Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = MGMT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 937 KiB  
Review
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7364; https://doi.org/10.3390/ijms26157364 - 30 Jul 2025
Viewed by 379
Abstract
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model [...] Read more.
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model of care. The general purpose of this review is to contemporaneously reflect on how these advances will impact neurosurgical care by providing us with more precise diagnostic and treatment pathways. We hope to provide a relevant review of the recent advances in genomics and multi-omics in the context of clinical practice and highlight their transformational opportunities in the existing models of care, where improved molecular insights can support improvements in clinical care. More specifically, we will highlight how genomic profiling, CRISPR-Cas9, and multi-omics platforms (genomics, transcriptomics, proteomics, and metabolomics) are increasing our understanding of central nervous system (CNS) disorders. Achievements obtained with transformational technologies such as single-cell RNA sequencing and intraoperative mass spectrometry are exemplary of the molecular diagnostic possibilities in real-time molecular diagnostics to enable a more directed approach in surgical options. We will also explore how identifying specific biomarkers (e.g., IDH mutations and MGMT promoter methylation) became a tipping point in the care of glioblastoma and allowed for the establishment of a new taxonomy of tumors that became applicable for surgeons, where a change in practice enjoined a different surgical resection approach and subsequently stratified the adjuvant therapies undertaken after surgery. Furthermore, we reflect on how the novel genomic characterization of mutations like DEPDC5 and SCN1A transformed the pre-surgery selection of surgical candidates for refractory epilepsy when conventional imaging did not define an epileptogenic zone, thus reducing resective surgery occurring in clinical practice. While we are atop the crest of an exciting wave of advances, we recognize that we also must be diligent about the challenges we must navigate to implement genomic medicine in neurosurgery—including ethical and technical challenges that could arise when genomic mutation-based therapies require the concurrent application of multi-omics data collection to be realized in practice for the benefit of patients, as well as the constraints from the blood–brain barrier. The primary challenges also relate to the possible gene privacy implications around genomic medicine and equitable access to technology-based alternative practice disrupting interventions. We hope the contribution from this review will not just be situational consolidation and integration of knowledge but also a stimulus for new lines of research and clinical practice. We also hope to stimulate mindful discussions about future possibilities for conscientious and sustainable progress in our evolution toward a genomic model of precision neurosurgery. In the spirit of providing a critical perspective, we hope that we are also adding to the larger opportunity to embed molecular precision into neuroscience care, striving to promote better practice and better outcomes for patients in a global sense. Full article
(This article belongs to the Special Issue Molecular Insights into Glioblastoma Pathogenesis and Therapeutics)
Show Figures

Figure 1

19 pages, 507 KiB  
Review
Radiomics and Radiogenomics in Differentiating Progression, Pseudoprogression, and Radiation Necrosis in Gliomas
by Sohil Reddy, Tyler Lung, Shashank Muniyappa, Christine Hadley, Benjamin Templeton, Joel Fritz, Daniel Boulter, Keshav Shah, Raj Singh, Simeng Zhu, Jennifer K. Matsui and Joshua D. Palmer
Biomedicines 2025, 13(7), 1778; https://doi.org/10.3390/biomedicines13071778 - 21 Jul 2025
Viewed by 449
Abstract
Over recent decades, significant advancements have been made in the treatment and imaging of gliomas. Conventional imaging techniques, such as MRI and CT, play critical roles in glioma diagnosis and treatment but often fail to distinguish between tumor pseudoprogression (Psp) and radiation necrosis [...] Read more.
Over recent decades, significant advancements have been made in the treatment and imaging of gliomas. Conventional imaging techniques, such as MRI and CT, play critical roles in glioma diagnosis and treatment but often fail to distinguish between tumor pseudoprogression (Psp) and radiation necrosis (RN) versus true progression (TP). Emerging fields like radiomics and radiogenomics are addressing these challenges by extracting quantitative features from medical images and correlating them with genomic data, respectively. This article will discuss several studies that show how radiomic features (RFs) can aid in better patient stratification and prognosis. Radiogenomics, particularly in predicting biomarkers such as MGMT promoter methylation and 1p/19q codeletion, shows potential in non-invasive diagnostics. Radiomics also offers tools for predicting tumor recurrence (rBT), essential for treatment management. Further research is needed to standardize these methods and integrate them into clinical practice. This review underscores radiomics and radiogenomics’ potential to revolutionize glioma management, marking a significant shift towards precision neuro-oncology. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Gliomas)
Show Figures

Figure 1

9 pages, 545 KiB  
Article
Sex-Related Differences in Glioblastoma: A Single-Center Retrospective Cohort Study
by Chiara Prosperetti, Meltem Yenigün, Alberto Pagnamenta, Payam Tabaee Damavandi, Giulio Disanto, Francesco Marchi, Vittoria Espeli, Barbara Muoio, Paolo Spina, Gianfranco Pesce and Pamela Agazzi
Biomedicines 2025, 13(7), 1715; https://doi.org/10.3390/biomedicines13071715 - 14 Jul 2025
Viewed by 316
Abstract
Background: Sex differences play a significant role in the epidemiology, biology, and outcomes of many cancers, including glioblastoma (GB), the most common and aggressive primary brain tumor. GB is more frequent in males, while females tend to have longer survival, though the [...] Read more.
Background: Sex differences play a significant role in the epidemiology, biology, and outcomes of many cancers, including glioblastoma (GB), the most common and aggressive primary brain tumor. GB is more frequent in males, while females tend to have longer survival, though the underlying reasons for these differences remain poorly understood. Potential contributors include hormonal influences, sex-specific risk factors, and treatment disparities. Understanding these differences is critical for optimizing personalized treatment strategies. Methods: We conducted a retrospective analysis of patients with gliomas from a neuro-oncological database, with a primary focus on GB cases. Variables collected included sex, age, tumor type, molecular biomarker, and treatment modalities. The primary objective was to assess sex-based differences in tumor characteristics and outcomes, while the secondary objective was to identify predictors of time to progression and mortality. Results: The cohort comprised 125 GB, 48 astrocytomas, and 16 oligodendrogliomas, with no significant sex-based differences in age or tumor type distribution. Among GB patients, multifocality was more prevalent in females (14% vs. 8%; p = 0.01); also, EGFR amplification was more frequent in females (25.5% vs. 52.5%; p = 0.007). Males received chemotherapy (80% vs. 63%; p = 0.04) and radiotherapy (84% vs. 67%; p = 0.03) more frequently than females. Survival was positively associated with MGMT methylation (p = 0.002) and negatively associated with TERT mutation (p = 0.01). Multivariable analysis identified TERT mutation as a predictor of increased mortality (HR = 4.1; 95% CI: 1.2–14; p = 0.025), while multifocality predicted both mortality (HR = 2.3; 95% CI: 1.3–3.9; p = 0.003) and reduced time to progression (HR = 3.3; 95% CI: 1.02–10.6; p = 0.04). Conclusions: This study underscores the importance of sex and molecular profiling in GB management, revealing distinct patterns in tumor characteristics and treatment administration between males and females. Our findings advocate for the integration of sex-specific considerations and molecular profiling into clinical decision-making to improve outcomes for GB patients. Full article
(This article belongs to the Special Issue Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches)
Show Figures

Figure 1

22 pages, 322 KiB  
Article
New Approach for Enhancing Survival in Glioblastoma Patients: A Longitudinal Pilot Study on Integrative Oncology
by Massimo Bonucci, Maria Pia Fuggetta, Lorenzo Anelli, Diana Giannarelli, Carla Fiorentini and Giampietro Ravagnan
Cancers 2025, 17(14), 2321; https://doi.org/10.3390/cancers17142321 - 12 Jul 2025
Viewed by 1662
Abstract
Background: Glioblastoma (GBM IDH-wildtype WHO 2021) is an aggressive central nervous system malignancy with a poor prognosis despite standard therapy. Integrative oncology approaches involving natural compounds have shown potential in preclinical studies to enhance the efficacy of chemoradiotherapy. Methods: This prospective, [...] Read more.
Background: Glioblastoma (GBM IDH-wildtype WHO 2021) is an aggressive central nervous system malignancy with a poor prognosis despite standard therapy. Integrative oncology approaches involving natural compounds have shown potential in preclinical studies to enhance the efficacy of chemoradiotherapy. Methods: This prospective, longitudinal observational pilot study, lacking a randomized control group, followed 72 newly diagnosed glioblastoma patients (diagnosed by histological examination and MGMT promoter molecular study alone, grade 4 glioma patients) treated with the STUPP protocol. This group could voluntarily opt to receive integrative therapy (IT), which included polydatin, curcumin, and Boswellia serrata, in addition to standard care. Survival outcomes were compared between IT-adherent and non-adherent patients. Multivariate Cox regression was employed to adjust for potential confounders, including age, extent of surgical resection, and corticosteroid use. Results: The median overall survival (OS) for the entire cohort was 13.3 months. Patients who adhered to IT (n = 60) had a median OS of 25.4 months, which increased to 34.4 months for those who underwent gross total resection. The non-IT group (n = 12) exhibited a median OS of 10.6 months. Multivariate analysis confirmed that IT adherence and the extent of resection were independent predictors of prolonged survival (p < 0.05). No severe adverse events were reported with IT. Conclusions: Integrative therapy combining polydatin, curcumin, and Boswellia serrata with standard treatment would appear to be associated with prolonged survival in glioblastoma patients, particularly among those who underwent gross total resection. However, the small size of the control group, the absence of randomization, and the inclusion solely of primary glioblastoma limit the generalizability of these findings. These results underscore the need for further investigation through randomized controlled trials. Full article
(This article belongs to the Topic Advances in Glioblastoma: From Biology to Therapeutics)
23 pages, 1028 KiB  
Review
Molecular and Genetic Pathogenesis of Oral Cancer: A Basis for Customized Diagnosis and Treatment
by Leonor Barroso, Pedro Veiga, Joana Barbosa Melo, Isabel Marques Carreira and Ilda Patrícia Ribeiro
Biology 2025, 14(7), 842; https://doi.org/10.3390/biology14070842 - 10 Jul 2025
Viewed by 604
Abstract
Oral cancer, the most common form of head and neck cancer, is worldwide a serious public health problem. Most patients present a locally advanced disease, and face poor prognosis, even with multimodality treatment. They may also develop second primary tumors in the entirety [...] Read more.
Oral cancer, the most common form of head and neck cancer, is worldwide a serious public health problem. Most patients present a locally advanced disease, and face poor prognosis, even with multimodality treatment. They may also develop second primary tumors in the entirety of their upper aerodigestive tract. The most altered signaling pathways are the PI3K/AKT/mTOR, TP53, RB, and the WNT/β-catenin pathways. Genomic and molecular cytogenetic analyses have revealed frequent losses at 3p, 8p, 9p, and 18q, along with gains at 3q, 7p, 8q, and 11q, and several genes frequently affected have been identified, such as TP53, CCND1, CTTN, CDKN2A, EGFR, HRAS, PI3K, ADAM9, MGAM, SIRPB1, and FAT1, among others. Various epigenetic alterations were also found, such as the global hypomethylation and hypermethylation of CDKN2A, APC, MGMT, PTEN, CDH1, TFP12, SOX17, GATA4, ECAD, MGMT, and DAPK. Several microRNAs are upregulated in oral cancer, including miR-21, miR-24, miR-31, miR-184, miR-211, miR-221, and miR-222, while others are downregulated, such as miR-203, miR-100, miR-200, miR-133a, miR-133b, miR-138, and miR-375. The knowledge of this molecular pathogenesis has not yet been translated into clinical practice, apart from the use of cetuximab, an EGFR antibody. Oral tumors are also genetically heterogenous and affect several pathways, which means that, due to the continuous evolution of these genetic alterations, a single biopsy is not sufficient to fully evaluate the most adequate molecular targets when more drugs become available. Liquid biopsies, either resorting to circulating tumor cells, extracellular vesicles or cell-free nucleic acids, have the potential to bypass this problem, and have potential prognostic and staging value. We critically review the current knowledge on the molecular, genetic and epigenetic alterations in oral cancer, as well as the applications and challenges of liquid biopsies in its diagnosis, follow-up, and prognostic stratification. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

12 pages, 794 KiB  
Article
Biomolecular Predictors of Recurrence Patterns and Survival in IDH-Wild-Type Glioblastoma: A Retrospective Analysis of Patients Treated with Radiotherapy and Temozolomide
by Paolo Tini, Flavio Donnini, Francesco Marampon, Marta Vannini, Tommaso Carfagno, Pierpaolo Pastina, Giovanni Rubino, Salvatore Chibbaro, Alfonso Cerase, Giulio Bagnacci, Armando Perrella, Maria Antonietta Mazzei, Alessandra Pascucci, Vincenzo D’Alonzo, Anna Maria Di Giacomo and Giuseppe Minniti
Brain Sci. 2025, 15(7), 713; https://doi.org/10.3390/brainsci15070713 - 2 Jul 2025
Viewed by 405
Abstract
Background and Aim: Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with poor prognosis despite maximal surgical resection, radiotherapy (RT), and temozolomide (TMZ) per the Stupp protocol. IDH-wild-type GBM, the predominant molecular subtype, frequently harbors EGFR amplification and is resistant [...] Read more.
Background and Aim: Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with poor prognosis despite maximal surgical resection, radiotherapy (RT), and temozolomide (TMZ) per the Stupp protocol. IDH-wild-type GBM, the predominant molecular subtype, frequently harbors EGFR amplification and is resistant to therapy, while MGMT promoter methylation predicts improved TMZ response. This study aimed to assess the prognostic impact of EGFR and MGMT status on survival and recurrence patterns in IDH-wild-type GBM. Materials and Methods: We retrospectively analyzed 218 patients with IDH-wild-type GBM treated at the Azienda Ospedaliero-Universitaria Senese (2016–2024). All patients underwent maximal safe surgical resection whenever feasible. The cohort includes patients who received gross total resection (GTR), subtotal resection (STR), or biopsy only, depending on tumor location and clinical condition, followed by intensity-modulated RT (59.4–60 Gy) with concurrent and adjuvant TMZ. EGFR amplification was assessed via FISH/NGS and immunohistochemistry; MGMT promoter methylation was determined using methylation-specific PCR. Progression-free survival (PFS), overall survival (OS), and recurrence patterns (in-field, marginal, out-field) were evaluated using Kaplan–Meier, Cox regression, and logistic regression analyses. Results: Among patients (64.7% male; mean age 61.8), 58.7% had EGFR amplification and 49.1% showed MGMT methylation. Median OS and PFS were 14 and 8 months, respectively. EGFR non-amplified/MGMT methylated tumors had the best outcomes (OS: 22.0 months, PFS: 10.5 months), while EGFR-amplified/MGMT unmethylated tumors fared worst (OS: 10.0 months, PFS: 5.0 months; p < 0.001). MGMT methylation was an independent positive prognostic factor (HR: 0.48, p < 0.001), while EGFR amplification predicted worse survival (HR: 1.57, p = 0.02) and higher marginal recurrence (OR: 2.42, p = 0.01). Conclusions: EGFR amplification and MGMT methylation significantly influence survival and recurrence dynamics in IDH-wild-type GBM. Incorporating these biomarkers into treatment planning may enable tailored therapeutic strategies, potentially improving outcomes in this challenging disease. Prospective studies are needed to validate biomolecularly guided management approaches. Full article
(This article belongs to the Special Issue Brain Tumors: From Molecular Basis to Therapy)
Show Figures

Figure 1

47 pages, 2976 KiB  
Review
Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review
by Marco Meleiro and Rui Henrique
Int. J. Mol. Sci. 2025, 26(12), 5634; https://doi.org/10.3390/ijms26125634 - 12 Jun 2025
Viewed by 1353
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical [...] Read more.
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical contributors to GBM pathobiology, including aberrant DNA methylation, histone modifications, and non-coding RNA (ncRNA) dysregulation. These mechanisms drive oncogenesis, therapy resistance, and immune evasion. This scoping review evaluates the current state of knowledge on epigenetic modifications in GBM, synthesizing findings from original articles and preclinical and clinical trials published over the last decade. Particular attention is given to MGMT promoter hypermethylation status as a biomarker for temozolomide (TMZ) sensitivity, histone deacetylation and methylation as modulators of chromatin structure, and microRNAs as regulators of pathways such as apoptosis and angiogenesis. Therapeutically, epigenetic drugs, like DNA methyltransferase inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis), appear as promising approaches in preclinical models and early trials. Emerging RNA-based therapies targeting dysregulated ncRNAs represent a novel approach to reprogram the tumor epigenome. Combination therapies, pairing epigenetic agents with immune checkpoint inhibitors or chemotherapy, are explored for their potential to enhance treatment response. Despite these advancements, challenges such as tumor heterogeneity, the blood–brain barrier (BBB), and off-target effects remain significant. Future directions emphasize integrative omics approaches to identify patient-specific targets and refine therapies. This article thus highlights the potential of epigenetics in reshaping GBM treatment paradigms. Full article
(This article belongs to the Special Issue Glioblastoma: Molecular Pathogenesis and Treatment)
Show Figures

Graphical abstract

19 pages, 2933 KiB  
Article
Role of Amide Proton Transfer Weighted MRI in Predicting MGMTp Methylation Status, p53-Status, Ki-67 Index, IDH-Status, and ATRX Expression in WHO Grade 4 High Grade Glioma
by Faris Durmo, Jimmy Lätt, Anna Rydelius, Elisabet Englund, Tim Salomonsson, Patrick Liebig, Johan Bengzon, Peter C. M. van Zijl, Linda Knutsson and Pia C. Sundgren
Tomography 2025, 11(6), 64; https://doi.org/10.3390/tomography11060064 - 31 May 2025
Viewed by 670
Abstract
Objectives: To assess amide proton transfer weighted (APTw) MR imaging capabilities in differentiating high-grade glial tumors across alpha-thalassemia/mental retardation X-linked (ATRX) expression, tumor-suppressor protein p53 expression (p53), O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation, isocitrate dehydrogenase (IDH) status, and proliferation marker Ki-67 (Ki-67 index) as [...] Read more.
Objectives: To assess amide proton transfer weighted (APTw) MR imaging capabilities in differentiating high-grade glial tumors across alpha-thalassemia/mental retardation X-linked (ATRX) expression, tumor-suppressor protein p53 expression (p53), O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation, isocitrate dehydrogenase (IDH) status, and proliferation marker Ki-67 (Ki-67 index) as a preoperative diagnostic aid. Material & Methods: A total of 42 high-grade glioma WHO grade 4 (HGG) patients were evaluated prospectively (30 males and 12 females). All patients were examined using conventional MRI, including the following: T1w-MPRAGE pre- and post-contrast administration, conventional T2w and 3D FLAIR, and APTw imaging with a 3T MR scanner. Receiver operating characteristic (ROC) curves were calculated for the APTw% mean, median, and max signal for the different molecular biomarkers. A logistic regression model was constructed for combined mean and median APTw% signals for p53 expression. Results: The whole-tumor max APTw% signal could significantly differentiate MGMTp from non-MGMTp HGG, p = 0.035. A cutoff of 4.28% max APTw% signal yielded AUC (area under the curve) = 0.702, with 70.6% sensitivity and 66.7% specificity. The mean/median APTw% signals differed significantly in p53 normal versus p53-overexpressed HGG s: 1.81%/1.83% vs. 1.15%/1.18%, p = 0.002/0.006, respectively. Cutoffs of 1.25%/1.33% for the mean/median APTw% signals yielded AUCs of 0.786/0.757, sensitivities of 76.9%/76.9%, and specificities of 50%/66.2%, p = 0.002/0.006, respectively. A logistic regression model with a combined mean and median APTw% signal for p53 status yielded an AUC = 0.788 and 76.9% sensitivity and 66.2% specificity. ATRX-, IDH- wild type (wt) vs. mutation (mut), and the level of Ki-67 did not differ significantly, but trends were found: IDH-wt and low Ki-67 showed higher mean/median/max APTw% signals vs. IDH-mut and high Ki-67, respectively. ATRX-wt vs. mutation showed higher mean and median APTw% signals but lower max APTw% signal. Conclusions: APTw imaging can potentially be a useful marker for the stratification of p53 expression and MGMT status in high-grade glioma in the preoperative setting and potentially aid surgical decision-making. Full article
Show Figures

Figure 1

13 pages, 1584 KiB  
Article
Radiomics and AI-Based Prediction of MGMT Methylation Status in Glioblastoma Using Multiparametric MRI: A Hybrid Feature Weighting Approach
by Erdal Tasci, Ying Zhuge, Longze Zhang, Holly Ning, Jason Y. Cheng, Robert W. Miller, Kevin Camphausen and Andra V. Krauze
Diagnostics 2025, 15(10), 1292; https://doi.org/10.3390/diagnostics15101292 - 21 May 2025
Cited by 1 | Viewed by 956
Abstract
Background/Objectives: Glioblastoma (GBM) is a highly aggressive primary central nervous system tumor with a median survival of 14 months. MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status is a key biomarker as a prognostic indicator and a predictor of chemotherapy response in GBM. Patients [...] Read more.
Background/Objectives: Glioblastoma (GBM) is a highly aggressive primary central nervous system tumor with a median survival of 14 months. MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status is a key biomarker as a prognostic indicator and a predictor of chemotherapy response in GBM. Patients with MGMT methylated disease progress later and survive longer (median survival rate 22 vs. 15 months, respectively) as compared to patients with MGMT unmethylated disease. Patients with GBM undergo an MRI of the brain prior to diagnosis and following surgical resection for radiation therapy planning and ongoing follow-up. There is currently no imaging biomarker for GBM. Studies have attempted to connect MGMT methylation status to MRI imaging appearance to determine if brain MRI can be leveraged to provide MGMT status information non-invasively and more expeditiously. Methods: Artificial intelligence (AI) can identify MRI features that are not distinguishable to the human eye and can be linked to MGMT status. We employed the UPenn-GBM dataset patients for whom methylation status was available (n = 146), employing a novel radiomic method grounded in hybrid feature selection and weighting to predict MGMT methylation status. Results: The best MGMT classification and feature selection result obtained resulted in a mean accuracy rate value of 81.6% utilizing 101 selected features and five-fold cross-validation. Conclusions: This compared favorably with similar studies in the literature. Validation with external datasets remains critical to enhance generalizability and propagate robust results while reducing bias. Future directions include multi-channel data integration with radiomic features and deep and ensemble learning methods to improve predictive performance. Full article
(This article belongs to the Special Issue The Applications of Radiomics in Precision Diagnosis)
Show Figures

Figure 1

13 pages, 1045 KiB  
Article
All-Trans Retinoic Acid Induces Differentiation and Downregulates Stemness Markers and MGMT Expression in Glioblastoma Stem Cells
by Justin Tang and Raymond Yang
Cells 2025, 14(10), 746; https://doi.org/10.3390/cells14100746 - 20 May 2025
Viewed by 734
Abstract
Background: Glioblastoma (GBM) remains almost uniformly fatal, owing in part to therapy-resistant cancer stem-like cells (CSCs) and to temozolomide (TMZ) resistance driven by O6-methylguanine-DNA methyltransferase (MGMT). Differentiation therapy with all-trans retinoic acid (ATRA) has the potential to attenuate stemness and sensitize [...] Read more.
Background: Glioblastoma (GBM) remains almost uniformly fatal, owing in part to therapy-resistant cancer stem-like cells (CSCs) and to temozolomide (TMZ) resistance driven by O6-methylguanine-DNA methyltransferase (MGMT). Differentiation therapy with all-trans retinoic acid (ATRA) has the potential to attenuate stemness and sensitize GBM to TMZ. We therefore asked whether ATRA reduces expression of key CSC markers and MGMT in established GBM lines. Methods: Two established human GBM cell lines, U87-MG and A172, were cultured under neurosphere-promoting conditions to enrich for potential stem-like subpopulations. Cells were treated with either 1 µM ATRA or vehicle control (DMSO) for 5 days. Total RNA was extracted, and cDNA was synthesized. Quantitative Real-Time PCR (qPCR) assessed relative mRNA expression levels of key stemness transcription factors (SOX2, NES) and the DNA repair gene MGMT and corresponding protein levels were measured by an Enzyme-Linked Immunosorbent Assay (ELISA). Gene expression was normalized to the geometric mean of two validated housekeeping genes (GAPDH, ACTB). Relative quantification was calculated using the ΔΔCt method, and statistical significance was determined using Student’s t-tests. Results: ATRA markedly suppressed stemness and MGMT in both lines. In U87-MG, SOX2 mRNA fell 3.7-fold (p = 0.0008) and protein 2.99-fold (148.3 ± 6.0 → 49.7 ± 2.7 pg µg−1; p = 0.0002); Nestin dropped 4.1-fold (p = 0.0005) and 3.51-fold (450.0 ± 17.3 → 128.3 ± 4.4 pg µg−1; p = 0.00008). MGMT decreased 2.6-fold at transcript level (p = 0.0065) and 2.11-fold at protein level (81.7 ± 4.4 → 38.7 ± 1.8 pg µg−1; p = 0.0005). In A172, SOX2 was reduced 2.9-fold (p = 0.0041) and 2.31-fold (p = 0.0007); Nestin 3.3-fold (p = 0.0028) and 2.79-fold (p = 0.00009). MGMT declined 2.2-fold (p = 0.0132) and 1.82-fold (p = 0.0015), respectively. Conclusions: Five-day exposure to ATRA diminishes SOX2, Nestin, and MGMT at both mRNA and protein levels in stem-enriched GBM cultures, supporting the premise that ATRA-induced differentiation can concurrently blunt CSC traits and TMZ-resistance mechanisms. These data provide a molecular rationale for testing ATRA in combination regimens aimed at improving GBM therapy. Full article
(This article belongs to the Special Issue The Pivotal Role of Tumor Stem Cells in Glioblastoma)
Show Figures

Figure 1

22 pages, 1670 KiB  
Review
Signaling Pathways in Gliomas
by Paulina Stachyra and Ludmiła Grzybowska-Szatkowska
Genes 2025, 16(5), 600; https://doi.org/10.3390/genes16050600 - 19 May 2025
Viewed by 702
Abstract
Changes in cell signaling pathways, which in normal conditions determine the maintenance of cell homeostasis and the correctness of its basic processes, may cause the transformation of a normal cell into a cancer cell. Alterations in cellular metabolism leading to oncogenesis are considered [...] Read more.
Changes in cell signaling pathways, which in normal conditions determine the maintenance of cell homeostasis and the correctness of its basic processes, may cause the transformation of a normal cell into a cancer cell. Alterations in cellular metabolism leading to oncogenesis are considered to be a hallmark of cancer cells. Therefore, a thorough understanding of cellular enzymes affecting metabolism and respiration, as well as intracellular pathways connected with them, seems crucial. These changes may be both prognostic and predictive factors, especially in terms of using molecularly targeted therapies. Aberrations in the pathways responsible for cell growth and angiogenesis are considered particularly important in the process of oncogenesis. Gliomas are the most common primary malignant tumors of the brain. The most important molecular disorders determining their particularly malignant nature are aberrations in the pathways responsible for cell growth and angiogenesis, such as the PI3K/Akt or RAS/MAPK/ERK signaling pathway, as well as excessive activity of enzymes, like hexokinases, which play a key role in glycolysis, autophagy, and apoptosis. The multitude of alterations detected in glioma cells, high heterogeneity, and the immunosuppressive environment within the tumor are the main features causing failures in the attempts to implement modern therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 8017 KiB  
Article
A Novel Squalenoylated Temozolomide Nanoparticle with Long Circulating Properties Reverses Drug Resistance in Glioblastoma
by Jiao Feng, Chengyong Wen, Xiao Zhang, Xiaolong Zhu, Mengmeng Ma, Xiaohong Zhao and Xinbing Sui
Int. J. Mol. Sci. 2025, 26(10), 4723; https://doi.org/10.3390/ijms26104723 - 15 May 2025
Viewed by 569
Abstract
Temozolomide (TMZ) remains the frontline chemotherapy for gliomas; yet its clinical efficacy is significantly compromised by inherent instability and the emergence of resistance mechanisms. To surmount these challenges, we engineered a squalenoylated TMZ nanoparticle (SQ-TMZ NPs) via conjugation of TMZ with squalene, enabling [...] Read more.
Temozolomide (TMZ) remains the frontline chemotherapy for gliomas; yet its clinical efficacy is significantly compromised by inherent instability and the emergence of resistance mechanisms. To surmount these challenges, we engineered a squalenoylated TMZ nanoparticle (SQ-TMZ NPs) via conjugation of TMZ with squalene, enabling enhanced drug stability and improved therapeutic potency against glioblastoma cells. The resulting SQ-TMZ NPs exhibited a precisely controlled nanoscale architecture (~126 nm), demonstrating exceptional stability under physiological and storage conditions, with minimal hemolytic toxicity (<5%). Notably, these nanoparticles conferred superior cytotoxicity in TMZ-resistant glioblastoma T98G cells, attributed to the amplification of intracellular reactive oxygen species (ROS) and DNA damage, along with MGMT (O-6-methylguanine-DNA methyltransferase) expression suppression. Furthermore, in vivo imaging confirmed their efficient blood–brain barrier (BBB) penetration and selective tumor accumulation. This study presents a transformative approach by integrating prodrug self-assembly with targeted drug delivery to not only enhance TMZ stability but also decisively reverse glioblastoma resistance, offering a compelling therapeutic advancement. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

15 pages, 4496 KiB  
Article
Transposable Element Is Predictive of Chemotherapy- and Immunotherapy-Related Overall Survival in Glioma
by Bi Peng, Fan Shen, Ziqi Chen, Yongkai Yu, Rundong Liu, Yiling Zhang, Guoxian Long, Guangyuan Hu and Yuanhui Liu
Biomedicines 2025, 13(5), 1177; https://doi.org/10.3390/biomedicines13051177 - 12 May 2025
Viewed by 600
Abstract
Background: Glioma is the most common type of malignant brain tumor. Temozolomide (TMZ) is a limited systematic treatment option for glioma, including low-grade glioma (LGG) and glioblastoma (GBM). However, not all patients benefit from TMZ and some develop resistance to it. MGMT methylation [...] Read more.
Background: Glioma is the most common type of malignant brain tumor. Temozolomide (TMZ) is a limited systematic treatment option for glioma, including low-grade glioma (LGG) and glioblastoma (GBM). However, not all patients benefit from TMZ and some develop resistance to it. MGMT methylation has been used to identify patients who may benefit from TMZ, but it is not effective in all cases. Objectives: There is an urgent need for new biomarkers to predict the survival of patients who receive TMZ. Methods: We utilized a recently developed method called REdiscoverTE to precisely measure the expression of transposable elements (TE). We performed Cox regression analysis to assess the predictive ability for prognosis and conducted a series of correlation studies to uncover potential mechanisms. Results: We identified three TEs, LTR81B, LTR27B, and MER39B, that were strongly predictive of longer survival in glioma patients receiving chemotherapy. We discovered that the expression of these TEs was positively associated with immune cells that enhance the immune system and negatively associated with immune cells suppressing the immune response, as well as molecules that control immune checkpoints. These three TEs were also found to predict better survival in patients receiving immunotherapy. Conclusions: In conclusion, we demonstrate that the expression of TEs can serve as a novel biomarker for the overall survival of glioma patients who receive TMZ chemotherapy or immunotherapy. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

10 pages, 1500 KiB  
Article
Efficacy and Safety of Prolonged Adjuvant Temozolomide Treatment in Glioblastoma: Prospective Study of 81 Patients Undergoing up to 101 Cycles of Treatment
by Giulio Bonomo, Francesco Certo, Erica Grasso, Giuseppa Fiumanò, Davide Barbagallo, Rosario Caltabiano, Giuseppe Broggi, Gaetano Magro, Andrea Maugeri, Antonella Agodi, Fiorenza Latteri, Hector Sotoparra, Giovanni Buscema, Corrado Spatola, Alessandro Pluchino and Giuseppe M. V. Barbagallo
Brain Sci. 2025, 15(5), 428; https://doi.org/10.3390/brainsci15050428 - 23 Apr 2025
Viewed by 1001
Abstract
Background: Although several studies investigated the efficacy of long-term adjuvant temozolomide (TMZ) therapy in glioblastomas (GBs), no univocal data are currently available, and this topic remains controversial. The present study on our ongoing experience aims to assess whether the extended STUPP protocol confers [...] Read more.
Background: Although several studies investigated the efficacy of long-term adjuvant temozolomide (TMZ) therapy in glioblastomas (GBs), no univocal data are currently available, and this topic remains controversial. The present study on our ongoing experience aims to assess whether the extended STUPP protocol confers prognostic benefits with acceptable safety. Methods: From 2004 to 2018, 81 patients with a new diagnosis of GB according to the World Health Organization (WHO) 2021 classification, treated with gross total resection (GTR) or subtotal resection (STR), were enrolled. Patients were divided into Group A (long-term TMZ; N = 40) and Group B (standard STUPP protocol; N = 41). Results: In the extended STUPP group, compared with the standard STUPP group, progression-free survival (PFS) and overall survival (OS) were significantly improved (PFS: 27.8 vs. 7.5 months, p = 0.00001; OS: 35.9 vs. 11.3 months, p = 0.0001). To mitigate a potential survival bias, we focused on those in Group B who completed the recommended six cycles. Patients in Group A demonstrated a prolonged OS compared to Group B (27 vs. 10 months, p < 0.001). Similar findings were observed in a focused analysis of patients who had achieved a minimum survival of 12 months (27 vs. 15 months, p < 0.001) or 18 months (34 vs. 24 months, p = 0.044). Conclusions: Our analysis demonstrates a PFS and OS advantage with extended STUPP and suggests that young patients without corpus callosum invasion, with methylguanine-DNA methyltransferase (MGMT) promoter methylation, and treated with GTR are the best candidates. No significant safety difference emerged between extended and standard TMZ treatment. Full article
(This article belongs to the Special Issue Editorial Board Collection Series: Advances in Neuro-Oncology)
Show Figures

Figure 1

17 pages, 3490 KiB  
Article
ATRX, OLIG2, MGMT, and IDH2 in Glioblastoma: Essential Molecular Mechanisms and Therapeutic Significance
by Andrea Pop-Crisan, Radu Pirlog, Lavinia-Lorena Pruteanu, Constantin Busuioc, Ovidiu-Laurean Pop, Deo Prakash Pandey, Cornelia Braicu and Ioana Berindan-Neagoe
Medicina 2025, 61(4), 697; https://doi.org/10.3390/medicina61040697 - 10 Apr 2025
Viewed by 735
Abstract
Background and Objectives: Glioblastoma (GBM) is among the most aggressive and lethal primary brain tumors, characterized by high heterogeneity, invasive growth, and resistance to conventional therapies. The 2021 WHO classification highlights the importance of molecular diagnostics, integrating genetic, transcriptomic, and epigenetic alterations [...] Read more.
Background and Objectives: Glioblastoma (GBM) is among the most aggressive and lethal primary brain tumors, characterized by high heterogeneity, invasive growth, and resistance to conventional therapies. The 2021 WHO classification highlights the importance of molecular diagnostics, integrating genetic, transcriptomic, and epigenetic alterations alongside histological and immunohistochemical criteria. Materials and methods: Key molecular regulators, including ATRX, OLIG2, MGMT, and IDH2, play critical roles in chromatin remodeling, transcriptional reprogramming, DNA repair, and metabolic adaptation. However, their specific expression patterns and functional roles in GBM remain incompletely understood. This study utilizes publicly available data from The Cancer Genome Atlas (TCGA) to assess the transcriptional profiles of ATRX, OLIG2, MGMT, and IDH2 in GBM, aiming to identify potential biomarkers and therapeutic targets. Results: The expression analysis revealed that ATRX is downregulated at the gene level but overexpressed at the protein level, while OLIG2 is consistently overexpressed at both levels. MGMT showed no statistically significant changes in either gene or protein expression, whereas IDH2 was not significantly altered at the gene level but was downregulated at the protein level (p < 0.05). These discrepancies suggest potential post-transcriptional regulatory mechanisms influencing GBM molecular profiles. Notably, OLIG2 and MGMT expression correlated significantly with patient survival (p < 0.05), whereas ATRX and IDH2 did not reach statistical significance. Conclusions: Understanding these molecular relationships provides valuable insights into potential therapeutic strategies, paving the way for precision oncology approaches and combination therapies targeting multiple pathways simultaneously. Full article
(This article belongs to the Special Issue Towards Improved Cancer Diagnosis: New Developments in Histopathology)
Show Figures

Figure 1

Back to TopTop