Molecular Mechanisms of Mouse Skin Tumor Promotion
Abstract
:1. Introduction
2. Receptors for Tumor Promoters
2.1. Protein Kinase C (PKC)
2.1.1. Structure and Isozymes
2.1.2. Activation and Substrates
2.1.3. Roles of PKCs in Tumor Promotion
2.2. Aryl Hydrocarbon Receptor (AhR)
2.3. Peroxisome Proliferator-Activated Receptors (PPARs)
3. Growth Factors and Receptors
3.1. Epidermal Growth Factor Receptor (EGFR)/ErbB Family Signaling
3.1.1. Receptors and Ligands
3.1.2. Role of EGFR/ErbB Signaling in Skin Tumorigenesis
3.2. Insulin-like Growth Factor-1 (IGF-1) and Receptor
3.3. Transforming Growth Factor-β (TGFβ) and Receptors
3.3.1. TGFβ Signaling
3.3.2. Multiple Roles of TGFβ Signaling in Tumor Promotion
3.3.3. Role of TGFβ Signaling in Skin Tumorigenesis
4. Proinflammatory Cytokines and Prostaglandins
4.1. Tumor Necrosis Factor-α (TNFα)
4.1.1. Receptors and Signaling
4.1.2. Role of TNFα in Tumor Promotion
4.2. Interleukins
4.2.1. Interleukin-1 (IL-1)
4.2.2. Interleukin-12 (IL-12) and Interleukin-23 (IL-23)
4.3. Prostaglandins
4.3.1. Cyclooxygenases (COXs)
4.3.2. Prostaglandin E2 (PGE2) Receptors and Signaling
5. Other Molecular Mechanisms
5.1. Oxidative Stress Mechanisms
5.2. Ornithine Decarboxylase (ODC)
6. Conclusions
Acknowledgements
References
- DiGiovanni, J. Multistage skin carcinogenesis in mice. In Carcinogenesis; Waalkes, M.P., Ward, J.M., Eds.; Raven Press: New York, NY, USA, 1994; pp. 265–299. [Google Scholar]
- Tharappel, J.C.; Lee, E.Y.; Robertson, L.W.; Spear, B.T.; Glauert, H.P. Regulation of cell proliferation, apoptosis, and transcription factor activities during the promotion of liver carcinogenesis by polychlorinated biphenyls. Toxicol. Appl. Pharmacol. 2002, 179, 172–184. [Google Scholar]
- Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005, 7, 211–217. [Google Scholar] [CrossRef]
- Yoshimura, A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 2006, 97, 439–447. [Google Scholar]
- Mueller, M.M. Inflammation in epithelial skin tumours: Old stories and new ideas. Eur. J. Cancer 2006, 42, 735–744. [Google Scholar]
- Weitzman, S.A.; Gordon, L.I. Inflammation and cancer: Role of phagocyte-generated oxidants in carcinogenesis. Blood 1990, 76, 655–663. [Google Scholar]
- Nishigori, C.; Hattori, Y.; Toyokuni, S. Role of reactive oxygen species in skin carcinogenesis. Antioxid. Redox Signal. 2004, 6, 561–570. [Google Scholar] [CrossRef]
- Franco, R.; Schoneveld, O.; Georgakilas, A.G.; Panayiotidis, M.I. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008, 266, 6–11. [Google Scholar] [CrossRef]
- Maldve, R.E.; Fischer, S.M. Tumor-promoting activity of 2,4-dinitrofluorobenzene. Int. J. Cancer 1995, 60, 545–553. [Google Scholar] [CrossRef]
- Scharfettfer-Kochanek, K.; Wlaschek, M.; Brenneisen, P.; Schauen, M.; Blaudschun, R.; Wenk, J. UV-induced reactive oxygen species in photocarcinogenesis and photoageing. Biol. Chem. 1997, 378, 1247–1257. [Google Scholar]
- Haywood, R.; Wardman, P.; Sanders, R.; Linge, C. Sunscreens inadequately protect against ultraviolet-A-induced free radicals in skin: Implications for skin aging and melanoma? J. Invest. Dermatol. 2003, 121, 862–868. [Google Scholar] [CrossRef]
- Fischer, S.M.; Baldwin, J.K.; Adams, L.M. Effects of anti-promoters and strain of mouse on tumor promoter-induced oxidants in murine epidermal cells. Carcinogenesis 1986, 7, 915–918. [Google Scholar]
- Perchellet, E.M.; Perchellet, J.-P. Characterization of the hydroperoxide response observed in mouse skin treated with tumor promoters in vivo. Cancer Res. 1989, 49, 6193–6201. [Google Scholar]
- Slaga, T.J.; Klein-Szanto, A.J.P.; Triplett, L.L.; Yotti, L.P.; Trosko, J.E. Skin tumor-promotiing activity of benzoyl peroxide, a widely used free radical-generating compound. Science 1981, 213, 1023–1025. [Google Scholar]
- Klein-Szanto, A.J.P.; Slaga, T.J. Effects of peroxides on rodent skin: Epidermal hyperplasia and tumor promotion. J. Invest. Dermatol. 1982, 79, 30–34. [Google Scholar] [CrossRef]
- Hennings, H.; Boutwell, R.K. Studies on the mechanism of skin tumor promotion. Cancer Res. 1970, 30, 312–320. [Google Scholar]
- Ashendel, C.L. The phorbol ester receptor: A phospholipid-regulated protein kinase. Biochim. Biophys. Acta 1985, 822, 219–242. [Google Scholar]
- Blumberg, P.M. Protein kinase C as the receptor for the phorbol ester tumor promoters: Sixth Rhoads Memorial Award lecture. Cancer Res. 1988, 48, 1–8. [Google Scholar]
- Griner, E.M.; Kazanietz, M.G. Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer 2007, 7, 281–294. [Google Scholar] [CrossRef]
- Jeffrey, A.M.; Liskamp, R.M.J. Computer-assisted molecular modeling of tumor promoters: Rationale for the activity of phorbol esters, teleocidin B, and aplysiatoxin. Proc. Natl. Acad. Sci. USA 1986, 83, 241–245. [Google Scholar] [CrossRef]
- Moore, R.E.; Patterson, G.M.L.; Entzeroth, M.; Morimoto, H.; Suganuma, M.; Hakii, H.; Fujiki, H.; Sugimura, T. Binding studies of [3H]lyngbyatoxin A and [3H]debromoaplysiatoxin to the phorbol ester receptor in mouse epidermal particulate fraction. Carcinogenesis 1986, 7, 641–644. [Google Scholar]
- Newton, A.C. Protein kinase C: Structure, function, and regulation. J. Biol. Chem. 1995, 270, 28495–28498. [Google Scholar]
- Liu, J.-P. Protein kinase C and its substrates. Molec. Cell. Endocrinol. 1996, 116, 1–29. [Google Scholar] [CrossRef]
- Fisher, G.J.; Tavakkol, A.; Leach, K.; Burns, D.; Basta, P.; Loomis, C.; Griffiths, C.E.M.; Cooper, K.D.; Reynolds, N.J.; Elder, J.T.; Livneh, E.; Voorhees, J.J. Differential expression of protein kinase C isoenzymes in normal and psoriatic adult human skin: Reduced expression of protein kinase C-βII in psoriasis. J. Invest. Dermatol. 1993, 101, 553–559. [Google Scholar]
- Wang, X.-J.; Warren, B.S.; Beltrán, L.M.; Fosmire, S.P.; DiGiovanni, J. Further identification of protein kinase C isozymes in mouse epidermis. J. Cancer Res. Clin. Oncol. 1993, 119, 279–287. [Google Scholar]
- Denning, M.F. Epidermal keratinocytes: Regulation of multiple cell phenotypes by multiple protein kinase C isoforms. Int. J. Biochem. Cell Biol. 2004, 36, 1141–146. [Google Scholar]
- Rennecke, J.; Rehberger, P.A.; Fürstenberger, G.; Johannes, F.-J.; Stöhr, M.; Marks, F.; Richter, K.H. Protein-kinase-Cμ expression correlates with enhanced keratinocyte proliferation in normal and neoplastic mouse epidermis and in cell culture. Int. J. Cancer 1999, 80, 98–103. [Google Scholar]
- Gschwendt, M.; Leibersperger, H.; Kittstein, W.; Marks, F. Protein kinase Cζ and η in murine epidermis. TPA induces down-regulation of PKCη but not PKCζ. FEBS Lett. 1992, 307, 151–155. [Google Scholar] [CrossRef]
- Cazaubon, S.; Bornancin, F.; Parker, P.J. Threonine-497 is a critical site for permissive activation of protein kinase Cα. Biochem. J. 1994, 301, 443–448. [Google Scholar]
- Dempsey, E.C.; Newton, A.C.; Mochly-Rosen, D.; Fields, A.P.; Reyland, M.E.; Insel, P.A.; Messing, R.O. Protein kinase C isozymes and the regulation of diverse cell responses. Am. J. Physiol. 2000, 279, L429–L438. [Google Scholar]
- Orr, J.W.; Newton, A.C. Requirement for negative charge on "activation loop" of protein kinase C. J. Biol. Chem. 1994, 269, 27715–27718. [Google Scholar]
- Denning, M.F.; Wang, Y.; Nickoloff, B.J.; Wrone-Smith, T. Protein kinase Cδ is activated by caspase-dependent proteolysis during ultraviolet radiation-induced apoptosis of human keratinocytes. J. Biol. Chem. 1998, 273, 29995–30002. [Google Scholar]
- D'Costa, A.M.; Denning, M.F. A caspase-resistant mutant of PKC-δ protects keratinocytes from UV-induced apoptosis. Cell Death Differ. 2005, 12, 224–232. [Google Scholar] [CrossRef]
- Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992, 258, 607–614. [Google Scholar]
- Hansra, G.; Garcia-Paramio, P.; Prevostel, C.; Whelan, R.D.H.; Bornancin, F.; Parker, P.J. Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes. Biochem. J. 1999, 342, 337–344. [Google Scholar]
- Prevostel, C.; Alice, V.; Joubert, D.; Parker, P.J. Protein kinase Cα actively downregulates through caveolae-dependent traffic to an endosomal compartment. J. Cell Sci. 2000, 113, 2575–2584. [Google Scholar]
- Srivastava, J.; Procyk, K.J.; Iturrioz, X.; Parker, P.J. Phosphorylation is required for PMA- and cell-cycle-induced degradation of protein kinase Cδ. Biochem. J. 2002, 368, 349–355. [Google Scholar]
- Lee, H.-W.; Smith, L.; Pettit, G.R.; Smith, J.B. Bryostatin 1 and phorbol ester down-modulate protein kinase C-α and -ε via the ubiquitin/proteasome pathway in human fibroblasts. Molec. Pharmacol. 1997, 51, 439–447. [Google Scholar]
- Lu, Z.; Liu, D.; Hornia, A.; Devonish, W.; Pagano, M.; Foster, D.A. Activation of protein kinase C triggers its ubiquitination and degradation. Molec. Cell. Biol. 1998, 18, 839–845. [Google Scholar]
- Schönwasser, D.C.; Marais, R.M.; Marshall, C.J.; Parker, P.J. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molec. Cell. Biol. 1998, 18, 790–798. [Google Scholar]
- Cohen, E.E.W.; Lingen, M.W.; Zhu, B.; Zhu, H.; Straza, M.W.; Pierce, C.; Martin, L.E.; Rosner, M.R. Protein kinase Cζ mediates epidermal growth factor-induced growth of head and neck tumor cells by regulating mitogen-activated protein kinase. Cancer Res. 2006, 66, 6296–6303. [Google Scholar] [CrossRef]
- Corbit, K.C.; Soh, J.-W.; Yoshida, K.; Eves, E.M.; Weinstein, I.B.; Rosner, M.R. Different protein kinase C isoforms determine growth factor specificity in neuronal cells. Molec. Cell. Biol. 2000, 20, 5392–5403. [Google Scholar]
- Cai, H.; Smola, U.; Wixler, V.; Eisenmann-Tappe, I.; Diaz-Meco, M.T.; Moscat, J.; Rapp, U.; Cooper, G.M. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Molec. Cell. Biol. 1997, 17, 732–741. [Google Scholar]
- Kolch, W.; Heidecker, G.; Kochs, G.; Hummel, R.; Vahidl, H.; Mischak, H.; Finkenzeller, G.; Marmé, D.; Rapp, U.R. Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature 1993, 364, 249–252. [Google Scholar] [CrossRef]
- Corbit, K.C.; Trakul, N.; Eves, E.M.; Diaz, B.; Marshall, M.; Rosner, M.R. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J. Biol. Chem. 2003, 278, 13061–13068. [Google Scholar]
- López-Bergami, P.; Habelhah, H.; Bhoumik, A.; Zhang, W.; Wang, L.-H.; Ronai, Z.e. Receptor for RACK1 mediates activation of JNK by protein kinase C. Molec. Cell 2005, 19, 309–320. [Google Scholar]
- Liu, J.; Yang, D.; Minemoto, Y.; Leitges, M.; Rosner, M.R.; Lin, A. NF-κB is required for UV-induced JNK activation via induction of PKCδ. Molec. Cell 2006, 21, 467–480. [Google Scholar]
- Cochet, C.; Gill, G.N.; Meisenhelder, J.; Cooper, J.A.; Hunter, T. C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol. Chem. 1984, 259, 2553–2558. [Google Scholar]
- Hunter, T.; Ling, N.; Cooper, J.A. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature 1984, 311, 480–483. [Google Scholar] [CrossRef]
- Davis, R.J. Independent mechanisms account for the regulation by protein kinase C of the epidermal growth factor receptor affinity and tyrosine-protein kinase activity. J. Biol. Chem. 1988, 263, 9462–9469. [Google Scholar]
- Morrison, P.; Takishima, K.; Rosner, M.R. Role of threonine residues in regulation of the epidermal growth factor receptor by protein kinase C and mitogen-activated protein kinase. J. Biol. Chem. 1993, 268, 15536–15543. [Google Scholar]
- Morrison, P.; Saltiel, A.R.; Rosner, M.R. Role of mitogen-activated protein kinase kinase in regulation of the epidermal growth factor receptor by protein kinase C. J. Biol. Chem. 1996, 271, 12891–12896. [Google Scholar]
- Gulliford, T.; Ouyang, X.; Epstein, R.J. Intensification of growth factor receptor signalling by phorbol treatment of ligand-primed cells implies a dimer-stabilizing effect of protein kinase C-dependent juxtamembrane domain phosphorylation. Cell. Signal. 1999, 11, 245–252. [Google Scholar] [CrossRef]
- Downward, J.; Waterfield, M.D.; Parker, P.J. Autophosphorylation and protein kinase C phosphorylation of the epidermal growth factor receptor. Effect on tyrosine kinase activity and ligand binding affinity. J. Biol. Chem. 1985, 260, 14538–14546. [Google Scholar]
- Lee, L.-S.; Weinstein, I.B. Mechanism of tumor promoter inhibition of cellular binding of epidermal growth factor. Proc. Natl. Acad. Sci. USA 1979, 76, 5168–5172. [Google Scholar]
- Shoyab, M.; De Larco, J.E.; Todaro, G.J. Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors. Nature 1979, 279, 387–391. [Google Scholar] [CrossRef]
- Zwiller, J.; Revel, M.-O.; Malviya, A.N. Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J. Biol. Chem. 1985, 260, 1350–1353. [Google Scholar]
- Yoshimasa, T.; Sibley, D.R.; Bouvier, M.; Lefkowitz, R.J.; Caron, M.G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature 1987, 327, 67–70. [Google Scholar]
- Sipeki, S.; Bander, E.; Parker, P.J.; Faragó, A. PKCα reduces the lipid kinase activity of the p100α/p85α PI3K through the phosphorylation of the catalytic subunit. Biochem. Biophys. Res. Commun. 2006, 339, 122–125. [Google Scholar]
- Lallena, M.-J.; Diaz-Meco, M.T.; Bren, G.; Payá, C.V.; Moscat, J. Activation of IκB kinase β by protein kinase C isoforms. Molec. Cell. Biol. 1999, 19, 2180–2188. [Google Scholar]
- Park, K.A.; Byun, H.S.; Won, M.; Yang, K.-J.; Shin, S.; Piao, L.; Kim, J.M.; Yoon, W.-H.; Junn, E.; Park, J.; Seok, J.H.; Hur, G.M. Sustained activation of protein kinase C downregulates nuclear factor-κB signaling by dissociation of IKK-γ and Hsp90 complex in human colonic epithelial cells. Carcinogenesis 2007, 28, 71–80. [Google Scholar]
- Ivaska, J.; Vuoriluoto, K.; Huovinen, T.; Izawa, I.; Inagaki, M.; Parker, P.J. PKCε-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J. 2005, 24, 3834–3845. [Google Scholar]
- Verma, S.K.; Ganesan, T.S.; Parker, P.J. The tumour suppressor RASSF1A is a novel substrate of PKC. FEBS Lett. 2008, 580, 2270–2276. [Google Scholar]
- Breitkreutz, D.; Braiman-Wiksman, L.; Daum, N.; Denning, M.F.; Tennenbaum, T. Protein kinase C family: On the crossroads of cell signaling in skin and tumor epithelium. J. Cancer Res. Clin. Oncol. 2007, 133, 793–808. [Google Scholar]
- Wang, H.Q.; Smart, R.C. Overexpression of protein kinase C-α in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2 and TNF-α expression but not tumor promotion. J. Cell Sci. 1999, 112, 3497–3506. [Google Scholar]
- Cataisson, C.; Joseloff, E.; Murillas, R.; Wang, A.; Atwell, C.; Torgerson, S.; Gerdes, M.; Subleski, J.; Gao, J.-L.; Murphy, P.M.; Wiltrout, R.H.; Vinson, C.; Yuspa, S.H. Activation of cutaneous protein kinase Cα induces keratinocyte apoptosis and intraepidermal inflammation by independent signaling pathways. J. Immunol. 2003, 171, 2703–2713. [Google Scholar]
- Cataisson, C.; Pearson, A.J.; Tsien, M.Z.; Mascia, F.; Gao, J.-L.; Pastore, S.; Yuspa, S.H. CXCR2 ligands and G-CSF mediate PKCα-induced intraepidermal inflammation. J. Clin. Invest. 2006, 116, 2757–2766. [Google Scholar]
- Cataisson, C.; Ohman, R.; Patel, G.; Pearson, A.; Tsien, M.; Jay, S.; Wright, L.; Hennings, H.; Yuspa, S.H. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. Cancer Res. 2009, 69, 319–328. [Google Scholar]
- Hara, T.; Saito, Y.; Hirai, T.; Nakamura, K.; Nakao, K.; Katsuki, M.; Chida, K. Deficiency of protein kinase Cα in mice results in impairment of epidermal hyperplasia and enhancement of tumor formation in two-stage skin carcinogenesis. Cancer Res. 2005, 65, 7356–7362. [Google Scholar]
- Reddig, P.J.; Dreckschimdt, N.E.; Ahrens, H.; Simsiman, R.; Tseng, C.-P.; Zou, J.; Oberley, T.D.; Verma, A.K. Transgenic mice overexpressing protein kinase Cδ in the epidermis are resistant to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1999, 59, 5710–5718. [Google Scholar]
- Aziz, M.H.; Wheeler, D.L.; Bhamb, B.; Verma, A.K. Protein kinase C δ overexpressing transgenic mice are resistant to chemically but not to UV radiation-induced development of squamous cell carcinomas: A possible link to specific cytokines and cyclooxygenase-2. Cancer Res. 2006, 66, 713–722. [Google Scholar]
- Chida, K.; Murakami, A.; Tagawa, T.; Ikuta, T.; Kuroki, T. Cholesterol sulfate, a second messenger of the η isoform of protein kinase C, inhibits promotional phase in mouse skin carcinogenesis. Cancer Res. 1995, 55, 4865–4869. [Google Scholar]
- Chida, K.; Hara, T.; Hirai, T.; Konishi, C.; Nakamura, K.; Nakao, K.; Aiba, A.; Katsuki, M.; Kuroki, T. Disruption of protein kinase Cη results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis. Cancer Res. 2003, 63, 2404–2408. [Google Scholar]
- Reddig, P.J.; Dreckschimdt, N.E.; Zou, J.; Bourguignon, S.E.; Oberley, T.D.; Verma, A.K. Transgenic mice overexpressing protein kinase Cε in their epidermis exhibit reduced papilloma burden but enhanced carcinoma formation after tumor promotion. Cancer Res. 2000, 60, 595–602. [Google Scholar]
- Jansen, A.P.; Verwiebe, E.G.; Dreckschimdt, N.E.; Wheeler, D.L.; Oberley, T.D.; Verma, A.K. Protein kinase C-ε transgenic mice: A unique model for metastatic squamous cell carcinoma. Cancer Res. 2001, 61, 808–812. [Google Scholar]
- Wheeler, D.L.; Martin, K.E.; Ness, K.J.; Li, Y.; Dreckschmidt, N.E.; Wartman, M.; Ananthaswamy, H.N.; Mitchell, D.L.; Verma, A.K. Protein kinase C ε is an endogenous photosensitizer that enhances ultraviolet radiation-induced cutaneous damage and development of squamous cell carcinomas. Cancer Res. 2004, 64, 7756–7765. [Google Scholar]
- Wheeler, D.L.; Ness, K.J.; Oberley, T.D.; Verma, A.K. Protein kinase Cε is linked to 12-O-tetradecanoylphorbol-13-acetate-induced tumor necrosis factor-α ectodomain shedding and the development of metastatic squamous cell carcinoma in protein kinase Cε transgenic mice. Cancer Res. 2003, 63, 6547–6555. [Google Scholar]
- Verma, A.K.; Wheeler, D.L.; Aziz, M.H.; Manoharan, H. Protein kinase Cε and development of squamous cell carcinoma, the nonmelanoma skin cancer. Molec. Carcinogenesis 2006, 45, 381–388. [Google Scholar]
- Aziz, M.H.; Manoharan, H.T.; Sand, J.M.; Verma, A.K. Protein kinase Cε interacts with Stat3 and regulates its activation that is essential for the development of skin cancer. Molec. Carcinogenesis 2007, 46, 646–653. [Google Scholar] [CrossRef]
- Chan, K.S.; Sano, S.; Kataoka, K.; Abel, E.; Carbajal, S.; Beltran, L.; Clifford, J.; Peavey, M.; Shen, J.; DiGiovanni, J. Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene 2008, 27, 1087–1094. [Google Scholar]
- Chan, K.S.; Sano, S.; Kiguchi, K.; Anders, J.; Komazawa, N.; Takeda, J.; DiGiovanni, J. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J. Clin. Invest. 2004, 114, 720–728. [Google Scholar]
- Barouki, R.; Coumoul, X.; Fernandez-Salguero, P.M. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 2007, 581, 3608–3615. [Google Scholar] [CrossRef]
- Enan, E.; Matsumura, F. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem. Pharmacol. 1996, 52, 1599–1612. [Google Scholar]
- Agostinis, P.; Garmyn, M.; Van Laethem, A. The aryl hydrocarbon receptor: An illuminating effector of UVB response. Science STKE 2007, 403, pe49. [Google Scholar]
- Kawajiri, K.; Fujii-Kuriyama, Y. Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Arch. Biochem. Biophys. 2007, 464, 207–212. [Google Scholar] [CrossRef]
- Poland, A.; Palen, D.; Glover, E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature 1982, 300, 271–273. [Google Scholar]
- Shimizu, Y.; Nakatsuru, Y.; Ichinose, M.; Takahashi, Y.; Kume, H.; Mimura, J.; Fujii-Kuriyama, Y.; Ishikawa, T. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 779–782. [Google Scholar]
- Tauchi, M.; Hida, A.; Negishi, T.; Katsuoka, F.; Noda, S.; Mimura, J.; Hosoya, T.; Yanaka, A.; Aburatani, H.; Fujii-Kuriyama, Y.; Motohashi, H.; Yamamoto, M. Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Molec. Cell. Biol. 2005, 25, 9360–9368. [Google Scholar]
- Rannug, U.; Rannug, A.; Sjöberg, U.; Li, H.; Westerholm, R.; Bergman, J. Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem. Biol. 1995, 2, 841–845. [Google Scholar]
- Fritsche, E.; Schäfer, C.; Calles, C.; Bernsmann, T.; Bernshausen, T.; Wurm, M.; Hübenthal, U.; Cline, J.E.; Hajimiragha, H.; Schroeder, P.; Klotz, L.-O.; Rannug, A.; Fürst, P.; Hanenberg, H.; Abel, J.; Krutmann, J. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmic target for ultraviolet B radiation. Proc. Natl. Acad. Sci. USA 2007, 104, 8851–8856. [Google Scholar] [CrossRef]
- Michalik, L.; Desvergne, B.; Wahli, W. Peroxisome-proliferator-activated receptors and cancer: Complex stories. Nat. Rev. Cancer 2004, 4, 61–70. [Google Scholar]
- Yu, K.; Bayona, W.; Kallen, C.B.; Harding, H.P.; Ravera, C.P.; McMahon, G.; Brown, M.; Lazar, M.A. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 1995, 270, 23975–23983. [Google Scholar]
- Forman, B.M.; Chen, J.; Evans, R.M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc. Natl. Acad. Sci. USA 1997, 94, 4312–4317. [Google Scholar]
- Kliewer, S.A.; Sundseth, S.S.; Jones, S.A.; Brown, P.J.; Wisely, G.B.; Koble, C.S.; Devchand, P.; Wahli, W.; Willson, T.M.; Lenhard, J.M.; Lehmann, J.M. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl. Acad. Sci. USA 1997, 94, 4318–4323. [Google Scholar] [CrossRef]
- Shappell, S.B.; Gupta, R.A.; Manning, S.; Whitehead, R.; Boeglin, W.E.; Schneider, C.; Case, T.; Price, J.; Jack, G.S.; Wheeler, T.M.; Matusik, R.J.; Brash, A.R.; DuBois, R.N. 15S-Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor γ and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res. 2001, 61, 497–503. [Google Scholar]
- Thuillier, P.; Anchiraico, G.J.; Nickel, K.P.; Maldve, R.E.; Gimenez-Conti, I.; Muga, S.J.; Liu, K.-L.; Fischer, S.M.; Belury, M.A. Activators of peroxisome proliferator-activated receptor-α partially inhibit mouse skin tumor formation. Molec. Carcinogenesis 2000, 29, 134–142. [Google Scholar] [CrossRef]
- Muga, S.J.; Thuillier, P.; Pavone, A.; Rundhaug, J.E.; Boeglin, W.E.; Jisaka, M.; Brash, A.R.; Fischer, S.M. 8S-Lipoxygenase products activate peroxisome proliferator-activated receptor α and induce differentiation in murine keratinocytes. Cell Growth Differ. 2000, 11, 447–454. [Google Scholar]
- Kim, E.; Rundhaug, J.E.; Benavides, F.; Yang, P.; Newman, R.A.; Fischer, S.M. An antitumorigenic role for murine 8S-lipoxygenase in skin carinogenesis. Oncogene 2005, 24, 1174–1187. [Google Scholar]
- Tan, N.S.; Michalik, L.; Noy, N.; Yasmin, R.; Pacot, C.; Heim, M.; Flühmann, B.; Desvergne, B.; Wahli, W. Critical roles of PPARβ/δ in keratinocyte response to inflammation. Genes Dev. 2001, 15, 3263–3277. [Google Scholar]
- Voldborg, B.R.; Damstrup, L.; Spang-Thomsen, M.; Poulsen, H.S. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol. 1997, 8, 1197–1206. [Google Scholar] [CrossRef]
- Holbro, T.; Civenni, G.; Hynes, N.E. The ErbB receptors and their role in cancer progression. Exp. Cell Res. 2003, 284, 99–110. [Google Scholar]
- Moscatello, D.K.; Holgado-Madruga, M.; Godwin, A.K.; Ramirez, G.; Gunn, G.; Zoltick, P.W.; Biegel, J.A.; Hayes, R.L.; Wong, A.J. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 1995, 55, 5536–5539. [Google Scholar]
- Zandi, R.; Larsen, A.B.; Andersen, P.; Stockhausen, M.-T.; Poulsen, H.S. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell. Signal. 2007, 19, 2013–2023. [Google Scholar] [CrossRef]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signaling network. Nat. Rev. Molec. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef]
- Harris, R.C.; Chung, E.; Coffey, R.J. EGF receptor ligands. Exp. Cell Res. 2003, 284, 2–13. [Google Scholar] [CrossRef]
- Imamoto, A.; Beltrán, L.M.; DiGiovanni, J. Evidence for autocrine/paracrine growth stimulation by transforming growth factor-α during the process of skin tumor promotion. Molec. Carcinogenesis 1991, 4, 52–60. [Google Scholar]
- Kiguchi, K.; Beltrán, L.M.; You, J.; Rho, O.; DiGiovanni, J. Elevation of transforming growth factor-α mRNA and protein expression by diverse tumor promoters in SENCAR mouse epidermis. Molec. Carcinogenesis 1995, 12, 225–235. [Google Scholar]
- Rho, O.; Beltrán, L.M.; Gimenez-Conti, I.B.; DiGiovanni, J. Altered expression of the epidermal growth factor receptor and transforming growth factor-α during multistage skin carcinogenesis in SENCAR mice. Molec. Carcinogenesis 1994, 11, 19–28. [Google Scholar] [CrossRef]
- Wang, X.-J.; Greenhalgh, D.G.; Eckhardt, J.N.; Rothnagel, J.A.; Roop, D.R. Epidermal expression of transforming growth factor-α in transgenic mice: Induction of spontaneous and 12-O-tetradecanoylphorbol-13-acetate-induced papillomas via a mechanism independent of Ha-ras activation or overexpression. Molec. Carcinogenesis 1994, 10, 15–22. [Google Scholar]
- Vassar, R.; Hutton, M.E.; Fuchs, E. Transgenic overexpression of transforming growth factor α bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis. Molec. Biol. Cell 1992, 12, 4643–4653. [Google Scholar]
- Dominey, A.M.; Wang, X.-J.; King, L.E., Jr.; Nanney, L.B.; Gagne, T.A.; Sellheyer, K.; Bundman, D.S.; Longley, M.A.; Rothnagel, J.A.; Greenhalgh, D.A.; Roop, D.R. Targeted overexpression of transforming growth factor α in the epidermis of transgenic mice elicits hyperplasia, hypekeratosis, and spontaneous, squamous papillomas. Cell Growth Differ. 1993, 4, 1071–1082. [Google Scholar]
- Kiguchi, K.; Beltrán, L.; Dubowski, A.; DiGiovanni, J. Analysis of the ability of 12-O-tetradecanoylphorbol-13-acetate to induce epidermal hyperplasia, transforming growth factor-α, and skin tumor promotion in wa-1 mice. J. Invest. Dermatol. 1997, 108, 784–791. [Google Scholar]
- Dlugosz, A.A.; Cheng, C.; Williams, E.K.; Darwiche, N.; Dempsey, P.J.; Mann, B.; Dunn, A.R.; Coffey, R.J., Jr.; Yuspa, S.H. Autocrine transforming growth factor α is dispensible for v-rasHa-induced epidermal neoplasia: Potential involvement of alternate epidermal growth factor receptor ligands. Cancer Res. 1995, 55, 1883–1893. [Google Scholar]
- DiGiovanni, J. Role of transforming growth factor-α and the epidermal growth factor receptor in multistage mouse skin carcinogenesis. In Skin Cancer: Mechanisms and Human Relevance; Mukhtar, H., Ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1995; pp. 181–197. [Google Scholar]
- Xian, W.; Kiguchi, K.; Imamoto, A.; Rupp, T.; Zilberstein, A.; DiGiovanni, J. Activation of the epidermal growth factor receptor receptor by skin tumor promoters and in skin tumors from SENCAR mice. Cell Growth Differ. 1995, 6, 1447–1455. [Google Scholar]
- El-Abaseri, T.B.; Putta, S.; Hansen, L.A. Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor. Carcinogenesis 2006, 27, 225–231. [Google Scholar] [CrossRef]
- Dlugosz, A.A.; Hansen, L.; Cheng, C.; Alexander, N.; Denning, M.F.; Threadgill, D.W.; Magnuson, T.; Coffey, R.J., Jr.; Yuspa, S.H. Targeted disruption of the epidermal growth factor receptor impairs growth of squamous papillomas expressing the v-rasHa oncogene but does not block in vitro keratinocyte responses to oncogenic ras. Cancer Res. 1997, 57, 3180–3188. [Google Scholar]
- Woodworth, C.D.; Gaiotti, D.; Michael, E.; Hansen, L.; Nees, M. Targeted disruption of the epidermal growth factor receptor inhibits development of papillomas and carcinomas from human papillomavirus-immortalized keratinocytes. Cancer Res. 2000, 60, 4397–4402. [Google Scholar]
- Xian, W.; Rosenberg, M.P.; DiGiovanni, J. Activation of erbB2 and c-src in phorbol ester-treated mouse epidermis: Possible role in mouse skin tumor promotion. Oncogene 1997, 14, 1435–1444. [Google Scholar]
- Kiguchi, K.; Bol, D.; Carbajal, S.; Beltrán, L.; Moats, S.; Chan, K.; Jorcano, J.; DiGiovanni, J. Constitutive expression of erbB2 in epidermis of transgenic mice results in epidermal hyperproliferation and spontaneous skin tumor development. Oncogene 2000, 19, 4243–4254. [Google Scholar] [CrossRef]
- Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst. 2000, 92, 1472–1489. [Google Scholar]
- Baserga, R.; Hongo, A.; Rubini, M.; Prisco, M.; Valentinis, B. The IGF-I receptor in cell growth, transformation and apoptosis. Biochim. Biophys. Acta 1997, 1332, F105–F126. [Google Scholar]
- Pollak, M.N.; Schernhammer, E.S.; Hankinson, S.E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 2004, 4, 505–518. [Google Scholar] [CrossRef]
- Jones, J.I.; Clemmons, D.R. Insulin-like growth factors and their binding proteins: Biological actions. Endocrine Rev. 1995, 16, 3–34. [Google Scholar]
- Rho, O.; Bol, D.K.; You, J.; Beltrán, L.; Rupp, T.; DiGiovanni, J. Altered expression of insulin-like growth factor I and its receptor during multistage carcinogenesis in mouse skin. Molec. Carcinogenesis 1996, 17, 62–69. [Google Scholar] [CrossRef]
- Bol, D.K.; Kiguchi, K.; Gimenez-Conti, I.; Rupp, T.; DiGiovanni, J. Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 1997, 14, 1725–1734. [Google Scholar]
- DiGiovanni, J.; Bol, D.K.; Wilker, E.; Beltrán, L.; Carbajal, S.; Moats, S.; Ramirez, A.; Jorcano, J.; Kiguchi, K. Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Res. 2000, 60, 1561–1570. [Google Scholar]
- Wilker, E.; Bol, D.; Kiguchi, K.; Rupp, T.; Beltrán, L.; DiGiovanni, J. Enhancement of susceptibility to diverse skin tumor promoters by activation of the insulin-like growth factor-1 receptor in the epidermis of transgenic mice. Molec. Carcinogenesis 1999, 25, 122–131. [Google Scholar] [CrossRef]
- Moore, T.; Carbajal, S.; Beltran, L.; Perkins, S.N.; Yakar, S.; LeRoith, D.; Hursting, S.D.; DiGiovanni, J. Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor I levels. Cancer Res. 2008, 68, 3680–3688. [Google Scholar] [CrossRef]
- Koli, K.; Saharinen, J.; Hyytiäinen, M.; Penttinen, C.; Keski-Oja, J. Latency, activation, and binding proteins of TGF-β. Microscopy Res. Technique 2001, 52, 354–362. [Google Scholar] [CrossRef]
- Derynck, R.; Akhurst, R.J.; Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genetics 2001, 29, 117–129. [Google Scholar]
- Massagué, J.; Gomis, R.R. The logic of TGFβ signaling. FEBS Letters 2006, 580, 2811–2820. [Google Scholar] [CrossRef]
- Bierie, B.; Moses, H.L. TGFβ: The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 2006, 6, 506–520. [Google Scholar]
- Sun, L. Tumor-suppressive and promoting function of transforming growth factor beta. Frontiers Biosci. 2004, 9, 1925–1935. [Google Scholar]
- Krieg, P.; Schnapke, R.; Fürstenberger, G.; Vogt, I.; Marks, F. TGF-β1 and skin carcinogenesis: Antiproliferative effect in vitro and TGF-β1 mRNA expression during epidermal hyperprolifertion and multistage tumorigenesis. Molec. Carcinogenesis 1991, 4, 129–137. [Google Scholar]
- Kulkarni, A.B.; Huh, C.-G.; Becker, D.; Geiser, A.; Lyght, M.; Flanders, K.C.; Roberts, A.B.; Sporn, M.B.; Ward, J.M.; Karlsson, S. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 1993, 90, 770–774. [Google Scholar] [CrossRef]
- Shull, M.M.; Ormsby, I.; Kier, A.B.; Pawlowski, S.; Diebold, R.J.; Yin, M.; Allen, R.; Sidman, C.; Proetzel, G.; Calvin, D.; Annunziata, N.; Doetschman, T. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992, 359, 693–699. [Google Scholar] [CrossRef]
- Reibman, J.; Meixler, S.; Lee, T.C.; Gold, L.I.; Cronstein, B.N.; Haines, K.A.; Kolasinski, S.L.; Weissmann, G. Transforming growth factor β1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc. Natl. Acad. Sci. USA 1991, 88, 6805–6809. [Google Scholar] [CrossRef]
- Guanqun, A.; Lu, S.-L.; Han, G.; Hoot, K.E.; Wang, X.-J. Role of TGFβ in skin inflammation and carcinogenesis. Molec. Carcinogenesis 2006, 45, 389–396. [Google Scholar] [CrossRef]
- Nam, J.-S.; Terabe, M.; Kang, M.-J.; Chae, H.; Voong, N.; Yang, Y.-a.; Laurence, A.; Michalowska, A.M.; Mamura, M.; Lonning, S.; Berzofsky, J.A.; Wakefield, L.M. Transforming growth factor β subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res. 2008, 68, 3915–3923. [Google Scholar]
- Patamalai, B.; Burow, D.L.; Gimenez-Conti, I.; Zenklusen, J.C.; Conti, C.J.; Klein-Szanto, A.J.P.; Fischer, S.M. Altered expression of transforming growth factor-β1 mRNA and protein in mouse skin carcinogenesis. Molec. Carcinogenesis 1994, 9, 220–229. [Google Scholar]
- Fowlis, D.J.; Flanders, K.C.; Duffie, E.; Balmain, A.; Akhurst, R.J. Discordant transforming growth factor β1 RNA and protein localization during chemical carcinogenesis of the skin. Cell Growth Differ. 1992, 3, 81–91. [Google Scholar]
- Glick, A.B.; Kulkarni, A.B.; Tennenbaum, T.; Hennings, H.; Flanders, K.C.; O'Reilly, M.; Sporn, M.B.; Karlsson, S.; Yuspa, S.H. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. USA 1993, 90, 6076–6080. [Google Scholar]
- Cui, W.; Kemp, C.J.; Duffie, E.; Balmain, A.; Akhurst, R.J. Lack of transforming growth factor-β1 expression in benign skin tumors of p53null mice is prognostic for a high risk of malignant conversion. Cancer Res. 1994, 54, 5831–5836. [Google Scholar]
- Cui, W.; Fowlis, D.J.; Bryson, S.; Duffie, E.; Ireland, H.; Balmain, A.; Akhurst, R.J. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996, 86, 531–542. [Google Scholar] [CrossRef]
- Weeks, B.H.; He, W.; Olson, K.L.; Wang, X.-J. Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Res. 2001, 61, 7435–7443. [Google Scholar]
- Amendt, C.; Schirmacher, P.; Weber, H.; Blessing, M. Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 1998, 17, 25–34. [Google Scholar]
- Go, C.; Li, P.; Wang, X.-J. Blocking transforming growth factor β signaling in transgenic epidermis accelerates chemical carcinogenesis: A mechanism associated with increased angiogenesis. Cancer Res. 1999, 59, 2861–2868. [Google Scholar]
- Han, G.; Lu, S.-L.; Li, A.G.; He, W.; Corless, C.L.; Kulesz-Martin, M.; Wang, X.-J. Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J. Clin. Invest. 2005, 115, 1714–1723. [Google Scholar] [CrossRef]
- Li, A.G.; Lu, S.-L.; Zhang, M.-X.; Deng, C.; Wang, X.-J. Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis. Cancer Res. 2004, 64, 7836–7845. [Google Scholar] [CrossRef]
- Qiao, W.; Li, A.G.; Owens, P.; Xu, X.; Wang, X.-J.; Deng, C.-X. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 2006, 25, 207–217. [Google Scholar]
- Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 2006, 25, 409–416. [Google Scholar] [CrossRef]
- Szlosarek, P.; Charles, K.A.; Balkwill, F.R. Tumour necrosis factor-α as a tumour promoter. Eur. J. Cancer 2006, 42, 745–750. [Google Scholar]
- Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 2003, 10, 45–65. [Google Scholar]
- Bradham, C.A.; Plümpe, J.; Manns, M.P.; Brenner, D.A.; Trautwein, C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am. J. Physiol. 1998, 275, G387–G392. [Google Scholar]
- Martin, A.G.; San-Antonio, B.; Fresno, M. Regulation of nuclear factor κB transactivation. Implications of phosphatidylinositol 3-kinase and protein kinase C ζ in c-Rel activation by tumor necrosis α. J. Biol. Chem. 2001, 276, 15840–15849. [Google Scholar] [CrossRef]
- Ozes, O.N.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B. NF-κB activation by tumour necrosis factor requires Akt serine-threonine kinase. Nature 1999, 401, 82–85. [Google Scholar] [CrossRef]
- Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003, 114, 181–190. [Google Scholar] [CrossRef]
- Daniel, D.; Wilson, N.S. Tumor necrosis factor: Renaissance as a cancer therapeutic? Curr. Cancer Drug Targets 2008, 8, 124–131. [Google Scholar] [CrossRef]
- Murakawa, M.; Yamaoka, K.; Tanaka, Y.; Fukuda, Y. Involvement of tumor necrosis factor (TNF)-α in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem. Pharmacol. 2006, 71, 1331–1336. [Google Scholar] [CrossRef]
- Moore, R.J.; Owens, D.M.; Stamp, G.; Arnott, C.; Burke, F.; East, N.; Holdsworth, H.; Turner, L.; Rollins, B.; Pasparakis, M.; Kollias, G.; Balkwill, F. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat. Med. 1999, 5, 828–831. [Google Scholar] [CrossRef]
- Suganuma, M.; Okabe, S.; Marino, M.W.; Sakai, A.; Sueoka, E.; Fujiki, H. Essential role of tumor necrosis α (TNF-α) in tumor promotion as revealed by TNF-α-deficient mice. Cancer Res. 1999, 59, 4516–4518. [Google Scholar]
- Arnott, C.H.; Scott, K.A.; Moore, R.J.; Robinson, S.C.; Thompson, R.G.; Balkwill, F.R. Expression of both TNF-α receptor subtypes is essential for optimal skin tumour development. Oncogene 2004, 23, 1902–1910. [Google Scholar] [CrossRef]
- Starcher, B. Role for tumour necrosis factor-α receptors in ultraviolet-induced skin tumors. Brit. J. Dermatol. 2000, 142, 1140–1147. [Google Scholar] [CrossRef]
- Arnott, C.H.; Scott, K.A.; Moore, R.J.; Hewer, A.; Phillips, D.H.; Parker, P.; Balkwill, F.R.; Owens, D.M. Tumour necrosis factor-α mediates tumour promotion via a PKCα- and AP-1-dependent pathway. Oncogene 2002, 21, 4728–4738. [Google Scholar] [CrossRef]
- Scott, K.A.; Arnott, C.H.; Robinson, S.C.; Moore, R.J.; Thompson, R.G.; Marshall, J.F.; Balkwill, F.R. TNF-α regulates epithelial expression of MMP-9 and integrin αvβ6 during tumour promotion. A role for TNF-α in keratinocyte migration? Oncogene 2004, 23, 6954–6966. [Google Scholar] [CrossRef]
- Haque, S.J.; Sharma, P. Interleukins and STAT signaling. Vitam. Horm. 2006, 74, 165–206. [Google Scholar] [CrossRef]
- Apte, R.N.; Dotan, S.; Elkabets, M.; White, M.R.; Reich, E.; Carmi, Y.; Song, X.; Dvozkin, T.; Krelin, Y.; Voronov, E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 2006, 25, 387–408. [Google Scholar] [CrossRef]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 1996, 87, 2095–2147. [Google Scholar]
- Boraschi, D.; Tagliabue, A. The interleukin-1 receptor family. Vitam. Horm. 2006, 74, 229–254. [Google Scholar] [CrossRef]
- Naugler, W.E.; Karin, M. The wolf in sheep's clothing: The role of interleukin-6 in immunity, inflammation and cancer. Trends Molec. Med. 2008, 14, 109–119. [Google Scholar] [CrossRef]
- Apte, R.N.; Krelin, Y.; Song, X.; Dotan, S.; Recih, E.; Elkabets, M.; Carmi, Y.; Dvorkin, T.; White, R.M.; Gayvoronsky, L.; Segal, S.; Voronov, E. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur. J. Cancer 2006, 42, 751–759. [Google Scholar] [CrossRef]
- Sauder, D.N.; Stanulis-Praeger, B.M.; Gilchrest, B.A. Autocrine growth stimulation of human keratinocytes by epidermal cell-derived thymocyte-activating factor: Implications for skin aging. Arch. Dermatol. Res. 1988, 280, 71–76. [Google Scholar] [CrossRef]
- Kupper, T.S.; Chua, A.O.; Flood, P.; McGuire, J.; Gubler, U. Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J. Clin. Invest. 1987, 80, 430–436. [Google Scholar] [CrossRef]
- Oberyszyn, T.M.; Sabourin, C.L.K.; Bijur, G.N.; Oberyszyn, A.S.; Boros, L.G.; Robertson, F.M. Interleukin-1α gene expression and localization of interleukin-1α protein during tumor promotion. Molec. Carcinogenesis 1993, 7, 238–248. [Google Scholar] [CrossRef]
- Lee, W.Y.; Fischer, S.M.; Butler, A.P.; Locniskar, M.F. Modulation of interleukin-1α mRNA expression in mouse epidermis by tumor promoters and antagonists. Molec. Carcinogenesis 1993, 7, 26–33. [Google Scholar] [CrossRef]
- La, E.; Muga, S.J.; Locniskar, M.F.; Fischer, S.M. Altered expression of interleukin-1 receptor antagonist in different stages of mouse skin carcinogenesis. Molec. Carcinogenesis 1999, 24, 276–286. [Google Scholar] [CrossRef]
- Lee, W.Y.; Lockniskar, M.F.; Fischer, S.M. Interleukin-1α mediates phorbol ester-induced inflammation and epidermal hyperplasia. FASEB J. 1994, 8, 1081–1087. [Google Scholar]
- Rauschmayr, T.; Groves, R.W.; Kupper, T.S. Keratinocyte expression of the type 2 interleukin 1 receptor mediates local and specific inhibition of interleukin 1-mediated inflammation. Proc. Natl. Acad. Sci. USA 1997, 94, 5814–5819. [Google Scholar] [CrossRef]
- Groves, R.W.; Mizutani, H.; Kieffer, J.D.; Kupper, T.S. Inflammatory skin disease in transgenic mice that express high levels of interleukin 1α in basal epidermis. Proc. Natl. Acad. Sci. USA 1995, 92, 11874–11878. [Google Scholar] [CrossRef]
- Groves, R.W.; Sherman, L.; Mizutani, H.; Dower, S.K.; Kupper, T.S. Detection of interleukin-1 receptors in human epidermis. Induction of the type II receptor after organ culture and in psoriasis. Am. J. Pathol. 1994, 145, 1048–1056. [Google Scholar]
- Eller, M.S.; Yaar, M.; Ostrom, K.; Harkness, D.D.; Gilchrest, B.A. A role for interleukin-1 in epidermal differentiation: regulation by expression of functional versus decoy receptors. J. Cell Sci. 1995, 108, 2741–2746. [Google Scholar]
- Corradi, A.; Franzi, A.T.; Rubartelli, A. Synthesis and secretion of interleukin-1α and interleukin-1 receptor agonist during differentiation of cultured keratinocytes. Exp. Cell Res. 1995, 217, 355–362. [Google Scholar] [CrossRef]
- Schiller, M.; Böhm, M.; Dennler, S.; Ehrchen, J.M.; Mauviel, A. Mitogen- and stress-activated protein kinase 1 is critical for interleukin-1-induced, CREB-mediated, c-fos gene expression in keratinocytes. Oncogene 2006, 25, 4449–4457. [Google Scholar] [CrossRef]
- Li, X.; Eckard, J.; Shah, R.; Malluck, C.; Frenkel, K. Interleukin-1α up-regulation in vivo by a potent carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) and control of DMBA-induced inflammatory responses. Cancer Res. 2002, 62, 417–423. [Google Scholar]
- La, E.; Rundhaug, J.E.; Fischer, S.M. Role of intracellular interleukin-1 receptor antagonist in skin carcinogenesis. Molec. Carcinogenesis 2001, 30, 218–223. [Google Scholar] [CrossRef]
- Murphy, J.-E.; Morales, R.E.; Scott, J.; Kupper, T.S. IL-1α, innate immunity, and skin carcinogenesis: The effect of constitutive expression of IL-1α in epidermis on chemical carcinogenesis. J. Immunol. 2003, 170, 5697–5703. [Google Scholar]
- Robertson, M.J.; Ritz, J. Interleuken 12: Basic biology and potential applications in cancer treatment. Oncologist 1996, 1, 88–97. [Google Scholar]
- Langrish, C.L.; McKenzie, B.S.; Wilson, N.J.; de Waal Malefyt, R.; Kastelein, R.A.; Cua, D.J. IL-12 and IL-23: Master regulators of innate and adaptive immunity. Immunol. Rev. 2004, 202, 96–105. [Google Scholar] [CrossRef]
- Aggarwal, S.; Ghilardi, N.; Xie, M.-H.; de Sauvage, F.J.; Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 2003, 278, 1910–1914. [Google Scholar]
- Langowski, J.L.; Zhang, X.; Wu, L.; Mattson, J.D.; Chen, T.; Smith, K.; Basham, B.; McClanahan, T.; Kastelein, R.A.; Oft, M. IL-23 promotes tumour incidence and growth. Nature 2006, 442, 461–465. [Google Scholar] [CrossRef]
- Katiyar, S.K. Interleukin-12 and photocarcinogenesis. Toxicol. Appl. Pharmacol. 2007, 224, 220–227. [Google Scholar] [CrossRef]
- Meeran, S.M.; Mantena, S.K.; Meleth, S.; Elmets, C.A.; Katiyar, S.K. Interleukin-12-deficient mice are at greater risk of UV-radiation-induced skin tumor and malignant transformation of papillomas to carcinomas. Molec. Cancer Ther. 2006, 5, 825–832. [Google Scholar]
- Maeda, A.; Schneider, S.W.; Kojima, M.; Beissert, S.; Schwarz, T.; Schwarz, A. Enhanced photocarcinogenesis in interleukin-12-deficient mice. Cancer Res. 2006, 66, 2962–2969. [Google Scholar] [CrossRef]
- Meeran, S.M.; Katiyar, S.; Elmets, C.A.; Katiyar, S.K. Interleukin-12 deficiency is permissive for angiogenesis in UV radiation-induced skin tumors. Cancer Res. 2007, 67, 3785–3793. [Google Scholar] [CrossRef]
- Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Ann. Rev. Biochem. 2000, 69, 145–182. [Google Scholar]
- Subbaramaiah, K.; Dannenberg, A.J. Cyclooxygenase 2: A molecular target for cancer prevention and treatment. Trends Pharmacol. Sci. 2003, 24, 96–102. [Google Scholar] [CrossRef]
- Buckman, S.Y.; Gresham, A.; Hale, P.; Hruza, G.; Anast, J.; Masferrer, J.; Pentland, A.P. COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis 1998, 19, 723–729. [Google Scholar] [CrossRef]
- Trifan, O.C.; Hla, T. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J. Cell. Molec. Medicine 2003, 7, 207–222. [Google Scholar] [CrossRef]
- Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001, 294, 1871–1875. [Google Scholar] [CrossRef]
- Hull, M.A. Cyclooxygenase-2: How good is it as a target for cancer chemoprevention? Eur. J. Cancer 2005, 41, 1854–1863. [Google Scholar] [CrossRef]
- An, K.P.; Athar, M.; Tang, X.; Katiyar, S.K.; Russo, J.; Beech, J.; Aszterbaum, M.; Kopelovich, L.; Epstein, E.H., Jr.; Mukhtar, H.; Bickers, D.R. Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: Implications for therapeutic approaches. Photochem. Photobiol. 2002, 76, 73–80. [Google Scholar] [CrossRef]
- Yoshimura, R.; Sano, H.; Masuda, C.; Kawamura, M.; Tsubouchi, Y.; Chargui, J.; Yoshimura, N.; Hla, T.; Wada, S. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 2000, 89, 589–596. [Google Scholar] [CrossRef]
- Müller-Decker, K.; Scholz, K.; Marks, F.; Fürstenberger, G. Differential expression of prostaglandin H synthase isozymes during multistage carcinogenesis in mouse epidermis. Molec. Carcinogenesis 1995, 12, 31–41. [Google Scholar] [CrossRef]
- Fürstenberger, G.; Gross, M.; Marks, F. Eicosanoids and multistage carcinogenesis in NMRI mouse skin: Role of prostaglandins E and F in conversion (first stage of tumor promotion) and promotion (second stage of tumor promotion). Carcinogenesis 1989, 10, 91–96. [Google Scholar] [CrossRef]
- Maldve, R.E.; Fischer, S.M. Multifactor regulation of prostaglandin H synthase-2 in murine keratinocytes. Molec. Carcinogenesis 1996, 17, 207–216. [Google Scholar] [CrossRef]
- Levine, L. Stimulation of cellular prostaglandin production by phorbol esters and growth factors and inhibition by cancer chemopreventive agents. In Prostaglandins and Cancer: First International Conference; Powles, T.J., Bockman, R.S., Honn, K.V., Ramwell, P., Eds.; Alan R. Liss, Inc.: New York, NY, USA, 1982; Volume 2, pp. 189–204. [Google Scholar]
- Rundhaug, J.E.; Fischer, S.M. Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem. Photobiol. 2008, 84, 322–329. [Google Scholar] [CrossRef]
- Tripp, C.S.; Blomme, E.A.G.; Chinn, K.S.; Hardy, M.M.; LaCelle, P.; Pentland, A.P. Epidermal COX-2 induction following ultraviolet irradiation: Suggested mechanism for the role of COX-2 inhibition in photoprotection. J. Invest. Dermatol. 2003, 121, 853–861. [Google Scholar] [CrossRef]
- Fischer, S.M.; Patrick, K.E.; Lee, M.L.; Cameron, G.S. 4β- and 4α-12-O-tetradecanoylphorbol-13-acetate elicit arachidonate release from epidermal cells through different mechanisms. Cancer Res. 1991, 51, 850–856. [Google Scholar]
- Duniec, Z.M.; Nettesheim, P.; Eling, T.E. Stimulation of prostaglandin H synthetase mRNA levels and prostaglandin biosynthesis by phorbol ester: Mediation by protein kinase C. Molec. Pharmacol. 1991, 39, 164–170. [Google Scholar]
- Xu, K.; Shu, H.-K.G. EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res. 2007, 67, 6121–6129. [Google Scholar] [CrossRef]
- Wang, S.-C.; Lien, H.-C.; Xia, W.; Chen, I.-F.; Lo, H.-W.; Wang, Z.; Ali-Seyed, M.; Lee, D.-F.; Bartholomeusz, G.; Ou-Yang, F.; Giri, D.K.; Hung, M.-C. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine receptor ErbB-2. Cancer Cell 2004, 6, 251–261. [Google Scholar] [CrossRef]
- Yamamoto, K.; Arakawa, T.; Ueda, N.; Yamamoto, S. Transcriptional roles of nuclear factor κB and nuclear factor-interleukin-6 in the tumor necrosis factor α-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J. Biol. Chem. 1995, 270, 31315–31320. [Google Scholar]
- Kim, Y.; Fischer, S.M. Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J. Biol. Chem. 1998, 273, 27686–27694. [Google Scholar] [CrossRef]
- Han, J.A.; Kim, J.-I.; Ongusaha, P.P.; Hwang, D.H.; Ballou, L.R.; Mahale, A.; Aaronson, S.A.; Lee, S.W. p53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J. 2002, 21, 5635–5644. [Google Scholar] [CrossRef]
- Bachelor, M.A.; Bowden, G.T. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin. Cancer Biol. 2004, 14, 131–138. [Google Scholar] [CrossRef]
- Maldve, R.E.; Kim, Y.; Muga, S.J.; Fischer, S.M. Prostaglandin E2 regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. J. Lipid Res. 2000, 41, 873–881. [Google Scholar]
- Fischer, S.M.; Fürstenberger, G.; Marks, F.; Slaga, T.J. Events associated with mouse skin tumor promotion with respect to arachidonic acid metabolism: A comparison between SENCAR and NMRI mice. Cancer Res. 1987, 47, 3174–3179. [Google Scholar]
- Verma, A.K.; Ashendel, C.L.; Boutwell, R.K. Inhibition by prostaglandin synthesis inhibitors of the induction of epidermal ornithine decarboxylase activity, the accumulation of prostaglandins, and tumor promotion caused by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1980, 40, 308–315. [Google Scholar]
- Fischer, S.M.; Lo, H.-H.; Gordon, G.B.; Seibert, K.; Kelloff, G.; Lubet, R.A.; Conti, C.J. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Molec. Carcinogenesis 1999, 25, 231–240. [Google Scholar] [CrossRef]
- Wilgus, T.A.; Ross, M.S.; Parrett, M.L.; Oberyszyn, T.M. Topical application of a selective cyclooxygenase inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins Other Lipid Mediat. 2000, 62, 367–384. [Google Scholar] [CrossRef]
- Wilgus, T.A.; Koki, A.T.; Zweifel, B.S.; Kusewitt, D.F.; Rubal, P.A.; Oberyszyn, T.M. Inhibition of cutaneous ultraviolet B-mediated inflammation and tumor formation with topical celecoxib treatment. Molec. Carcinogenesis 2003, 38, 49–58. [Google Scholar] [CrossRef]
- Pentland, A.P.; Schoggins, J.W.; Scott, G.A.; Khan, K.N.M.; Han, R. Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 1999, 20, 1939–1944. [Google Scholar] [CrossRef]
- Butler, G.J.; Neale, R.; Green, A.C.; Pandeya, N.; Whiteman, D.C. Nonsteroidal anti-inflammatory drugs and the risk of actinic keratoses and squamous cell cancers of the skin. J. Am. Acad. Dermatol. 2005, 53, 966–972. [Google Scholar] [CrossRef]
- Gupta, R.A.; DuBois, R.N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat. Rev. Cancer 2001, 1, 11–21. [Google Scholar] [CrossRef]
- Mazhar, D.; Ang, R.; Waxman, J. COX inhibitors and breast cancer. Br. J. Cancer 2006, 94, 346–350. [Google Scholar] [CrossRef]
- Grösch, S.; Maier, T.J.; Schiffmann, S.; Geisslinger, G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J. Natl. Cancer Inst. 2006, 98, 736–747. [Google Scholar] [CrossRef]
- Tiano, H.F.; Loftin, C.D.; Akunda, J.; Lee, C.A.; Spalding, J.; Sessoms, A.; Dunson, D.B.; Rogan, E.G.; Morham, S.G.; Smart, R.C.; Langenbach, R. Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res. 2002, 62, 3395–3401. [Google Scholar]
- Pentland, A.P.; Scott, G.; VanBuskirk, J.; Tanck, C.; LaRossa, G.; Brouxhon, S. Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Res. 2004, 64, 5587–5591. [Google Scholar] [CrossRef]
- Fischer, S.M.; Pavone, A.; Mikulec, C.; Langenbach, R.; Rundhaug, J.E. Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Molec. Carcinogenesis 2007, 46, 363–371. [Google Scholar] [CrossRef]
- Akunda, J.K.; Chun, K.-S.; Sessoms, A.R.; Lao, H.-C.; Fischer, S.M.; Langenbach, R. Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Molec. Carcinogenesis 2007, 46, 354–362. [Google Scholar] [CrossRef]
- Rundhaug, J.E.; Pavone, A.; Kim, E.; Fischer, S.M. The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Molec. Carcinogenesis 2007, 46, 981–992. [Google Scholar] [CrossRef]
- Müller-Decker, K.; Neufang, G.; Berger, I.; Neumann, M.; Marks, F.; Fürstenberger, G. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 12483–12488. [Google Scholar]
- Bol, D.K.; Rowley, R.B.; Ho, C.-P.; Pilz, B.; Dell, J.; Swerdel, M.; Kiguchi, K.; Muga, S.; Klein, R.; Fischer, S.M. Cyclooxygenase-2 overexpression in the skin of transgenic mice results in suppression of tumor development. Cancer Res. 2002, 62, 2516–2521. [Google Scholar]
- Tjiu, J.-W.; Liao, Y.-H.; Lin, S.-J.; Huang, Y.-L.; Tsai, W.-L.; Chu, C.-Y.; Kuo, M.-L.; Jee, S.-H. Cyclooxygenase-2 overexpression in human basal cell carcinoma cell line increases antiapoptosis, angiogenesis, and tumorigenesis. J. Invest. Dermatol. 2006, 126, 1143–1151. [Google Scholar] [CrossRef]
- Ansari, K.M.; Rundhaug, J.E.; Fischer, S.M. Multiple signaling pathways are responsible for prostaglandin E2-induced murine keratinocyte proliferation. Molec. Cancer Res. 2008, 6, 1003–1016. [Google Scholar] [CrossRef]
- Tsuboi, K.; Sugimoto, Y.; Ichikawa, A. Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat. 2002, 68–69, 535–556. [Google Scholar] [CrossRef]
- Tober, K.L.; Thomas-Ahner, J.M.; Maruyama, T.; Oberyszyn, T.M. Possible cross-regulation of the E prostanoid receptors. Molec. Carcinogenesis 2007, 46, 711–715. [Google Scholar] [CrossRef]
- Breyer, R.M.; Bagdassarian, C.K.; Myers, S.A.; Breyer, M.D. Prostanoid receptors: Subtypes and signaling. Ann. Rev. Pharmacol. Toxicol. 2001, 41, 661–690. [Google Scholar] [CrossRef]
- Fujino, H.; Salvi, S.; Regan, J.W. Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Molec. Pharmacol. 2005, 68, 251–259. [Google Scholar]
- Lee, J.L.; Kim, A.; Kopelovich, L.; Bickers, D.R.; Athar, M. Differential expression of E prostanoid receptors in murine and human non-melanoma skin cancer. J. Invest. Dermatol. 2005, 125, 818–825. [Google Scholar] [CrossRef]
- Konger, R.L.; Billings, S.D.; Thompson, A.B.; Morimiya, A.; Ladenson, J.H.; Landt, Y.; Pentland, A.P.; Badve, S. Immunolocalization of low-affinity prostaglandin E2 receptors, EP1 and EP2, in adult human epidermis. J. Invest. Dermatol. 2005, 124, 965–970. [Google Scholar] [CrossRef]
- Konger, R.L.; Brouxhon, S.; Partillo, S.; VanBuskirk, J.; Pentland, A.P. The EP3 receptor stimulates ceramide and diacylglycerol release and inhibits growth of primary keratinocytes. Exp. Dermatol. 2005, 14, 914–922. [Google Scholar] [CrossRef]
- Sung, Y.M.; He, G.; Hwang, D.H.; Fischer, S.M. Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene 2006, 25, 5507–5516. [Google Scholar] [CrossRef]
- Tober, K.L.; Wilgus, T.A.; Kusewitt, D.F.; Thomas-Ahner, J.M.; Maruyama, T.; Oberyszyn, T.M. Importance of the EP1 receptor in cutaneous UVB-induced inflammation and tumor development. J. Invest. Dermatol. 2006, 126, 205–211. [Google Scholar] [CrossRef]
- Thompson, E.J.; Gupta, A.; Vielhauer, G.A.; Regan, J.W.; Bowden, G.T. The growth of malignant keratinocytes depends on signaling though the PGE2 receptor EP1. Neoplasia 2001, 3, 402–410. [Google Scholar] [CrossRef]
- Konger, R.L.; Malaviya, R.; Pentland, A.P. Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes. Biochim. Biophys. Acta 1998, 1401, 221–234. [Google Scholar] [CrossRef]
- Sung, Y.M.; He, G.; Fischer, S.M. Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Res. 2005, 65, 9304–9311. [Google Scholar] [CrossRef]
- Kabashima, K.; Nagamachi, M.; Honda, T.; Nishigori, C.; Miyachi, Y.; Tokura, Y.; Narumiya, S. Prostaglandin E2 is required for ultraviolet B-induced skin inflammation via EP2 and EP4 receptors. Lab. Invest. 2007, 87, 49–55. [Google Scholar] [CrossRef]
- Brouxhon, S.; Konger, R.L.; VanBuskirk, J.; Sheu, T.-j.; Ryan, J.; Erdle, B.; Almudevar, A.; Breyer, R.M.; Scott, G.; Pentland, A.P. Deletion of prostagandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. J. Invest. Dermatol. 2007, 127, 439–446. [Google Scholar] [CrossRef]
- Ansari, K.M.; Sung, Y.M.; He, G.; Fischer, S.M. Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin. Carcinogenesis 2007, 28, 2063–2068. [Google Scholar] [CrossRef]
- Kamiyama, M.; Pozzi, A.; Yang, L.; DeBusk, L.M.; Breyer, R.M.; Lin, P.C. EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene 2006, 25, 7019–1028. [Google Scholar] [CrossRef]
- Chun, K.-S.; Akunda, J.K.; Langenbach, R. Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the prostaglandin E2 receptors, EP2 and EP4. Cancer Res. 2007, 67, 2015–2021. [Google Scholar] [CrossRef]
- Shoji, Y.; Takahashi, M.; Takasuka, N.; Niho, N.; Kitamura, T.; Sato, H.; Maruyama, T.; Sugimoto, Y.; Narumiya, S.; Sugimura, T.; Wakabayashi, K. Prostaglandin E receptor EP3 deficiency modifies tumor outcome in mouse two-stage skin carcinogenesis. Carcinogenesis 2005, 26, 2116–2122. [Google Scholar] [CrossRef]
- Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nature Rev. Cancer 2003, 3, 276–285. [Google Scholar] [CrossRef]
- Goetz, M.E.; Luch, A. Reactive species: A cell damaging rout assisting to chemical carcinogenesis. Cancer Lett. 2008, 266, 73–83. [Google Scholar] [CrossRef]
- Cerutti, P.A. Prooxidant states and tumor promotion. Science 1985, 227, 375–381. [Google Scholar]
- Marnett, L.J. Peroxyl free radicals: Potential mediators of tumor initiation and promotion. Carcinogenesis 1987, 8, 1365–1373. [Google Scholar] [CrossRef]
- Clerkin, J.S.; Naughton, R.; Quiney, C.; Cotter, T.G. Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett. 2008, 26, 30–36. [Google Scholar]
- Xu, Y.; Shao, Y.; Voorhees, J.J.; Fisher, G.J. Oxidative inhibition of receptor-type protein-tyrosine phosphatase κ by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes. J. Biol. Chem. 2006, 281, 27389–27397. [Google Scholar] [CrossRef]
- DiGiovanni, J.; Kruszewski, F.H.; Coombs, M.M.; Bhatt, T.S.; Pezeshk, A. Structure-activity relationships for epidermal ornithine decarboxylase induction and skin tumor promotion by anthrones. Carcinogenesis 1988, 9, 1437–1443. [Google Scholar] [CrossRef]
- Lahiri-Chatterjee, M.; Katiyar, S.K.; Mohan, R.R.; Agarwal, R. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Res. 1999, 59, 622–632. [Google Scholar]
- Katiyar, S.K.; Agarwal, R.; Wood, G.S.; Mukhtar, H. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-caused tumor promotion in 7,12-dimethylbenz[a]anthracene-initiated SENCAR mouse skin by polyphenolic fraction isolated from green tea. Cancer Res. 1992, 52, 6890–6897. [Google Scholar]
- Wright, T.I.; Spencer, J.M.; Flowers, F.P. Chemoprevention of nonmelanoma skin cancer. J. Am. Acad. Dermatol. 2006, 54, 933–946. [Google Scholar] [CrossRef]
- Zhao, Y.; Chaiswing, L.; Oberley, T.D.; Batinic-Haberle, I.; St. Clair, W.; Epstein, C.J.; St. Clair, D. A mechanism-based antioxidant approach for the reduction of skin carcinogenesis. Cancer Res. 2005, 65, 1401–1405. [Google Scholar] [CrossRef]
- Park, K.-K.; Park, J.-H.; Jung, Y.-J.; Chung, W.-Y. Inhibitory effects of chlorophyllin, hemin and tetrakis(4-benzoic acid)porphyrin on oxidative DNA damage and mouse skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate as a possible anti-tumor promoting mechanism. Mutation Res. 2003, 542, 89–97. [Google Scholar] [CrossRef]
- Sablina, A.A.; Budanov, A.V.; Ilyinskaya, G.V.; Agapova, L.S.; Kravchenko, J.E.; Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med. 2005, 11, 1306–1313. [Google Scholar] [CrossRef]
- Pegg, A.E. Regulation of ornithine decarboxylase. J. Biol. Chem. 2006, 281, 14529–14532. [Google Scholar] [CrossRef]
- O'Brien, T.G. The induction of ornithine decarboxylase as an early, possibly obligatory, event in mouse skin carcinogenesis. Cancer Res. 1976, 36, 2644–2653. [Google Scholar]
- Gerner, E.W.; Meyskens, F.L., Jr. Polyamines and cancer: Old molecules, new understanding. Nat. Rev. Cancer 2004, 4, 781–792. [Google Scholar] [CrossRef]
- Fujiki, H.; Mori, M.; Nakayasu, M.; Terada, M.; Sugimura, T.; Moore, R.E. Indole alkaloids: Dihydroteleocidin B, teleocidin, and lyngbyatoxin A as members of a new class of tumor promoters. Proc. Natl. Acad. Sci. USA 1981, 78, 3872–3876. [Google Scholar]
- DiGiovanni, J.; Decina, P.C.; Prichett, W.P.; Cantor, J.; Aalfs, K.K.; Coombs, M.M. Mechanism of mouse skin tumor promotion by chrysarobin. Cancer Res. 1985, 45, 2584–2589. [Google Scholar]
- Suganuma, M.; Fujiki, H.; Furuya-Suguri, H.; Yoshizawa, S.; Yasumoto, S.; Kato, Y.; Fusetani, N.; Sugimura, T. Calyculin A, an inhibitor of protein phosphatases, a potent tumor promoter on CD-1 mouse skin. Cancer Res. 1990, 50, 3521–3525. [Google Scholar]
- Clark-Lewis, I.; Murray, A.W. Tumor promotion and the induction of epidermal ornithine decarboxylase activity in mechanically stimulated mouse skin. Cancer Res. 1978, 38, 494–497. [Google Scholar]
- Ahmad, N.; Gilliam, A.C.; Katiyar, S.K.; O'Brien, T.G.; Mukhtar, H. A definitive role of ornithine decarboxylase in photocarcinogenesis. Am. J. Pathol. 2001, 159, 885–892. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M.; Tahira, T.; Yoshioka, A.; Nakayasu, M.; Endo, Y.; Shudo, K.; Takayama, S.; Moore, R.E.; Sugimura, T. New classes of tumor promoters: Teleocidin, aplysiatoxin, and palytoxin. In Cellular Interactions by Environmental Tumor Promoters; Fujiki, H., Hecker, E., Moore, R.E., Sugimura, T., Weinstein, I.B., Eds.; Japanese Scientific Society Press: Tokyo, Japan, 1984; pp. 37–45. [Google Scholar]
- Fischer, S.M.; Jasheway, D.W.; Klann, R.C.; Butler, A.P.; Patrick, K.E.; Baldwin, J.K.; Cameron, G.S. Correlation of phorbol ester promotion in the resistant C57BL/6J mouse with sustained hyperplasia but not ornithine decarboxylase or protein kinase C. Cancer Res. 1989, 49, 6693–6699. [Google Scholar]
- Fischer, S.M.; Lee, M.; Lubet, R.A. Difluoromethylornithine is effective as both a preventive and therapeutic agent against the development of UV carcinogenesis. Carcinogenesis 2001, 22, 83–88. [Google Scholar] [CrossRef]
- Weeks, C.E.; Herrmann, A.L.; Nelson, F.R.; Slaga, T.J. α-Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits tumor promoter-induced polyamine accumulation and carcinogenesis in mouse skin. Proc. Natl. Acad. Sci. USA 1982, 79, 6028–6032. [Google Scholar] [CrossRef]
- Arbeit, J.M.; Riley, R.R.; Huey, B.; Porter, C.; Kelloff, G.; Lubet, R.; Ward, J.M.; Pinkel, D. Difluoromethylornithine chemoprevention of epidermal carcinogenesis in K14-HPV16 transgenic mice. Cancer Res. 1999, 59, 3610–3620. [Google Scholar]
- Feith, D.J.; Bol, D.K.; Carboni, J.M.; Lynch, M.J.; Sass-Kuhn, S.; Shoop, P.L.; Shantz, L.M. Induction of ornithine decarboxylase activity is a necessary step for mitogen-activated protein kinase kinase-induced skin tumorigenesis. Cancer Res. 2005, 65, 572–578. [Google Scholar]
- Halmekytö, M.; Syrjänen, K.; Jänne, J.; Alhonen, L. Enhanced papilloma formation in response to skin tumor promotion in transgenic mice overexpressing the human ornithine decarboxylase gene. Biochem. Biophys. Res. Commun. 1992, 187, 493–497. [Google Scholar] [CrossRef]
- O'Brien, T.G.; Megosh, L.C.; Gilliard, G.; Peralta Soler, A. Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res. 1997, 57, 2630–2637. [Google Scholar]
- Smith, M.K.; Trempus, C.S.; Gilmour, S.K. Co-operation between follicular ornithine decarboxylase and v-Ha-ras induces spontaneous papillomas and malignant conversion in transgenic skin. Carcinogenesis 1998, 19, 1409–1415. [Google Scholar] [CrossRef]
- Guo, Y.; Cleveland, J.L.; O'Brien, T.G. Haploinsufficiency for Odc modifies mouse skin tumor susceptibility. Cancer Res. 2005, 65, 1146–1149. [Google Scholar] [CrossRef]
- Feith, D.J.; Shantz, L.M.; Pegg, A.E. Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res. 2001, 61, 6073–6081. [Google Scholar]
- Feith, D.J.; Origanti, S.; Shoop, P.L.; Sass-Kuhn, S.; Shantz, L.M. Tumor suppressor activity of ODC antizyme in MEK-driven skin carcinogenesis. Carcinogenesis 2006, 27, 1090–1098. [Google Scholar]
- Fischer, S.M.; Conti, C.J.; Viner, J.; Aldaz, C.M.; Lubet, R.A. Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis 2003, 24, 945–952. [Google Scholar] [CrossRef]
- Lan, L.; Trempus, C.; Gilmour, S.K. Inhibition of ornithine decarboxylase (ODC) decreases tumor vascularization and reverses spontaneous tumors in ODC/Ras transgenic mice. Cancer Res. 2000, 60, 5696–5703. [Google Scholar]
- Hayes, C.S.; DeFeo, K.; Lan, L.; Paul, B.; Sell, C.; Gilmour, S.K. Elevated levels of ornithine decarboxylast cooperate with Raf/ERK activation to convert normal keratinocytes into invasive malignant cells. Oncogene 2006, 25, 1543–1553. [Google Scholar] [CrossRef]
- Hobbs, C.A.; Paul, B.A.; Gilmour, S.K. Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res. 2002, 62, 67–74. [Google Scholar]
- Hobbs, C.A.; Wei, G.; DeFeo, K.; Paul, B.; Hayes, C.S.; Gilmour, S.K. Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res. 2006, 66, 8116–8122. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rundhaug, J.E.; Fischer, S.M. Molecular Mechanisms of Mouse Skin Tumor Promotion. Cancers 2010, 2, 436-482. https://doi.org/10.3390/cancers2020436
Rundhaug JE, Fischer SM. Molecular Mechanisms of Mouse Skin Tumor Promotion. Cancers. 2010; 2(2):436-482. https://doi.org/10.3390/cancers2020436
Chicago/Turabian StyleRundhaug, Joyce E., and Susan M. Fischer. 2010. "Molecular Mechanisms of Mouse Skin Tumor Promotion" Cancers 2, no. 2: 436-482. https://doi.org/10.3390/cancers2020436
APA StyleRundhaug, J. E., & Fischer, S. M. (2010). Molecular Mechanisms of Mouse Skin Tumor Promotion. Cancers, 2(2), 436-482. https://doi.org/10.3390/cancers2020436