Proliferation-Diffusion Modeling in Glioblastoma: Impact of Supramaximal Resection on Survival
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. MRI Imaging
2.3. Surgery
2.4. Histopathological Analysis
2.5. Postoperative Treatments
2.6. Image Analysis
2.7. Outcome Evaluation
2.8. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Volumetric Measurements and Calculation of Tumor Invasiveness
3.3. Survival Analysis
3.3.1. Overall Survival
3.3.2. Progression-Free Survival
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013, 310, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Komori, T. The 2021 WHO Classification of Tumors, 5th edition, Central Nervous System Tumors: A Short Review. Brain Nerve 2022, 74, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.R.; Rostomily, R.C.; Alvord, E.C. A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Br. J. Cancer 2007, 98, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Pessina, F.; Navarria, P.; Cozzi, L.; Ascolese, A.M.; Simonelli, M.; Santoro, A.; Clerici, E.; Rossi, M.; Scorsetti, M.; Bello, L. Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: Is it useful and safe? A single institution retrospective experience. J. Neurooncol. 2017, 135, 129–139. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Erpolat, O.P.; Akmansu, M.; Goksel, F.; Bora, H.; Yaman, E.; Büyükberber, S. Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide: A long-term analysis. Tumori J. 2009, 95, 191–197. [Google Scholar] [CrossRef]
- Sawaya, R.; Hammoud, M.; Schoppa, D.; Hess, K.R.; Wu, S.Z.; Shi, W.-M.; WiIdrick, D.M. Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery 1998, 42, 1044–1055, discussion 1055–1056. [Google Scholar] [CrossRef]
- Karschnia, P.; Karschnia, P.; Young, J.S.; Young, J.S.; Dono, A.; Dono, A.; Häni, L.; Häni, L.; Sciortino, T.; Sciortino, T.; et al. Prognostic validation of a new classification system for extent of resection in glioblastoma: A report of the RANO resect group. Neuro-Oncology 2022, 25, 940–954. [Google Scholar] [CrossRef]
- Amelot, A.; Deroulers, C.; Badoual, M.; Polivka, M.; Adle-Biassette, H.; Houdart, E.; Carpentier, A.F.; Froelich, S.; Mandonnet, E. Surgical Decision Making From Image-Based Biophysical Modeling of Glioblastoma: Not Ready for Primetime. Neurosurgery 2017, 80, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Baldock, A.L.; Ahn, S.; Rockne, R.; Johnston, S.; Neal, M.; Corwin, D.; Clark-Swanson, K.; Sterin, G.; Trister, A.D.; Malone, H.; et al. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS ONE 2014, 9, e99057. [Google Scholar] [CrossRef] [PubMed]
- Leao, D.; Craig, P.; Godoy, L.; Leite, C.; Policeni, B. Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR Am. J. Neuroradiol. 2019, 41, 10–20. [Google Scholar] [CrossRef]
- Wen, P.Y.; Bent, M.v.D.; Youssef, G.; Cloughesy, T.F.; Ellingson, B.M.; Weller, M.; Galanis, E.; Barboriak, D.P.; de Groot, J.; Gilbert, M.R.; et al. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults. J. Clin. Oncol. 2023, 41, 5187–5199. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, L. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images. Magn. Reson. Imaging 2016, 34, 114–119. [Google Scholar] [CrossRef]
- Branco, J.; Ferreira, J.; de Oliveira, P. Mathematical modeling of efficient protocols to control glioma growth. Math. Biosci. 2014, 255, 83–90. [Google Scholar] [CrossRef]
- Okumus, N.O.; Gursel, B.; Meydan, D.; Ozdemir, O.; Odabası, E.; Gonullub, G. Prognostic significance of concomitant radiotherapy in newly diagnosed glioblastoma multiforme: A multivariate analysis of 116 patients. Ann. Saudi Med. 2012, 32, 250–255. [Google Scholar] [CrossRef]
- Sarica, F.B.; Tufan, K.; Cekinmez, M.; Sen, O.; Onal, H.C.; Mertsoylu, H.; Topkan, E.; Pehlivan, B.; Erdogan, B.; Altinors, M.N. Effectiveness of temozolomide treatment used at the same time with radiotherapy and adjuvant temozolomide; concomitant therapy of glioblastoma multiforme: Multivariate analysis and other prognostic factors. J. Neurosurg. Sci. 2010, 54, 7–19. [Google Scholar]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef]
- Sanai, N.; Berger, M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery 2008, 62, 753–766, discussion 264–266. [Google Scholar] [CrossRef]
- Sanai, N.; Polley, M.Y.; McDermott, M.W.; Parsa, A.T.; Berger, M.S. An extent of resection threshold for newly diagnosed glioblastomas. J. Neurosurg. 2011, 115, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Kobayashi, H.; Terasaka, S.; Ishii, N.; Ikeda, J.; Kanno, H.; Nishihara, H.; Tanaka, S.; Houkin, K. The impact of extent of resection and histological subtype on the outcome of adult patients with high-grade gliomas. Ultrasound Med. Biol. 2012, 42, 270–277. [Google Scholar] [CrossRef]
- Tracqui, P.; Cruywagen, G.C.; Woodward, D.E.; Bartoo, G.T.; Murray, J.D.; Alvord, E.C. A mathematical model of glioma growth: The effect of chemotherapy on spatio-temporal growth. Cell Prolif. 1995, 28, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Burgess, P.K.; Kulesa, P.M.; Murray, J.D.; Alvord, E.C. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J. Neuropathol. Exp. Neurol. 1997, 56, 704–713. [Google Scholar] [CrossRef]
- Woodward, D.E.; Cook, J.; Tracqui, P.; Cruywagen, G.C.; Murray, J.D.; Alvord, E.C. A mathematical model of glioma growth: The effect of extent of surgical resection. Cell Prolif. 1996, 29, 269–288. [Google Scholar] [CrossRef]
- Tripathi, S.; Vivas-Buitrago, T.; Domingo, R.A.; De Biase, G.; Brown, D.; Akinduro, O.O.; Ramos-Fresnedo, A.; Sherman, W.; Gupta, V.; Middlebrooks, E.H.; et al. IDH-wild-type glioblastoma cell density and infiltration distribution influence on supramarginal resection and its impact on overall survival: A mathematical model. J. Neurosurg. 2021, 136, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Suki, D.; Hess, K.; Sawaya, R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 2016, 124, 977–988. [Google Scholar] [CrossRef]
- Grabowski, M.M.; Recinos, P.F.; Nowacki, A.S.; Schroeder, J.L.; Angelov, L.; Barnett, G.H.; Vogelbaum, M.A. Residual tumor volume versus extent of resection: Predictors of survival after surgery for glioblastoma. J. Neurosurg. 2014, 121, 1115–1123. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology, 3rd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
N | 52 |
Sex (M) | 33 (63.46%) |
Age (ys) (median (range)) | 59.4 ± 12.3 (21–81) |
MGMT (methylated) | 36 (69.23%) |
Location | |
Near eloquent | 18 (34.61%) |
Eloquent | 10 (19.24%) |
Non-eloquent | 24 (46.15%) |
Side (R) | 28 (53.84%) |
KPS (median (range)) | |
Preoperative | 93.2 ± 10.1 |
Postoperative | 92.64 ± 9.60 |
OS (months) (median Q1–Q3) | 22.88 (5–27) |
PFS (months) (median Q1–Q3) | 16.94 (12–34) |
Preoperative tumor volumes (cc) (median (range)) | |
CE | 31.4 ± 27.9 (0.42–115.13) |
FLAIR-TV | 79.9 ± 51.3 (8.13–201.34) |
Contact w/ventricles | 20 (38.46%) |
Tumor invasiveness | |
Highly diffuse | 20 (38.46%) |
Moderate diffuse | 18 (34.61%) |
Nodular | 14 (26.93%) |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95%CI) | p | HR (95%CI) | p | |
Preoperative | ||||
CE | 0.987 (0.973–1.001) | 0.078 | ||
FLAIR | 0.996 (0.988–1.004) | 0.368 | ||
Postoperative FLAIR | 1.010 (0.986–1.033) | 0.415 | ||
MGMT (MET) | 0.43 (0.20–0.94) | 0.035 | 0.392 (0.161–0.950) | 0.038 |
KPS post | 1.013 (0.970–1.057) | 0.570 | ||
Age | 1.019 (0.983–1.055) | 0.311 | ||
Sex (M) | 0.69 (0.32–1.48) | 0.343 | ||
Tumor invasiveness | ||||
Highly diffuse | ref | |||
Moderate diffuse | 0.68 (0.28–1.64) | 0.393 | ||
Nodular | 0.90 (0.35–2.31) | 0.828 | ||
MGMT (methylated) | ||||
Highly diffuse | 0.80 (0.23–2.78) | 0.725 | ||
Moderate diffuse | 0.23 (0.06–0.97) | 0.045 | ||
Nodular | 0.51 (0.09–2.88) | 0.444 |
Variables | Univariate Analysis | |
---|---|---|
HR (95%CI) | p | |
Preoperative | ||
CE | 0.990 (0.977–1.004) | 0.158 |
FLAIR | 0.996 (0.989–1.004) | 0.350 |
Postoperative FLAIR | 1.002 (0.980–1.023) | 0.891 |
MGMT | 0.55 (0.27–1.14) | 0.107 |
Postoperative KPS | 0.998 (0.961–1.037) | 0.936 |
Age | 1.02 (0.99–1.06) | 0.172 |
Sex (M) | 0.94 (0.45–1.94) | 0.864 |
Tumor invasiveness | ||
Highly diffuse | Ref | |
Moderate diffuse | 0.91 (0.40–2.08) | 0.821 |
Nodular | 1.22 (0.52–2.88) | 0.637 |
MGMT (methylated) | ||
Highly diffuse | 0.91 (0.27–3.09) | 0.888 |
Moderate diffuse | 0.18 (0.03–0.95) | 0.044 |
Nodular | 0.84 (0.16–4.28) | 0.832 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tropeano, M.P.; Rossini, Z.; Bresciani, E.; Franzini, A.; Bono, B.C.; Navarria, P.; Clerici, E.; Simonelli, M.; Scorsetti, M.; Riva, M.; et al. Proliferation-Diffusion Modeling in Glioblastoma: Impact of Supramaximal Resection on Survival. Cancers 2025, 17, 995. https://doi.org/10.3390/cancers17060995
Tropeano MP, Rossini Z, Bresciani E, Franzini A, Bono BC, Navarria P, Clerici E, Simonelli M, Scorsetti M, Riva M, et al. Proliferation-Diffusion Modeling in Glioblastoma: Impact of Supramaximal Resection on Survival. Cancers. 2025; 17(6):995. https://doi.org/10.3390/cancers17060995
Chicago/Turabian StyleTropeano, Maria Pia, Zefferino Rossini, Ettore Bresciani, Andrea Franzini, Beatrice C. Bono, Pierina Navarria, Elena Clerici, Matteo Simonelli, Marta Scorsetti, Marco Riva, and et al. 2025. "Proliferation-Diffusion Modeling in Glioblastoma: Impact of Supramaximal Resection on Survival" Cancers 17, no. 6: 995. https://doi.org/10.3390/cancers17060995
APA StyleTropeano, M. P., Rossini, Z., Bresciani, E., Franzini, A., Bono, B. C., Navarria, P., Clerici, E., Simonelli, M., Scorsetti, M., Riva, M., Politi, L. S., & Pessina, F. (2025). Proliferation-Diffusion Modeling in Glioblastoma: Impact of Supramaximal Resection on Survival. Cancers, 17(6), 995. https://doi.org/10.3390/cancers17060995