Comparison of Frontal-Temporal Channels in Epilepsy Seizure Prediction Based on EEMD-ReliefF and DNN
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Scalp Time Series Data
3.2. Preprocessing
3.3. Ensemble Empirical Mode Decomposition
3.4. ReliefF
Algorithm 1: Original Relief Algorithm |
set all weights W[A] := 0.0; |
for i := 1 to m do |
begin |
randomly select an instance Ri; |
find nearest hit H and nearest miss M; |
for A := 1 to all_atrribuites do |
W[A] := W[A] − diff(A,Ri,H)/m + diff(A,Ri,M)/m; |
end; |
where the function diff calculates the difference of values of attributes between the two nearest instances: |
3.5. Prediction and Early Detection
3.6. Statistical Analysis and Validation
3.7. Deep Neural Network
4. Results
4.1. Early Detection
4.2. Prediction
4.3. ReliefF
4.4. Early Detection in Different Brain Locations
4.5. Statistical Significance
4.6. Validation and Performance Comparison
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef] [PubMed]
- The Economic Burden of Epilepsy in Australia, 2019–2020 | Epilepsy Foundation. Available online: https://epilepsyfoundation.org.au/2020/02/08/the-economic-burden-of-epilepsy-in-australia-2019-2020/ (accessed on 6 August 2020).
- Khan, H.; Marcuse, L.; Fields, M.; Swann, K.; Yener, B. Focal onset seizure prediction using convolutional networks. IEEE Trans. Biomed. Eng. 2018, 65, 2109–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic Seizure Detection Based on EEG Signals and CNN. Front. Neuroinform. 2018, 12, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirven, J.I. Epilepsy: A Spectrum Disorder. Cold Spring Harb. Perspect. Med. 2015, 5, a022848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prathap, P.; Devi, T.A. EEG spectral feature based seizure prediction using an efficient sparse classifier. In Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 6–7 July 2017; pp. 721–725. [Google Scholar] [CrossRef]
- Alotaiby, T.N.; Alshebeili, S.A.; Alshawi, T.; Ahmad, I.; Abd El-Samie, F.E. EEG seizure detection and prediction algorithms: A survey. EURASIP J. Adv. Signal Process. 2014, 2014, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Lasefr, Z.; Ayyalasomayajula, S.S.V.N.R.; Elleithy, K. Epilepsy seizure detection using EEG signals. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON, New York, NY, USA, 19–21 October 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway Township, NJ, USA, 2017; Volume 2018-January, pp. 162–167. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, C.; Koren, J.P.; Rothmayer, M. Automatic computer-based detection of epileptic seizures. Front. Neurol. 2018, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, L.; Lehnertz, K.; Richardson, M.P.; Schelter, B.; Zaveri, H.P. Seizure prediction—Ready for a new era. Nat. Rev. Neurol. 2018, 14, 618–630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Parhi, K.K. Low-Complexity Seizure Prediction From iEEG/sEEG Using Spectral Power and Ratios of Spectral Power. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 693–706. [Google Scholar] [CrossRef]
- Myers, M.H.; Padmanabha, A.; Hossain, G.; De Jongh Curry, A.L.; Blaha, C.D. Seizure prediction and detection via phase and amplitude lock values. Front. Hum. Neurosci. 2016, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Samie, F.; Paul, S.; Bauer, L.; Henkel, J. Highly efficient and accurate seizure prediction on constrained IoT devices. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 955–960. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Garcia, N.M.; Villasana, M.V.; Lameski, P.; Zdravevski, E. Machine Learning Techniques with ECG and EEG Data: An Exploratory Study. Computers 2020, 9, 55. [Google Scholar] [CrossRef]
- Alotaiby, T.N.; Alshebeili, S.A.; Alotaibi, F.M.; Alrshoud, S.R. Epileptic seizure prediction using CSP and LDA for scalp EEG signals. Comput. Intell. Neurosci. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, Y.; Yang, P.; Chen, W.; Lo, B. Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network. IEEE J. Biomed. Heal. Inform. 2020, 24, 465–474. [Google Scholar] [CrossRef]
- Cho, D.; Min, B.; Kim, J.; Lee, B. EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Chung, C.K.; Jeong, W.; Cho, K.H. Predicting epileptic seizures from scalp EEG based on attractor state analysis. Comput. Methods Programs Biomed. 2017, 143, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, S. Seizure, Complex Partial; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Tzallas, A.T.; Tsipouras, M.G.; Fotiadis, D.I. Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks. Comput. Intell. Neurosci. 2007, 80510, 13. [Google Scholar] [CrossRef]
- Osman, A.H.; Alzahrani, A.A. New Approach for Automated Epileptic Disease Diagnosis Using an Integrated Self-Organization Map and Radial Basis Function Neural Network Algorithm. IEEE Access 2019, 7, 4741–4747. [Google Scholar] [CrossRef]
- Stojanović, O.; Kuhlmann, K.; Pipa, G. Predicting epileptic seizures using nonnegative matrix factorization. PLoS ONE 2019. [Google Scholar] [CrossRef] [Green Version]
- Eberlein, M.; Hildebrand, R.; Tetzlaff, R.; Hoffmann, N.; Kuhlmann, L.; Brinkmann, B.; Müller, J. Convolutional Neural Networks for Epileptic Seizure Prediction. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2577–2582. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Cao, J.; Lai, X.; Liu, J. Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks. J. Ambient Intell. Humaniz. Comput. 2019. [Google Scholar] [CrossRef]
- Senger, V.; Tetzlaff, R. Cellular nonlinear network-based signal prediction in epilepsy: Method comparison. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 397–400. [Google Scholar] [CrossRef]
- Kiral-Kornek, I.; Roy, S.; Nurse, E.; Mashford, B.; Karoly, P.; Carroll, T.; Payne, D.; Saha, S.; Baldassano, S.; O’Brien, T.; et al. Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System. EBioMedicine 2018, 27, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Daoud, H.; Bayoumi, M.A. Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 804–813. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Stochastic recurrent wavelet neural network with EEMD method on energy price prediction. Soft Comput. 2020, 1–19. [Google Scholar] [CrossRef]
- Zhou, Y.; Sheremet, A.; Qin, Y.; Kennedy, J.P.; Dicola, N.M.; Burke, S.N.; Maurer, A.P. Methodological considerations on the use of different spectral decomposition algorithms to study hippocampal rhythms. eNeuro 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Kanagaraj, G.; Kumar, S. Pulmonary Tumor Detection by virtue of GLCM. J. Sci. Ind. Res. 2020, 79, 132–134. [Google Scholar]
- Manuel Gutiérrez-Ruiz, A.; Valcarce-Ruiz, L.; Becerra-Vicario, R.; Ruíz-Palomo, D. Identifying Industrial Productivity Factors with Artificial Neural Networks. J. Sci. Ind. Res. 2020, 79, 534–536. [Google Scholar]
- Karabiber Cura, O.; Kocaaslan Atli, S.; Türe, H.S.; Akan, A. Epileptic seizure classifications using empirical mode decomposition and its derivative. Biomed. Eng. Online 2020, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CHB-MIT Scalp EEG Database v1.0.0. Available online: https://physionet.org/content/chbmit/1.0.0/ (accessed on 3 August 2020).
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Papadaniil, C.D.; Hadjileontiadis, L.J. Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features. IEEE J. Biomed. Health Inform. 2014, 18, 1138–1152. [Google Scholar] [CrossRef]
- Ben Ali, J.; Fnaiech, N.; Saidi, L.; Chebel-Morello, B.; Fnaiech, F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 2015, 89, 16–27. [Google Scholar] [CrossRef]
- Guo, W.; Tse, P.W. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals. J. Sound Vib. 2013, 332, 423–441. [Google Scholar] [CrossRef]
- Gaci, S. A New Ensemble Empirical Mode Decomposition (EEMD) Denoising Method for Seismic Signals. Energy Procedia 2016, 97, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In Proceedings of the European Conference on Machine Learning: ECML-94, Catania, Italy, 6–8 April 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 171–182. [Google Scholar]
- Truong, N.D.; Nguyen, A.D.; Kuhlmann, L.; Bonyadi, M.R.; Yang, J.; Ippolito, S.; Kavehei, O. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw. 2018, 105, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvez, M.Z.; Paul, M. Seizure prediction using undulated global and local features. IEEE Trans. Biomed. Eng. 2017, 64, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Aarabi, A.; He, B. Seizure prediction in patients with focal hippocampal epilepsy. Clin. Neurophysiol. 2017, 128, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Eftekhar, A.; Juffali, W.; El-Imad, J.; Constandinou, T.G.; Toumazou, C. Ngram-derived pattern recognition for the detection and prediction of epileptic seizures. PLoS ONE 2014, 9, e96235. [Google Scholar] [CrossRef] [PubMed]
- Birjandtalab, J.; Pouyan, M.B.; Cogan, D.; Nourani, M.; Harvey, J. Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput. Biol. Med. 2017, 82, 49–58. [Google Scholar] [CrossRef]
- Fürbass, F.; Kampusch, S.; Kaniusas, E.; Koren, J.; Pirker, S.; Hopfengärtner, R.; Stefan, H.; Kluge, T.; Baumgartner, C. Automatic multimodal detection for long-term seizure documentation in epilepsy. Clin. Neurophysiol. 2017, 128, 1466–1472. [Google Scholar] [CrossRef]
- Shah, A.K.; Mittal, S. Invasive electroencephalography monitoring: Indications and presurgical planning. Ann. Indian Acad. Neurol. 2014, 17. [Google Scholar] [CrossRef]
- Herta, J.; Koren, J.; Fürbass, F.; Hartmann, M.; Gruber, A.; Baumgartner, C. Reduced electrode arrays for the automated detection of rhythmic and periodic patterns in the intensive care unit: Frequently tried, frequently failed? Clin. Neurophysiol. 2017, 128, 1524–1531. [Google Scholar] [CrossRef]
Case | Gender | Age (Years) | Number of Seizures |
---|---|---|---|
S01 | F | 11 | 7 |
S02 | M | 11 | 3 |
S03 | F | 14 | 7 |
S04 | M | 22 | 3 |
S05 | F | 7 | 2 |
S06 | F | 1.5 | 7 |
S07 | F | 14.5 | 3 |
S08 | M | 3.5 | 5 |
S09 | F | 10 | 3 |
S10 | M | 3 | 7 |
S11 | F | 12 | 3 |
S12 | F | 2 | 13 |
S13 | F | 3 | 8 |
S14 | F | 9 | 7 |
S15 | M | 16 | 14 |
S16 | F | 7 | 5 |
S17 | F | 12 | 3 |
S18 | F | 18 | 6 |
S19 | F | 19 | 3 |
S20 | F | 6 | 6 |
S21 | F | 13 | 4 |
S22 | F | 9 | 3 |
S23 | F | 6 | 3 |
Electrode | Subjects |
---|---|
Frontal | S01, S03, S05, S08, S18, S19 |
Temporal | S02, S04, S07, S10, S12, S15, S16, S17, S22, S23 |
Frontal-Temporal | S14 |
Temporal Occipital | S06, S09, S13 |
Parietal | S11 |
Temporal-Parietal | S20, S21 |
Subject | Gender | No Seizure | Accuracy | Sensitivity | Specificity | ROC-AUC | F1 |
---|---|---|---|---|---|---|---|
S01 | F | 7 | 0.916 | 0.925 | 0.906 | 0.916 | 0.916 |
S02 | M | 3 | 0.941 | 0.923 | 0.922 | 0.966 | 0.981 |
S03 | F | 7 | 0.997 | 0.994 | 1.00 | 0.997 | 0.997 |
S04 | M | 4 | 0.858 | 0.864 | 0.852 | 0.858 | 0.859 |
S05 | F | 5 | 0.928 | 0.930 | 0.926 | 0.928 | 0.928 |
S06 | F | 10 | 0.906 | 0.886 | 0.917 | 0.901 | 0.900 |
S07 | F | 3 | 0.895 | 0.847 | 0.944 | 0.895 | 0.890 |
S08 | M | 5 | 0.801 | 0.731 | 0.870 | 0.801 | 0.787 |
S09 | F | 4 | 0.887 | 0.834 | 0.941 | 0.887 | 0.881 |
S10 | M | 7 | 0.853 | 0.812 | 0.892 | 0.852 | 0.846 |
S11 | F | 3 | 0.914 | 0.940 | 0.886 | 0.913 | 0.917 |
S12 | F | 40 | 0.754 | 0.718 | 0.790 | 0.754 | 0.744 |
S13 | F | 12 | 0.876 | 0.897 | 0.856 | 0.876 | 0.878 |
S14 | F | 8 | 0.831 | 0.800 | 0.863 | 0.831 | 0.826 |
S15 | M | 20 | 0.795 | 0.744 | 0.847 | 0.795 | 0.785 |
S16 | F | 10 | 0.815 | 0.836 | 0.794 | 0.815 | 0.818 |
S17 | F | 3 | 0.961 | 0.955 | 0.966 | 0.961 | 0.961 |
S18 | F | 6 | 0.936 | 0.924 | 0.949 | 0.936 | 0.935 |
S19 | F | 3 | 0.961 | 0.978 | 0.943 | 0.960 | 0.962 |
S20 | F | 8 | 0.852 | 0.908 | 0.795 | 0.852 | 0.859 |
S21 | F | 4 | 0.936 | 0.930 | 0.942 | 0.936 | 0.935 |
S22 | F | 3 | 0.942 | 0.917 | 0.967 | 0.942 | 0.940 |
S23 | F | 7 | 0.872 | 0.858 | 0.885 | 0.872 | 0.870 |
5 Min Horizon | 23 Min Horizon | |||||||
---|---|---|---|---|---|---|---|---|
Subject | Sen | Spec | AUC | F1-Score | Sen | Spec | AUC | F1-Score |
S01 | 0.765 | 0.884 | 0.824 | 0.813 | 0.851 | 0.804 | 0.828 | 0.831 |
S02 | 0.670 | 0.900 | 0.785 | 0.757 | 0.913 | 0.706 | 0.810 | 0.827 |
S03 | 0.868 | 0.885 | 0.876 | 0.875 | 0.753 | 0.780 | 0.767 | 0.763 |
S04 | 0.864 | 0.801 | 0.833 | 0.837 | 0.753 | 0.780 | 0.767 | 0.763 |
S05 | 0.696 | 0.833 | 0.764 | 0.746 | 0.849 | 0.808 | 0.829 | 0.831 |
S06 | 0.785 | 0.734 | 0.759 | 0.765 | 0.929 | 0.546 | 0.738 | 0.779 |
S07 | 0.670 | 0.749 | 0.709 | 0.697 | 0.811 | 0.686 | 0.748 | 0.763 |
S08 | 0.670 | 0.749 | 0.709 | 0.697 | 0.811 | 0.686 | 0.748 | 0.763 |
S09 | 0.565 | 0.859 | 0.712 | 0.662 | 0.774 | 0.781 | 0.778 | 0.776 |
S10 | 0.878 | 0.813 | 0.811 | 0.807 | 0.778 | 0.798 | 0.791 | 0.744 |
S11 | 0.698 | 0.699 | 0.698 | 0.697 | 0.669 | 0.834 | 0.751 | 0.726 |
S12 | 0.669 | 0.762 | 0.715 | 0.729 | 0.692 | 0.780 | 0.736 | 0.725 |
S13 | 0.768 | 0.774 | 0.771 | 0.770 | 0.804 | 0.710 | 0.757 | 0.767 |
S14 | 0.768 | 0.774 | 0.771 | 0.770 | 0.804 | 0.710 | 0.757 | 0.767 |
S15 | 0.721 | 0.662 | 0.691 | 0.700 | 0.757 | 0.689 | 0.723 | 0.731 |
S16 | 0.516 | 0.969 | 0.742 | 0.667 | 0.805 | 0.679 | 0.742 | 0.755 |
S17 | 0.781 | 0.902 | 0.842 | 0.832 | 0.853 | 0.748 | 0.800 | 0.810 |
S18 | 0.800 | 0.766 | 0.783 | 0.786 | 0.900 | 0.766 | 0.833 | 0.842 |
S19 | 0.873 | 0.890 | 0.882 | 0.881 | 0.731 | 0.844 | 0.788 | 0.775 |
S20 | 0.681 | 0.831 | 0.756 | 0.735 | 0.835 | 0.558 | 0.696 | 0.730 |
S21 | 0.792 | 0.647 | 0.720 | 0.737 | 0.814 | 0.682 | 0.748 | 0.763 |
S22 | 0.843 | 0.698 | 0.771 | 0.785 | 0.810 | 0.716 | 0.763 | 0.773 |
S23 | 0.883 | 0.700 | 0.792 | 0.808 | 0.773 | 0.773 | 0.773 | 0.772 |
Brain Location | Sensitivity | Specificity | ROC-AUC | Subjects |
---|---|---|---|---|
Frontal | 9.200 | 0.950 | 0.945 | S01, S03, S05, S08, S18, S19 |
Temporal | 0.847 | 0.886 | 0.847 | S02, S04, S07, S10, S12, S15, S16, S17, S22, S23 |
Fontal-Temporal | 0.800 | 0.863 | 0.831 | S14 |
Temporal-Occipital | 0.9333 | 0.872 | 0.905 | S06, S09, S13 |
Parietal | 0.941 | 0.886 | 0.913 | S11 |
Temporal-Parietal | 0.919 | 0.8685 | 0.894 | S20, S21 |
Frontal | Temporal | FT-Parietal | Temporal-Occipital | Temporal-Parietal | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HT | Std. Dev. | Coeff. Var. | Std. Dev. | Coeff. Var. | Std. Dev. | Coeff. Var. | Std. Dev. | Coeff. Var. | Std. Dev. | Coeff. Var. |
5 m | 7.76 | 9.97 | 11.47 | 15.31 | 3.50 | 4.77 | 9.99 | 14.16 | 5.55 | 7.54 |
23 m | 5.86 | 7.18 | 5.30 | 7.17 | 6.75 | 9.16 | 6.71 | 8.03 | 1.05 | 1.27 |
Summary | ||||||
---|---|---|---|---|---|---|
Groups | Count | Sum | Mean | Variance | ||
Sen | 23 | 18.469 | 0.803 | 0.004117 | ||
Spec | 23 | 16.864 | 0.733217 | 0.005854 | ||
AUC | 23 | 17.671 | 0.768304 | 0.001225 | ||
F1-Score | 23 | 17.776 | 0.77287 | 0.001168 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F | p-value | F crit |
Between Groups | 0.056381 | 3 | 0.018794 | 6.080056 | 0.000827 | 2.708186 |
Within Groups | 0.272013 | 88 | 0.003091 | |||
Total | 0.328395 | 91 |
Authors | Dataset | No of Channels | No of Subjects | Features | Sen (%) | FPR (/h) | Horizon Time (min) |
---|---|---|---|---|---|---|---|
[17] | CHB-MIT | 3 | 21 | Phase Locking Value (PLV) | 82.44 | - | 5 |
[16] | CHB-MIT | 18 | 23 | CSP | 92.2 | 0.12 | 30 |
[42] | CHB-MIT | 22 | 13 | STFT Spectral | 81.2 | 0.16 | 5 |
[15] | CHB-MIT | 23 | 24 | CSP | 81 | 0.47 | 60 |
[43] | FH | 21 | - | Phase Match | 95.4 | 0.36 | 30 |
[44] | FH | 10 | - | Bivariate Features | 86.7 | 0.126 | 30 |
[45] | FH | 21 | Ngram Algorithm | 75.16 | 0.21 | 30 | |
[19] | CHB-MIT | - | 13 | Attractor-Based Analysis | 86.77 | 0.367 | 55.3 |
[46] | CHB-MIT | 3 | 23 | Random Forest | 80.87 | 2.5 | - |
[47] | Private Unit | 8 | 21 | Absolute Amplitude | 88.0 | 8.5 | 24 h |
Proposed work | CHB-MIT | 2 | 23 | EEMD-ReliefF | 86.7 | 0.27 | 23 |
S | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 |
D | 0.831 | 0.832 | 0.829 | 0.496 | 0.844 | 0.743 | 0.822 | 0.772 | 0..805 | 0.812 | 0.719 | 0.626 |
S | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | S21 | S22 | S23 | - |
D | 0.726 | 0.760 | 0.654 | 0.377 | 0.739 | 0.837 | 0.857 | 0.735 | 0.881 | 0.845 | 0.837 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romney, A.; Manian, V. Comparison of Frontal-Temporal Channels in Epilepsy Seizure Prediction Based on EEMD-ReliefF and DNN. Computers 2020, 9, 78. https://doi.org/10.3390/computers9040078
Romney A, Manian V. Comparison of Frontal-Temporal Channels in Epilepsy Seizure Prediction Based on EEMD-ReliefF and DNN. Computers. 2020; 9(4):78. https://doi.org/10.3390/computers9040078
Chicago/Turabian StyleRomney, Aníbal, and Vidya Manian. 2020. "Comparison of Frontal-Temporal Channels in Epilepsy Seizure Prediction Based on EEMD-ReliefF and DNN" Computers 9, no. 4: 78. https://doi.org/10.3390/computers9040078
APA StyleRomney, A., & Manian, V. (2020). Comparison of Frontal-Temporal Channels in Epilepsy Seizure Prediction Based on EEMD-ReliefF and DNN. Computers, 9(4), 78. https://doi.org/10.3390/computers9040078