesis of chiral hyperbranched polymers containing cinchona squaramide moieties and their catalytic activity in the asymmetric Michael addition reaction. J. Catal. 2019, 377, 543–549. [Google Scholar] [CrossRef]
Entry | Polymer | Diene | Solvent | Time (h) | Yield (%) | Mnb | Mwb | Mw/Mnb |
---|---|---|---|---|---|---|---|---|
1 d | P2Q | 2Q | DMF | 24 | 81 | 49,000 | 58,000 | 1.18 |
2 c,d | P2Q | 2Q | DMF | 24 | 70 | 44,000 | 52,000 | 1.18 |
3 c,d,e | P2Q | 2Q | DMF | 24 | 58 | 46,000 | 53,000 | 1.15 |
4 d,f | P2Q | 2Q | DMF | 24 | 74 | 41,000 | 47,000 | 1.14 |
5 | P2Q | 2Q | o-Dichloro benzene | 24 | 77 | 56,000 | 74,000 | 1.32 |
6 | P2Q | 2Q | Toluene | 9 | 92 | 42,000 | 46,000 | 1.10 |
7 g | P2Q | 2Q | Toluene | 25 | 52 | 49,000 | 56,000 | 1.14 |
8 | P1 | 1 | Toluene | 9 | 77 | 47,000 | 49,000 | 1.04 |
9 | P2C | 2C | Toluene | 9 | 93 | 54,000 | 55,000 | 1.02 |
10 | P3 | 3 | Toluene | 9 | 86 | 74,000 | 75,000 | 1.01 |
11 | P4 | 2C + 4 | DMF | 24 | 70 | 9000 | 19,000 | 2.19 |
Entry | Catalyst | Solvent | Temp (°C) | Reaction Time (h) | Yield (%) b | dr c | % ee c |
---|---|---|---|---|---|---|---|
1 | 1 | MeOH | 25 | 6 | 91 | 1:14 | 93 |
2 | P1 | MeOH | 25 | 6 | 77 | 1:12 | 87 |
3 | P1 | DCM | 25 | 30 | 52 | 1:81 | 97 |
4 | P1 | THF | 25 | 7 | 89 | 1:80 | 99 |
5 | P1 | EtOAc | 25 | 27 | 34 | 1:62 | 92 |
6 | P1 | ether | 25 | 20 | 87 | 1:45 | 97 |
7 | P1 | Toluene | 25 | 24 | 29 | 1:3 | 90 |
8 | P1 | Hexane | 25 | 24 | 84 | 1:38 | 96 |
9 | P1 | Acetonitrile | 25 | 9 | 97 | 1:>100 | 95 |
10 | P1 | Acetonitrile | 0 | 24 | 92 | 1:>100 | 96 |
11 | P1 | Acetonitrile | −10 | 24 | 99 | 1:89 | 99 |
12 | P1 | Acetonitrile | 80 | 6 | 78 | 1:16 | 95 |
13 e | 2C | DCM | 25 | 4 | 95 | >100:1 | 98 |
14 | P2C | Acetonitrile | 25 | 9 | 75 | 68:1 | 91 |
15 d | 2Q | DCM | 25 | 2 | 95 | 79:1 | 91 |
16 d | P2Q | DCM | 25 | 48 | 45 | 59:1 | 96 |
17 | P3 | acetonitrile | 25 | 9 | 67 | 95:1 | 97 |
18 | P4 | acetonitrile | 25 | 20 | 85 | 24:1 | 99 |
Cycle | Yield (%) b | drc | % ee c |
---|---|---|---|
original | 97 | 1:>100 | 95 |
1 | 73 | 1:54 | 97 |
2 | 93 | 1:59 | 97 |
3 | 90 | 1:39 | 94 |
4 | 82 | 1:46 | 93 |
5 | 72 | 1:51 | 95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, M.S.; Chhanda, S.A.; Itsuno, S. ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst. Catalysts 2020, 10, 591. https://doi.org/10.3390/catal10050591
Ullah MS, Chhanda SA, Itsuno S. ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst. Catalysts. 2020; 10(5):591. https://doi.org/10.3390/catal10050591
Chicago/Turabian StyleUllah, Mohammad Shahid, Sadia Afrin Chhanda, and Shinichi Itsuno. 2020. "ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst" Catalysts 10, no. 5: 591. https://doi.org/10.3390/catal10050591
APA StyleUllah, M. S., Chhanda, S. A., & Itsuno, S. (2020). ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst. Catalysts, 10(5), 591. https://doi.org/10.3390/catal10050591