Beyond Imaging: Integrating Radiomics, Genomics, and Multi-Omics for Precision Breast Cancer Management
Simple Summary
Abstract
1. Introduction
2. Methods
3. Radiomics, Radiogenomics, and Artificial Intelligence
4. Key Applications of Radiogenomics
4.1. Imaging and Molecular Subtype Inference
4.2. Mutation and Pathway Prediction
4.3. Prediction of Treatment Response
4.4. Tumour Microenvironment and Immune Phenotyping
4.5. Axillary Lymph Node Involvement
5. Limitation, Current Challenges, and Future Directions
5.1. Limitations
5.2. Modality-Specific Challenges
5.3. Technical and Modelling Challenges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Moreno, H.L.G.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef]
- Esteva, F.J.; Hubbard-Lucey, V.M.; Tang, J.; Pusztai, L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019, 20, e175–e186. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.; Butti, R.; Panda, V.K.; Malhotra, D.; Das, S.; Mitra, T.; Kapse, P.; Gosavi, S.W.; Kundu, G.C. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol. Cancer 2024, 23, 1–27. [Google Scholar] [CrossRef]
- Kinnel, B.; Singh, S.K.; Oprea-Ilies, G.; Singh, R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers 2023, 15, 1320. [Google Scholar] [CrossRef]
- Brett, J.O.; Spring, L.M.; Bardia, A.; Wander, S.A. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res. 2021, 23, 1–15. [Google Scholar] [CrossRef]
- Reinhardt, K.; Stückrath, K.; Hartung, C.; Kaufhold, S.; Uleer, C.; Hanf, V.; Lantzsch, T.; Peschel, S.; John, J.; Pöhler, M.; et al. PIK3CA-mutations in breast cancer. Breast Cancer Res Treat. 2022, 196, 483–493. [Google Scholar] [CrossRef]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wu, J.; Chen, Y.; Nie, J.; Chen, C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front. Pharmacol. 2021, 12, 628690. [Google Scholar] [CrossRef]
- Rodrigues, R.; Duarte, D.; Vale, N. Drug Repurposing in Cancer Therapy: Influence of Patient’s Genetic Background in Breast Cancer Treatment. Int. J. Mol. Sci. 2022, 23, 4280. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Sant, M.; Bernat-Peguera, A.; Felip, E.; Margelí, M. Role of ctDNA in Breast Cancer. Cancers 2022, 14, 310. [Google Scholar] [CrossRef]
- Sabit, H.; Attia, M.G.; Mohamed, N.; Taha, P.S.; Ahmed, N.; Osama, S.; Abdel-Ghany, S. Beyond traditional biopsies: The emerging role of ctDNA and MRD on breast cancer diagnosis and treatment. Discov. Oncol. 2025, 16, 1–34. [Google Scholar] [CrossRef]
- Openshaw, M.R.; Page, K.; Fernandez-Garcia, D.; Guttery, D.; Shaw, J.A. The role of ctDNA detection and the potential of the liquid biopsy for breast cancer monitoring. Expert Rev. Mol. Diagn. 2016, 16, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ulrich, B.C.; Supplee, J.; Kuang, Y.; Lizotte, P.H.; Feeney, N.B.; Guibert, N.M.; Awad, M.M.; Wong, K.-K.; Jänne, P.A.; et al. False-Positive Plasma Genotyping Due to Clonal Hematopoiesis. Clin. Cancer Res. 2018, 24, 4437–4443. [Google Scholar] [CrossRef]
- Panet, F.; Papakonstantinou, A.; Borrell, M.; Vivancos, J.; Vivancos, A.; Oliveira, M. Use of ctDNA in early breast cancer: Analytical validity and clinical potential. npj Breast Cancer 2024, 10, 1–15. [Google Scholar] [CrossRef]
- Santinha, J.; dos Santos, D.P.; Laqua, F.; Visser, J.J.; Lipman, K.B.W.G.; Dietzel, M.; Klontzas, M.E.; Cuocolo, R.; Gitto, S.; D’aNtonoli, T.A. ESR Essentials: Radiomics—practice recommendations by the European Society of Medical Imaging Informatics. Eur. Radiol. 2024, 35, 1122–1132. [Google Scholar] [CrossRef]
- Gallivanone, F.; Bertoli, G.; Porro, D. Radiogenomics, Breast Cancer Diagnosis and Characterization: Current Status and Future Directions. Methods Protoc. 2022, 5, 78. [Google Scholar] [CrossRef]
- Demetriou, D.; Lockhat, Z.; Brzozowski, L.; Saini, K.S.; Dlamini, Z.; Hull, R. The Convergence of Radiology and Genomics: Advancing Breast Cancer Diagnosis with Radiogenomics. Cancers 2024, 16, 1076. [Google Scholar] [CrossRef]
- Mooghal, M.; Shaikh, K.; Shaikh, H.; Khan, W.; Siddiqui, M.S.; Jamil, S.; Vohra, L.M. A literature review of radio-genomics in breast cancer: Lessons and insights for low and middle-income countries. Tumori J. 2025, 111, 274–283. [Google Scholar] [CrossRef]
- Khanyile, R.; Chipiti, T.; Hull, R.; Dlamini, Z. Radiogenomic Landscape of Metastatic Endocrine-Positive Breast Cancer Resistant to Aromatase Inhibitors. Cancers 2025, 17, 808. [Google Scholar] [CrossRef]
- Kim, N.; Adam, R.; Maldjian, T.; Duong, T.Q. Radiomics Analysis of Breast MRI to Predict Oncotype Dx Recurrence Score: Systematic Review. Diagnostics 2025, 15, 1054. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, L.; Cui, T.; Zhou, Y.; Li, P.; Luo, C.; Wei, J.; Hu, H. Spatial-temporal radiogenomics in predicting neoadjuvant chemotherapy efficacy for breast cancer: A comprehensive review. J. Transl. Med. 2025, 23, 1–24. [Google Scholar] [CrossRef]
- Davey, M.G.; Davey, M.S.; Boland, M.R.; Ryan, É.J.; Lowery, A.J.; Kerin, M.J. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging - A systematic review and meta-analysis. Eur. J. Radiol. 2021, 144, 109996. [Google Scholar] [CrossRef]
- Saxena, S.; Jena, B.; Gupta, N.; Das, S.; Sarmah, D.; Bhattacharya, P.; Nath, T.; Paul, S.; Fouda, M.M.; Kalra, M.; et al. Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers 2022, 14, 2860. [Google Scholar] [CrossRef]
- He, W.; Huang, W.; Zhang, L.; Wu, X.; Zhang, S.; Zhang, B. Radiogenomics: Bridging the gap between imaging and genomics for precision oncology. Medcomm 2024, 5, e722. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef]
- Dercle, L.; McGale, J.; Sun, S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Mokrane, F.-Z.; Farwell, M.; Ammari, S.; Schoder, H.; et al. Artificial intelligence and radiomics: Fundamentals, applications, and challenges in immunotherapy. J. Immunother. Cancer 2022, 10, e005292. [Google Scholar] [CrossRef]
- Shur, J.D.; Doran, S.J.; Kumar, S.; ap Dafydd, D.; Downey, K.; O’connor, J.P.B.; Papanikolaou, N.; Messiou, C.; Koh, D.-M.; Orton, M.R. Radiomics in Oncology: A Practical Guide. RadioGraphics 2021, 41, 1717–1732. [Google Scholar] [CrossRef] [PubMed]
- Choy, G.; Khalilzadeh, O.; Michalski, M.; Synho, D.; Samir, A.E.; Pianykh, O.S.; Geis, J.R.; Pandharipande, P.V.; Brink, J.A.; Dreyer, K.J. Current Applications and Future Impact of Machine Learning in Radiology. Radiology 2018, 288, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Han, K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018, 286, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Sun, Y.; Zhao, D.; Zhang, X.; Kong, H.; Hu, N.; Wang, P.; Zuo, X.; Fan, W.; Yao, Y.; et al. Radiogenomic analysis of prediction HER2 status in breast cancer by linking ultrasound radiomic feature module with biological functions. J. Transl. Med. 2023, 21, 1–15. [Google Scholar] [CrossRef]
- Shiri, I.; Salimi, Y.; Kazaj, P.M.; Bagherieh, S.; Amini, M.; Manesh, A.S.; Zaidi, H. Deep Radiogenomics Sequencing for Breast Tumor Gene-Phenotype Decoding Using Dynamic Contrast Magnetic Resonance Imaging. Mol. Imaging Biol. 2025, 27, 32–43. [Google Scholar] [CrossRef]
- Yoo, J.; Seo, B.K.; Park, E.K.; Kwon, M.; Jeong, H.; Cho, K.R.; Woo, O.H.; Song, S.E.; Cha, J. Tumor stiffness measured by shear wave elastography correlates with tumor hypoxia as well as histologic biomarkers in breast cancer. Cancer Imaging 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Bene, I.; Ciurea, A.I.; Ciortea, C.A.; Ștefan, P.A.; Ciule, L.D.; Lupean, R.A.; Dudea, S.M. Radiomic Signatures Derived from Hybrid Contrast-Enhanced Ultrasound Images (CEUS) for the Assessment of Histological Characteristics of Breast Cancer: A Pilot Study. Cancers 2022, 14, 3905. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, L.; Hu, Y.; Shao, N.; Lin, Y.; He, S.; Shi, H.; Zhang, X.; Lin, Y. Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer. Front. Oncol. 2021, 11, 706733. [Google Scholar] [CrossRef]
- Saha, A.; Harowicz, M.R.; Grimm, L.J.; Kim, C.E.; Ghate, S.V.; Walsh, R.; Mazurowski, M.A. A machine learning approach to radiogenomics of breast cancer: A study of 922 subjects and 529 DCE-MRI features. Br. J. Cancer 2018, 119, 508–516. [Google Scholar] [CrossRef]
- Park, A.Y.; Han, M.-R.; Seo, B.K.; Ju, H.-Y.; Son, G.S.; Lee, H.Y.; Chang, Y.W.; Choi, J.; Cho, K.R.; Song, S.E.; et al. MRI-based breast cancer radiogenomics using RNA profiling: Association with subtypes in a single-center prospective study. Breast Cancer Res. 2023, 25, 1–13. [Google Scholar] [CrossRef]
- Ming, W.; Zhu, Y.; Bai, Y.; Gu, W.; Li, F.; Hu, Z.; Xia, T.; Dai, Z.; Yu, X.; Li, H.; et al. Radiogenomics analysis reveals the associations of dynamic contrast-enhanced–MRI features with gene expression characteristics, PAM50 subtypes, and prognosis of breast cancer. Front. Oncol. 2022, 12, 943326. [Google Scholar] [CrossRef]
- Fan, M.; Cui, Y.; You, C.; Liu, L.; Gu, Y.; Peng, W.; Bai, Q.; Gao, X.; Li, L. Radiogenomic Signatures of Oncotype DX Recurrence Score Enable Prediction of Survival in Estrogen Receptor–Positive Breast Cancer: A Multicohort Study. Radiology 2022, 302, 516–524. [Google Scholar] [CrossRef]
- Yeh, A.C.; Li, H.; Zhu, Y.; Zhang, J.; Khramtsova, G.; Drukker, K.; Edwards, A.; McGregor, S.; Yoshimatsu, T.; Zheng, Y.; et al. Radiogenomics of breast cancer using dynamic contrast enhanced MRI and gene expression profiling. Cancer Imaging 2019, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; You, C.; Pei, Y.; Yang, F.; Li, D.; Jiang, Y.-Z.; Shao, Z. Integration of radiogenomic features for early prediction of pathological complete response in patients with triple-negative breast cancer and identification of potential therapeutic targets. J. Transl. Med. 2022, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Bai, Y.; Zhang, Y.; Wang, Z.; Sun, S.; Lin, L.; Gu, Y.; You, C. A preoperative radiogenomic model based on quantitative heterogeneity for predicting outcomes in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy. Cancer Imaging 2024, 24, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Chen, Z.; Liu, J.; Zhu, C.; Huang, H.; Yi, Y.; Cai, G.; Liao, N. A radiogenomic multimodal and whole-transcriptome sequencing for preoperative prediction of axillary lymph node metastasis and drug therapeutic response in breast cancer: A retrospective, machine learning and international multicohort study. Int. J. Surg. 2024, 110, 2162–2177. [Google Scholar] [CrossRef]
- Oda, S.; Tokuda, Y.; Suzuki, Y.; Yanagawa, M.; Sota, Y.; Naoi, Y.; Motoyama, Y.; Morii, E.; Shimazu, K.; Kido, S.; et al. Integrative Radiogenomics Using MRI Radiomics and Microarray Gene Expression Analysis to Predict Pathological Complete Response in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy. Cureus 2025, 17, e86287. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Wang, K.; Zhang, Y.; Ge, Y.; Lü, Z.; Li, L. Radiogenomic analysis of cellular tumor-stroma heterogeneity as a prognostic predictor in breast cancer. J. Transl. Med. 2023, 21, 1–15. [Google Scholar] [CrossRef]
- Dou, T.; Chen, Y.; Liu, L.; Zhang, Y.; Pei, W.; Li, J.; Lei, Y.; Wang, Y.; Jia, H. Radiogenomic analysis of clinical and ultrasonic characteristics in correlation to immune-related genes in breast cancer. Sci. Rep. 2025, 15, 1–16. [Google Scholar] [CrossRef]
- Chen, H.; Lan, X.; Yu, T.; Li, L.; Tang, S.; Liu, S.; Jiang, F.; Wang, L.; Huang, Y.; Cao, Y.; et al. Development and validation of a radiogenomics model to predict axillary lymph node metastasis in breast cancer integrating MRI with transcriptome data: A multicohort study. Front. Oncol. 2022, 12, 1076267. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, P. Radiogenomic association of deep MR imaging features with genomic profiles and clinical characteristics in breast cancer. Biomark. Res. 2023, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, Z.H.; Sun, Y.; Domaratzki, M.; Liu, Q.; Hu, P. Conditional probabilistic diffusion model driven synthetic radiogenomic applications in breast cancer. PLOS Comput. Biol. 2024, 20, e1012490. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, P. A novel integrative computational framework for breast cancer radiogenomic biomarker discovery. Comput. Struct. Biotechnol. J. 2022, 20, 2484–2494. [Google Scholar] [CrossRef]
- Liang, S.; Xu, S.; Zhou, S.; Chang, C.; Shao, Z.; Wang, Y.; Chen, S.; Huang, Y.; Guo, Y. IMAGGS: A radiogenomic framework for identifying multi-way associations in breast cancer subtypes. J. Genet. Genom. 2023, 51, 443–453. [Google Scholar] [CrossRef]
- Xi, J.; Sun, D.; Chang, C.; Zhou, S.; Huang, Q. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers. Comput. Biol. Med. 2023, 155, 106672. [Google Scholar] [CrossRef]
- Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. 2015, 5, 2929–2943. Am. J. Cancer Res. 2015, 5, 2929–2943. [Google Scholar]
- Vesely, M.D.; Zhang, T.; Chen, L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annu. Rev. Immunol. 2022, 40, 45–74. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Kim, D.; Kim, H.S.; Park, S.Y.; Kim, J.Y.; Cho, S.J.; Shin, J.H.; Kim, J.H. Quality of science and reporting of radiomics in oncologic studies: Room for improvement according to radiomics quality score and TRIPOD statement. Eur. Radiol. 2019, 30, 523–536. [Google Scholar] [CrossRef] [PubMed]
Reference | Applications | Size | Images | Results | Data Sources |
---|---|---|---|---|---|
[36] | HER2 | 489 | USS | GLSZM and GLRLM predicted HER2 positive | In-house |
[37] | ER PR HER2 | 922 | DCE-MRI | SEResNet50 predicted ER, ResNet34 predicted PR, and SEResNext101 predicted HER2 | Public data |
[38] | Subtype Ki-67 Grade Lymph node | 82 | USS/SWE | SWE stiffness predicted tumour aggressiveness (hypoxia, ER-/PR- status, high Ki-67, HER2 positivity, high grade, lymph node metastasis) | In-house |
[39] | ER PR HER2 Ki-67 | 72 | CEUS | WavEnHH_s_4 predicted HER2+, RWavEnLH_s_4 predicted ER | In-house |
[40] | Subtype AR | 162 | DCE-MRI | predict molecular subtypes and AR status | In-house |
[41] | Subtype | 922 | DCE-MRI | Imaging heterogeneity correlated with proliferative, immune, and angiogenic activity | In-house |
[42] | Gene pathway | 95 | MRI | MRI features predict subtype-specific genetic alterations relevant to prognosis, metastasis, and therapy response | In-house |
[43] | PAM50 Subtype | 174 | DCE-MRI | Eight-gene prognostic signature | Mixed |
[44] | Oncotype DX RS response | 130 | DCE-MRI | 11 predicted Oncotype Dx score | In-house |
[45] | Gene pathway | 47 | DCE-MRI | Radiomics reflects proliferative, immune, and angiogenic processes | In-house |
[46] | pCR in TNBC | 112 | DCE-MRI | wavelet-related radiomics features predicted pCR | In-house |
[47] | NACT response in TNBC | 98 | DCE-MRI | Intratumoural and peritumoural feature with genomic predict response and prognosis in TNBC | Mixed |
[48] | ALNM treatment response | 1078 | MRI | radiogenomic multimodal nomogram predict ALNM and treatment responses | Public data |
[49] | NACT response in TNBC | 112 | DCE-MRI | wavelet-based root mean squared and cluster shade, reflecting intratumoural heterogeneity and textural asymmetry predicted poor treatment response | In-house |
[50] | TSH | 332 | DCE-MRI | Radiomic features linked to TSH—including IDMN, flatness, and sphericity | Public data |
[51] | Immune-related gene | 38 | USS | CXCL2, MIA, NR3C2, PTX3, S100B, SAA1, SAA2, and CXCL9 genes were correlated | In-house |
[52] | ALNM | 111 | DCE-MRI | radiogenomics model, incorporating five genomics and three radiomics features demonstrated good prediction of ALNM | Mixed |
[53] | Staging and risk genes | 110 | MRI | DRF kernels are related to grow factors and risk genes | Public |
[54] | Subtype and survival | 58 | MRI | The model can accurately classify ER+/HER2+ subtypes and patient survival outcomes. | Public date |
[55] | Gene pathway | DCE-MRI | Prognostic biomarkers predicted natural killer cell function to survival | Public data | |
[56] | Subtype | 721 | USS | IMAGGS can identify subtypes | In-house |
[57] | Gene profile | 777 | USS | tumour heterogeneity and subtype differentiation | In-house |
Reference | Segmentation | Non-Radiomics Features | Validation | Model |
---|---|---|---|---|
[36] | CNN-based | RNA expression | Internal validation | Logistic regression |
[37] | three-dimensional bounding boxes | Transcriptomic data | Internal validation | Deep radiogenomics sequencing (DRS) model |
[38] | manually | GLUT1 expression | unknown | Spearman correlation and logistic regression |
[39] | manually | pathology | unknown | Fisher coefficients and univariate analysis for feature selection. Multivariate analysis for prediction |
[40] | manually | Gene expression profile | leave-one-out cross-validation | multiple feature selection strategies (LASSO, RFE, mRMR, Boruta, Pearson), Multiple diagnostic models |
[41] | Auto | Pathology | Internal validation | Multivariate models |
[42] | manually | RNA sequencing | unknown | Unknown |
[43] | Auto | RNA sequencing PAM50 | Internal and external validation | LASSO embedded logistic regression for feature selection ENR, SVM, RF and naïve bayes NB for model. |
[44] | manually | Oncotype RS score | Internal validation | LASSO and ridged model for feature selection. Multivariable Cox proportional hazards model for prediction |
[45] | Auto | RNA sequencing data | unknown | |
[46] | Semiauto | Genomic mutation data | Internal validation | LASSO with XGBoost for features selection (Light-GBM for prediction) |
[47] | manually | Whole genetic data | Internal validation | Univariate analysis and correlation analysis for feature selection plus LASSO and Logistic regression to finalize the feature selection logistic regression for model |
[48] | manually | whole-transcriptome sequencing | External validation | Univariate analysis and correlation analysis for feature selection and SVM for feature selection Multimodal model nomogram from rad-score and gene-score |
[49] | manually | Gene microarray analysis | Cross-validation | three models (radiomics, genomics and radiogenomics) based random forest |
[50] | manually | Gene expression profile | External validation | Cross-validation-based feature selection Standard statistics for prediction |
[51] | manually | Immune related gene expression | Internal validation | Spearman correlation |
[52] | manually | transcriptomic data | External validation | Boruta method including Univariate analysis and correlation analysis for feature selection Logistic regression for model |
[53] | unknown | Genomic profiles | Internal validation | LASSO Denoising autoencoder (DA)-unsupervised DL model |
[54] | Auto | mRNA gene expression, DNA methylation, and copy number variation | Internal validation | largest CV for feature selection CPDM for prediction |
[55] | Unknown | Transcriptomic data | Internal validation | BTF and deep learning model |
[56] | Unknown | gene mutation profiles | Internal and external | machine learning algorithm rAdaSMCCA that implemented feature selection |
[57] | manually | Genomic data | internal | omics-to-omics joint knowledge association subtensor model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Dai, W. Beyond Imaging: Integrating Radiomics, Genomics, and Multi-Omics for Precision Breast Cancer Management. Cancers 2025, 17, 3408. https://doi.org/10.3390/cancers17213408
Wu X, Dai W. Beyond Imaging: Integrating Radiomics, Genomics, and Multi-Omics for Precision Breast Cancer Management. Cancers. 2025; 17(21):3408. https://doi.org/10.3390/cancers17213408
Chicago/Turabian StyleWu, Xiaorong, and Wei Dai. 2025. "Beyond Imaging: Integrating Radiomics, Genomics, and Multi-Omics for Precision Breast Cancer Management" Cancers 17, no. 21: 3408. https://doi.org/10.3390/cancers17213408
APA StyleWu, X., & Dai, W. (2025). Beyond Imaging: Integrating Radiomics, Genomics, and Multi-Omics for Precision Breast Cancer Management. Cancers, 17(21), 3408. https://doi.org/10.3390/cancers17213408