Potentiation of Electrochemotherapy by Anti-PD-1 Immunotherapy in Murine Tumors with Distinct Immune Profiles
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Solutions
2.3. In Vitro Electroporation and Cytotoxicity Assay
2.4. Animals
2.5. Tumor Induction and Treatment
2.6. Tumor Growth Measurement
2.7. Histological Analysis and Immunohistochemistry
2.8. Statistical Analysis
3. Results
3.1. Intrinsic Sensitivity of Tumor Cells to ECT In Vitro
3.2. Effectiveness of ECT in Different Murine Tumors
3.3. Potentiation of the Antitumor Effectiveness of Combined ECT and Anti-PD-1 Immunotherapy
3.4. Immunological Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EP | Electroporation |
| BLM | Bleomycin |
| CR | Complete response |
| ECT | Electrochemotherapy |
| GET | Gene electrotransfer |
| MDSC | Myeloid derived suppressor cell |
| PD | Progressive disease |
| PD-1 | Programmed cell death receptor 1 |
| TLS | Thertiary Lymphoid Structures |
References
- Ursic, K.; Kos, S.; Kamensek, U.; Cemazar, M.; Miceska, S.; Markelc, B.; Bucek, S.; Staresinic, B.; Kloboves Prevodnik, V.; Heller, R.; et al. Potentiation of Electrochemotherapy Effectiveness by Immunostimulation with IL-12 Gene Electrotransfer in Mice Is Dependent on Tumor Immune Status. J. Control. Release 2021, 332, 623–635. [Google Scholar] [CrossRef]
- Calvet, C.Y.; Mir, L.M. The Promising Alliance of Anti-Cancer Electrochemotherapy with Immunotherapy. Cancer Metastasis Rev. 2016, 35, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Campana, L.G.; Peric, B.; Mascherini, M.; Spina, R.; Kunte, C.; Kis, E.; Rozsa, P.; Quaglino, P.; Jones, R.P.; Clover, A.J.P.; et al. Combination of Pembrolizumab with Electrochemotherapy in Cutaneous Metastases from Melanoma: A Comparative Retrospective Study from the Inspect and Slovenian Cancer Registry. Cancers 2021, 13, 4289. [Google Scholar] [CrossRef] [PubMed]
- Clover, A.J.P.; Bertino, G.; Curatolo, P.; Odili, J.; Campana, L.; Kunte, C.; Muir, T.; Brizio, M.; Sersa, G.; Liew, S.H.; et al. Electrochemotherapy in the Treatment of Cutaneous Malignancy; Outcomes and Subgroup Analysis from the Cumulative Results from the Pan-European InspECT Database for 1478 Lesions in 691 Patients (2008–2018). Eur. J. Surg. Oncol. 2019, 45, e19. [Google Scholar] [CrossRef]
- Perrone, A.M.; Galuppi, A.; Cima, S.; Pozzati, F.; Arcelli, A.; Cortesi, A.; Procaccini, M.; Pellegrini, A.; Zamagni, C.; De Iaco, P. Electrochemotherapy Can Be Used as Palliative Treatment in Patients with Repeated Loco-Regional Recurrence of Squamous Vulvar Cancer: A Preliminary Study. Gynecol. Oncol. 2013, 130, 550–553. [Google Scholar] [CrossRef]
- Perrone, A.M.; Galuppi, A.; Borghese, G.; Corti, B.; Ferioli, M.; Della Gatta, A.N.; Bovicelli, A.; Morganti, A.G.; De Iaco, P. Electrochemotherapy Pre-Treatment in Primary Squamous Vulvar Cancer. Our Preliminary Experience. J. Surg. Oncol. 2018, 117, 1813–1817. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.; Juhasz-Böss, I.; Solomayer, E.F.; Herr, D. Electrochemotherapy in Breast Cancer: A Review of References. Geburtshilfe Frauenheilkd. 2014, 74, 557–562. [Google Scholar] [CrossRef]
- De Giorgi, V.; Grazzini, M.; Alfaioli, B.; Savarese, I.; Corciova, S.A.; Guerriero, G.; Lotti, T. Cutaneous Manifestations of Breast Carcinoma. Dermatol. Ther. 2010, 23, 581–589. [Google Scholar] [CrossRef]
- Calvet, C.Y.; Famin, D.; André, F.M.; Mir, L.M. Electrochemotherapy with Bleomycin Induces Hallmarks of Immunogenic Cell Death in Murine Colon Cancer Cells. Oncoimmunology 2014, 3, e28131. [Google Scholar] [CrossRef]
- Galluzzi, L.; Guilbaud, E.; Schmidt, D.; Kroemer, G.; Marincola, F.M. Targeting Immunogenic Cell Stress and Death for Cancer Therapy. Nat. Rev. Drug Discov. 2024, 23, 445–460. [Google Scholar] [CrossRef]
- Kesar, U.; Markelc, B.; Jesenko, T.; Valentinuzzi, K.U.; Cemazar, M.; Strojan, P.; Sersa, G. Effects of Electrochemotherapy on Immunologically Important Modifications in Tumor Cells. Vaccines 2023, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Ferioli, M.; Perrone, A.M.; De Iaco, P.; Zamfir, A.A.; Ravegnini, G.; Buwenge, M.; Fionda, B.; Galietta, E.; Donati, C.M.; Tagliaferri, L.; et al. Clinical Insights and Future Prospects: A Comprehensive Narrative Review on Immunomodulation Induced by Electrochemotherapy. Curr. Oncol. 2024, 31, 6433–6444. [Google Scholar] [CrossRef]
- Justesen, T.F.; Orhan, A.; Raskov, H.; Nolsoe, C.; Gögenur, I. Electroporation and Immunotherapy—Unleashing the Abscopal Effect. Cancers 2022, 14, 2876. [Google Scholar] [CrossRef] [PubMed]
- Sersa, G.; Teissie, J.; Cemazar, M.; Signori, E.; Kamensek, U.; Marshall, G.; Miklavcic, D. Electrochemotherapy of Tumors as in Situ Vaccination Boosted by Immunogene Electrotransfer. Cancer Immunol. Immunother. 2015, 64, 1315–1327. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Wolchok, J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Galon, J.; Bruni, D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Sprague, W. ARRIVE GUIDELINES 2.0. Vet. Clin. Pathol. 2020, 49, 378–379. [Google Scholar] [CrossRef]
- De Vleeschauwer, S.I.; van de Ven, M.; Oudin, A.; Debusschere, K.; Connor, K.; Byrne, A.T.; Ram, D.; Rhebergen, A.M.; Raeves, Y.D.; Dahlhoff, M.; et al. OBSERVE: Guidelines for the Refinement of Rodent Cancer Models. Nat. Protoc. 2024, 19, 2571–2596. [Google Scholar] [CrossRef]
- Smith, A.J.; Clutton, R.E.; Lilley, E.; Hansen, K.E.A.; Brattelid, T. PREPARE: Guidelines for Planning Animal Research and Testing. Lab. Anim. 2018, 52, 135–141. [Google Scholar] [CrossRef]
- Groselj, A.; Kranjc, S.; Bosnjak, M.; Krzan, M.; Kosjek, T.; Prevc, A.; Cemazar, M.; Sersa, G. Vascularization of the Tumours Affects the Pharmacokinetics of Bleomycin and the Effectiveness of Electrochemotherapy. Basic Clin. Pharmacol. Toxicol. 2018, 123, 247–256. [Google Scholar] [CrossRef]
- Mosely, S.I.S.; Prime, J.E.; Sainson, R.C.A.; Koopmann, J.O.; Wang, D.Y.Q.; Greenawalt, D.M.; Ahdesmaki, M.J.; Leyland, R.; Mullins, S.; Pacelli, L.; et al. Rational Selection of Syngeneic Preclinical Tumor Models for Immunotherapeutic Drug Discovery. Cancer Immunol. Res. 2017, 5, 29–41. [Google Scholar] [CrossRef]
- Stringhini, M.; Mock, J.; Fontana, V.; Murer, P.; Neri, D. Antibody-Mediated Delivery of LIGHT to the Tumor Boosts Natural Killer Cells and Delays Tumor Progression. mAbs 2021, 13, 1868066. [Google Scholar] [CrossRef]
- Luerken, L.; Goetz, A.; Mayr, V.; Zhang, L.; Schlitt, A.; Haimerl, M.; Stroszczynski, C.; Schlitt, H.J.; Grube, M.; Kandulski, A.; et al. Stereotactic Percutaneous Electrochemotherapy as a New Minimal Invasive Treatment Modality for Primary and Secondary Liver Malignancies. Biomedicines 2024, 12, 2870. [Google Scholar] [CrossRef]
- Barbieri, P.; Posa, A.; Lancellotta, V.; Madoff, D.C.; Maresca, A.; Cornacchione, P.; Tagliaferri, L.; Iezzi, R. Electrochemotherapy in the Locoregional Treatment of Metastatic Colorectal Liver Metastases: A Systematic Review. Curr. Oncol. 2024, 31, 7403. [Google Scholar] [CrossRef] [PubMed]
- Miklavčič, D.; Mali, B.; Kos, B.; Heller, R.; Serša, G. Electrochemotherapy: From the Drawing Board into Medical Practice. Biomed. Eng. Online 2014, 13, 29. [Google Scholar] [CrossRef]
- Pakhomova, O.N.; Gregory, B.W.; Khorokhorina, V.A.; Bowman, A.M.; Xiao, S.; Pakhomov, A.G. Electroporation-Induced Electrosensitization. PLoS ONE 2011, 6, e17100. [Google Scholar] [CrossRef]
- Amaral, T.; Ottaviano, M.; Arance, A.; Blank, C.; Chiarion-Sileni, V.; Donia, M.; Dummer, R.; Garbe, C.; Gershenwald, J.E.; Gogas, H.; et al. Cutaneous Melanoma: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2025, 36, 10–30. [Google Scholar] [CrossRef]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K.; on behalf of the ESMO Guidelines Committee. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Albiges, L.; Bex, A.; Grünwald, V.; Porta, C.; Procopio, G.; Schmidinger, M.; Suárez, C.; de Velasco, G. ESMO Clinical Practice Guideline Update on the Use of Immunotherapy in Early Stage and Advanced Renal Cell Carcinoma. Ann. Oncol. 2021, 32, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and Locally Advanced Non-Small-Cell Lung Cancer (NSCLC): ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv1–iv21. [Google Scholar] [CrossRef]
- Panagi, M.; Pilavaki, P.; Constantinidou, A.; Stylianopoulos, T. Immunotherapy in Soft Tissue and Bone Sarcoma: Unraveling the Barriers to Effectiveness. Theranostics 2022, 12, 6106. [Google Scholar] [CrossRef]
- Bullock, A.J.; Schlechter, B.L.; Fakih, M.G.; Tsimberidou, A.M.; Grossman, J.E.; Gordon, M.S.; Wilky, B.A.; Pimentel, A.; Mahadevan, D.; Balmanoukian, A.S.; et al. Botensilimab plus Balstilimab in Relapsed/Refractory Microsatellite Stable Metastatic Colorectal Cancer: A Phase 1 Trial. Nat. Med. 2024, 30, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.R.; Kapoor, D.U.; Prajapati, B.G. Emerging Innovations in Nanomedicine for Cancer Immunotherapy. J. Drug Deliv. Sci. Technol. 2025, 104, 106584. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhang, X.; Fang, C.; Liu, X.T.; Liao, Q.J.; Wu, N.; Wang, J. Immunotherapy and the Ovarian Cancer Microenvironment: Exploring Potential Strategies for Enhanced Treatment Efficacy. Immunology 2024, 173, 14–32. [Google Scholar] [CrossRef]
- Gong, H.; Liu, Z.; Yuan, C.; Luo, Y.; Chen, Y.; Zhang, J.; Cui, Y.; Zeng, B.; Liu, J.; Li, H.; et al. Identification of Cuproptosis-Related LncRNAs with the Significance in Prognosis and Immunotherapy of Oral Squamous Cell Carcinoma. Comput. Biol. Med. 2024, 171, 108198. [Google Scholar] [CrossRef]
- Cui, X.; Gu, X.; Li, D.; Wu, P.; Sun, N.; Zhang, C.; He, J. Tertiary Lymphoid Structures as a Biomarker in Immunotherapy and beyond: Advancing towards Clinical Application. Cancer Lett. 2025, 613, 217491. [Google Scholar] [CrossRef] [PubMed]
- Domblides, C.; Rochefort, J.; Riffard, C.; Panouillot, M.; Lescaille, G.; Teillaud, J.L.; Mateo, V.; Dieu-Nosjean, M.C. Tumor-Associated Tertiary Lymphoid Structures: From Basic and Clinical Knowledge to Therapeutic Manipulation. Front. Immunol. 2021, 12, 698604. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H.; Meylan, M.; Pupier, G.; Calvez, A.; Hernandez, I.; Sautès-Fridman, C. Tertiary Lymphoid Structures and B Cells: An Intratumoral Immunity Cycle. Immunity 2023, 56, 2254–2269. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Ansell, S.M. Modulation of T-Cell Function by Myeloid-Derived Suppressor Cells in Hematological Malignancies. Front. Cell Dev. Biol. 2023, 11, 1129343. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mohamady Farouk Abdalsalam, N.; Liang, Z.; Kashaf Tariq, H.; Li, R.; Afolabi, L.O.; Rabiu, L.; Chen, X.; Xu, S.; Xu, Z.; et al. MDSC Checkpoint Blockade Therapy: A New Breakthrough Point Overcoming Immunosuppression in Cancer Immunotherapy. Cancer Gene Ther. 2025, 32, 371–392. [Google Scholar] [CrossRef]
- Kunte, C.; Letulé, V.; Gehl, J.; Dahlstroem, K.; Curatolo, P.; Rotunno, R.; Muir, T.; Occhini, A.; Bertino, G.; Powell, B.; et al. Electrochemotherapy in the Treatment of Metastatic Malignant Melanoma: A Prospective Cohort Study by InspECT. Br. J. Dermatol. 2017, 176, 1475–1485. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Heppt, M.V.; Eigentler, T.K.; Kähler, K.C.; Herbst, R.A.; Göppner, D.; Gambichler, T.; Ulrich, J.; Dippel, E.; Loquai, C.; Schell, B.; et al. Immune Checkpoint Blockade with Concurrent Electrochemotherapy in Advanced Melanoma: A Retrospective Multicenter Analysis. Cancer Immunol. Immunother. 2016, 65, 951–959. [Google Scholar] [CrossRef]
- Hodi, F.S.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.F.; McDermott, D.F.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Combined Nivolumab and Ipilimumab versus Ipilimumab Alone in Patients with Advanced Melanoma: 2-Year Overall Survival Outcomes in a Multicentre, Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2016, 17, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Lampreht Tratar, U.; Milevoj, N.; Cemazar, M.; Znidar, K.; Ursic Valentinuzzi, K.; Brozic, A.; Tomsic, K.; Sersa, G.; Tozon, N. Treatment of Spontaneous Canine Mast Cell Tumors by Electrochemotherapy Combined with IL-12 Gene Electrotransfer: Comparison of Intratumoral and Peritumoral Application of IL-12. Int. Immunopharmacol. 2023, 120, 110274. [Google Scholar] [CrossRef] [PubMed]
- Omerzel, M.; Markelc, B.; Brezar, S.K.; Sersa, G.; Cemazar, M. Efficient Gene Transfer by Pulse Parameters for Electrochemotherapy of Cells in Vitro and in Muscle and Melanoma Tumors in Mice. Radiol. Oncol. 2025, 59, 203–212. [Google Scholar] [CrossRef] [PubMed]










| WEHI | CT26 | 4T1 | MC38 | |
|---|---|---|---|---|
| Immune status | ++ | ++ | +/− | +/− |
| Treatment | GD (days) | GD (days) | GD (days) | GD (days) |
| CR (%) | CR (%) | CR (%) | CR (%) | |
| EP | 2.7 ± 0.8 | 2.1 ± 0.5 | 2.7 ± 0.6 | 1.2 ± 0.1 |
| 0 | 0 | 0 | 0 | |
| BLM | 1.7 ± 0.6 | 0.8 ± 0.2 | 1.1 ± 0.2 | 0.5 ± 0.1 |
| 0 | 0 | 0 | 0 | |
| ECT | / | 27.5 ± 2.8 | 28.6 ± 2.8 | 4.4 ± 0.6 |
| 100 | 61 | 17 | 15 |
| WEHI | CT26 | 4T1 | MC38 | |
|---|---|---|---|---|
| Treatment | GD (days) | GD (days) | GD (days) | GD (days) |
| CR (%) | CR (%) | CR (%) | CR (%) | |
| anti-PD-1 | 6.6 ± 1.4 | 1.7 ± 0.7 | 1.6 ± 0.5 | 2.6 ± 0.5 |
| 0 | 0 | 0 | 0 | |
| EP + anti-PD-1 | / | 4.5 ± 1.4 | 2.6 ± 0.5 | 3.7 ± 0.5 |
| / | 0 | 0 | 0 | |
| BLM + anti-PD-1 | / | 2.7 ± 0.9 | 2.5 ± 0.4 | 2.6 ± 0.7 |
| / | 0 | 0 | 0 | |
| ECT + anti-PD-1 | / | 48.0 ± 4.4 | 41.4 ± 8.6 | 10.1 ± 0.4 |
| / | 90 | 53 | 91 |
| Group | CD4+ | CD8+ | GrB | Infiltration | Sum | |
|---|---|---|---|---|---|---|
| WEHI | CTRL | 1 | 1 | 1 | 1 | 4.0 |
| ECT | 1 | 1 | 1 | 2 | 5.0 | |
| ECT + anti-PD-1 | / | / | / | / | / | |
| CT26 | CTRL | 0.5 | 1 | 1 | 1 | 3.5 |
| ECT | 1 | 1 | 1 | 1 | 4.0 | |
| ECT + anti-PD-1 | 1 | 0.5 | 1 | 1 | 3.5 | |
| 4T1 | CTRL | 0.5 | 0.25 | 0.5 | 0.5 | 1.75 |
| ECT | 0.5 | 0.5 | 0.5 | 1 | 2.5 | |
| ECT + anti-PD-1 | 0.5 | 1 | 0.5 | 1 | 3 | |
| MC38 | CTRL | 0.5 | 0.5 | 0.5 | 0.5 | 2 |
| ECT | 1 | 0.5 | 0.5 | 1 | 3 | |
| ECT + anti-PD-1 | 1 | 1 | 0.5 | 1 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Omerzel, M.; Kranjc Brezar, S.; Lampreht Tratar, U.; Jesenko, T.; Lisec, B.; Sersa, G.; Cemazar, M. Potentiation of Electrochemotherapy by Anti-PD-1 Immunotherapy in Murine Tumors with Distinct Immune Profiles. Cancers 2026, 18, 90. https://doi.org/10.3390/cancers18010090
Omerzel M, Kranjc Brezar S, Lampreht Tratar U, Jesenko T, Lisec B, Sersa G, Cemazar M. Potentiation of Electrochemotherapy by Anti-PD-1 Immunotherapy in Murine Tumors with Distinct Immune Profiles. Cancers. 2026; 18(1):90. https://doi.org/10.3390/cancers18010090
Chicago/Turabian StyleOmerzel, Masa, Simona Kranjc Brezar, Ursa Lampreht Tratar, Tanja Jesenko, Barbara Lisec, Gregor Sersa, and Maja Cemazar. 2026. "Potentiation of Electrochemotherapy by Anti-PD-1 Immunotherapy in Murine Tumors with Distinct Immune Profiles" Cancers 18, no. 1: 90. https://doi.org/10.3390/cancers18010090
APA StyleOmerzel, M., Kranjc Brezar, S., Lampreht Tratar, U., Jesenko, T., Lisec, B., Sersa, G., & Cemazar, M. (2026). Potentiation of Electrochemotherapy by Anti-PD-1 Immunotherapy in Murine Tumors with Distinct Immune Profiles. Cancers, 18(1), 90. https://doi.org/10.3390/cancers18010090

