CTRP6 in Cancer: Mechanistic Insights and Therapeutic Potential
Simple Summary
Abstract
1. Introduction
2. CTRP6 Across Cancer Types
2.1. CTRP6 in Hepatocellular Carcinoma
2.2. CTRP6 in Lung Cancer
2.3. CTRP6 in Other Types of Cancer
3. Molecular Mechanisms of CTRP6 in Cancer
3.1. Angiogenesis
3.2. Ferroptosis
3.3. Cell Proliferation and Apoptosis
3.4. Cell Migration and Invasion
3.5. Inflammation
4. Signaling Mechanisms of CTRP6 in Cancer
4.1. PI3K/AKT Pathway
4.2. MAPK (MEK/ERK) Pathway
5. Therapeutic Potential of CTRP6 in Cancer
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CTRP | C1q/TNF-related protein |
HCC | hepatocellular carcinoma |
NSCLC | non-small cell lung carcinoma |
LUAD | lung adenocarcinoma |
GC | gastric cancer |
OSCC | oral squamous cell carcinoma |
HNSCC | head and neck squamous cell carcinoma |
ccRCC | clear cell renal cell carcinoma |
BC | bladder cancer |
NPC | nasopharyngeal carcinoma |
UCS | uterine carcinosarcoma |
References
- Liu, Y.; Zheng, C.; Huang, Y.; He, M.; Xu, W.W.; Li, B. Molecular Mechanisms of Chemo- and Radiotherapy Resistance and the Potential Implications for Cancer Treatment. MedComm 2021, 2, 315–340. [Google Scholar] [CrossRef]
- Zafar, A.; Khatoon, S.; Khan, M.J.; Abu, J.; Naeem, A. Advancements and Limitations in Traditional Anti-Cancer Therapies: A Comprehensive Review of Surgery, Chemotherapy, Radiation Therapy, and Hormonal Therapy. Discov. Oncol. 2025, 16, 607. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Veena, M.S.; Shin, D.S. Key Players of the Immunosuppressive Tumor Microenvironment and Emerging Therapeutic Strategies. Front. Cell Dev. Biol. 2022, 10, 830208. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A. Adaptive Immune Resistance: How Cancer Protects from Immune Attack. Cancer Discov 2015, 5, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Janani, G.; Girigoswami, A.; Girigoswami, K. Advantages of Nanomedicine over the Conventional Treatment in Acute Myeloid Leukemia. J. Biomater. Sci. Polym. Ed. 2024, 35, 415–441. [Google Scholar] [CrossRef]
- Venturini, J.; Chakraborty, A.; Baysal, M.A.; Tsimberidou, A.M. Developments in Nanotechnology Approaches for the Treatment of Solid Tumors. Exp. Hematol. Oncol. 2025, 14, 76. [Google Scholar] [CrossRef]
- Wong, G.W.; Krawczyk, S.A.; Kitidis-Mitrokostas, C.; Revett, T.; Gimeno, R.; Lodish, H.F. Molecular, Biochemical and Functional Characterizations of C1q/TNF Family Members: Adipose-Tissue-Selective Expression Patterns, Regulation by PPAR-Gamma Agonist, Cysteine-Mediated Oligomerizations, Combinatorial Associations and Metabolic Functions. Biochem. J. 2008, 416, 161–177. [Google Scholar] [CrossRef]
- Wong, G.W.; Wang, J.; Hug, C.; Tsao, T.S.; Lodish, H.F. A Family of Acrp30/Adiponectin Structural and Functional Paralogs. Proc. Natl. Acad. Sci. USA 2004, 101, 10302–10307. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, D.; Huang, R.; Shen, Z.; Wu, P.; Ma, Z. Unveiling the Roles of CTRP Family in Cardiac Remodeling. J. Mol. Med 2025, 103, 935–950. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang-Sun, Z.-Y.; Xue, C.-X.; Li, X.-Y.; Ren, J.; Jiang, Y.-T.; Liu, T.; Yao, H.-R.; Zhang, J.; Gou, T.-T.; et al. CTRP Family in Diseases Associated with Inflammation and Metabolism: Molecular Mechanisms and Clinical Implication. Acta. Pharmacol. Sin. 2023, 44, 710–725. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhao, J.-L.; Lau, W.B.; Liu, J.; Guo, R.; Ma, X.-L. Adipose Tissue-Derived Cytokines, CTRPs as Biomarkers and Therapeutic Targets in Metabolism and the Cardiovascular System. Vessel Plus 2017, 1, 202–212. [Google Scholar] [CrossRef]
- Seldin, M.M.; Tan, S.Y.; Wong, G.W. Metabolic Function of the CTRP Family of Hormones. Rev. Endocr. Metab. Disord. 2014, 15, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Schaffler, A.; Buechler, C. CTRP Family: Linking Immunity to Metabolism. Trends Endocrinol. Metab 2012, 23, 194–204. [Google Scholar] [CrossRef]
- Schanbacher, C.; Hermanns, H.M.; Lorenz, K.; Wajant, H.; Lang, I. Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling. Biomedicines 2023, 11, 559. [Google Scholar] [CrossRef]
- Kong, M.; Gao, Y.; Guo, X.; Xie, Y.; Yu, Y. Role of the CTRP Family in Tumor Development and Progression. Oncol. Lett. 2021, 22, 723. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Xie, T.; Huang, X.; Wang, B.; Tian, Y.; Yuan, Y. C1QTNF6 Is a Prognostic Biomarker and Related to Immune Infiltration and Drug Sensitivity: A Pan-Cancer Analysis. Front. Pharmacol. 2022, 13, 855485. [Google Scholar] [CrossRef]
- Senthil Kumar, J.; Mehboob, M.Z.; Lei, X. Exploring CTRP6: A Biomarker and Therapeutic Target in Metabolic Diseases. Am. J. Physiol. Metab. 2025, 328, E139–E147. [Google Scholar] [CrossRef]
- Bartha, Á.; Győrffy, B. TNMplot.Com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int. J. Mol. Sci. 2021, 22, 2622. [Google Scholar] [CrossRef]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef]
- Cai, S.; Huang, J.; Fan, H.; Sui, Z.; Huang, C.; Deng, Y.; Jia, R.; Wang, L.; Ma, K.; Guo, X.; et al. Targeted Tumor Cell-Intrinsic CTRP6 Biomimetic Codelivery Synergistically Amplifies Ferroptosis and Immune Activation to Boost Anti-PD-L1 Immunotherapy Efficacy in Lung Cancer. J. Nanobiotechnol. 2025, 23, 409. [Google Scholar] [CrossRef]
- Zhang, A.; Kong, M.; Zhang, X.; Pei, Z. Mechanism of Action of CTRP6 in the Regulation of Tumorigenesis in the Digestive System. Oncol. Lett. 2022, 24, 391. [Google Scholar] [CrossRef]
- Hu, B.; Qian, X.; Qian, P.; Xu, G.; Jin, X.; Chen, D.; Xu, L.; Tang, J.; Wu, W.; Li, W.; et al. Advances in the Functions of CTRP6 in the Development and Progression of the Malignancy. Front. Genet. 2022, 13, 985077. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for Hepatocellular Carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Sinn, D.H. Multidisciplinary Approach for Hepatocellular Carcinoma Patients: Current Evidence and Future Perspectives. J. Liver Cancer 2024, 24, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Adachi, Y.; Nagayama, T. Expression of a Secretory Protein C1qTNF6, a C1qTNF Family Member, in Hepatocellular Carcinoma. Anal. Cell. Pathol. 2011, 34, 113–121. [Google Scholar] [CrossRef]
- Wan, X.; Zheng, C.; Dong, L. Inhibition of CTRP6 Prevented Survival and Migration in Hepatocellular Carcinoma through Inactivating the AKT Signaling Pathway. J. Cell. Biochem. 2019, 120, 17059–17066. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y.; Feng, G. Predicting the Survival of Patients with Lung Adenocarcinoma Using a Four-Gene Prognosis Risk Model. Oncol. Lett. 2019, 18, 535–544. [Google Scholar] [CrossRef]
- Han, M.; Wang, B.; Zhu, M.; Zhang, Y. C1QTNF6 as a Novel Biomarker Regulates Cellular Behaviors in A549 Cells and Exacerbates the Outcome of Lung Adenocarcinoma Patients. In Vitro Cell. Dev. Biol. Anim. 2019, 55, 614–621. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, G. C1QTNF6 Regulates Cell Proliferation and Apoptosis of NSCLC in Vitro and in Vivo. Biosci. Rep. 2021, 41, BSR20201541. [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, C.; Liu, H.; Kong, F.; Kong, S.; Chen, F.; Tian, Y. Significance of Macrophage Infiltration in the Prognosis of Lung Adenocarcinoma Patients Evaluated by scRNA and bulkRNA Analysis. Front. Immunol. 2022, 13, 1028440. [Google Scholar] [CrossRef]
- Chu, X.; Wang, W.; Sun, Z.; Bao, F.; Feng, L. An N(6)-Methyladenosine and Target Genes-Based Study on Subtypes and Prognosis of Lung Adenocarcinoma. Math. Biosci. Eng. 2022, 19, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, J.; Li, Q.; Xiao, L.; Feng, X.; Niu, Q.; Zhao, L.; Ma, W.; Ye, H. A Novel Secreted Protein-Related Gene Signature Predicts Overall Survival and Is Associated with Tumor Immunity in Patients With Lung Adenocarcinoma. Front. Oncol. 2022, 12, 870328. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Chu, L.; Kang, Y. Angiogenic Factor-Based Signature Predicts Prognosis and Immunotherapy Response in Non-Small-Cell Lung Cancer. Front. Genet. 2022, 13, 894024. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Qu, H.X.; Cui, L.; Meng, X.Y.; Wang, Z.J.; Cui, Y.X.; Yu, Y.P.; Wang, D.; Jiang, X.J. C1QTNF6 Is Overexpressed in Gastric Carcinoma and Contributes to the Proliferation and Migration of Gastric Carcinoma Cells. Int. J. Mol. Med. 2019, 43, 621–629. [Google Scholar] [CrossRef]
- Iwata, Y.; Yasufuku, I.; Saigo, C.; Kito, Y.; Takeuchi, T.; Yoshida, K. Anti-Fibrotic Properties of an Adiponectin Paralog Protein, C1q/TNF-Related Protein 6 (CTRP6), in Diffuse Gastric Adenocarcinoma. J. Cancer 2021, 12, 1161–1168. [Google Scholar] [CrossRef]
- Hano, K.; Hatano, K.; Saigo, C.; Kito, Y.; Shibata, T.; Takeuchi, T. An Adiponectin Paralog Protein, CTRP6 Decreased the Proliferation and Invasion Activity of Oral Squamous Cell Carcinoma Cells: Possible Interaction with Laminin Receptor Pathway. Mol. Biol. Rep. 2019, 46, 4967–4973. [Google Scholar] [CrossRef]
- Song, X.; Li, L.; Shi, L.; Liu, X.; Qu, X.; Wei, F.; Wang, K. C1QTNF6 Promotes Oral Squamous Cell Carcinoma by Enhancing Proliferation and Inhibiting Apoptosis. Cancer Cell Int. 2021, 21, 666. [Google Scholar] [CrossRef]
- Huang, F.; Qi, H. MiR-29c-3p/C1QTNF6 Restrains the Angiogenesis and Cell Proliferation, Migration and Invasion in Head and Neck Squamous Cell Carcinoma. Mol. Biotechnol. 2023, 65, 913–921. [Google Scholar] [CrossRef]
- Lin, W.; Chen, X.; Chen, T.; Liu, J.; Ye, Y.; Chen, L.; Qiu, X.; Cheng, J.C.-H.; Zhang, L.; Wu, J.; et al. C1QTNF6 as a Novel Diagnostic and Prognostic Biomarker for Clear Cell Renal Cell Carcinoma. DNA Cell Biol. 2020, 39, 1000–1011. [Google Scholar] [CrossRef]
- Zhu, X.; Tong, H.; Gao, S.; Yin, H.; Zhu, G.; Li, X.; He, W.; Gou, X. C1QTNF6 Overexpression Acts as a Predictor of Poor Prognosis in Bladder Cancer Patients. Biomed Res. Int. 2020, 2020, 7139721. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, M.Z.; Hamid, A.; Kumar, J.S.; Lei, X. Comprehensive Characterization of Pathogenic Missense CTRP6 Variants and Their Association with Cancer. BMC Cancer 2025, 25, 304. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, C.; Zhuang, J.L.; Ding, C.; Wang, Y. A Combined Approach Identifies Three mRNAs That Are Down-Regulated by microRNA-29b and Promote Invasion Ability in the Breast Cancer Cell Line MCF-7. J. Cancer Res. Clin. Oncol. 2012, 138, 2127–2136. [Google Scholar] [CrossRef]
- Hamed, S.F.; Hassan, N.A.; Shouman, S.A.; Tohamy, T.A.; Fakhry, H.; Radwan, E. Down Regulation of C1q Tumor Necrosis Factor-Related Protein 6 Is Associated with Increased Risk of Breast Cancer. Arch. Biochem. Biophys. 2024, 757, 110039. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in Cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J. Clin. Med. 2020, 9, 84. [Google Scholar] [CrossRef]
- Karar, J.; Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, X.; Xie, F.; Zhang, L.; Yan, H.; Huang, J.; Zhang, C.; Zhou, F.; Chen, J.; Zhang, L. Ferroptosis in Cancer and Cancer Immunotherapy. Cancer Commun. 2022, 42, 88–116. [Google Scholar] [CrossRef]
- Bebber, C.M.; Müller, F.; Prieto Clemente, L.; Weber, J.; von Karstedt, S. Ferroptosis in Cancer Cell Biology. Cancers 2020, 12, 164. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. Targeting Ferroptosis as a Vulnerability in Cancer. Nat. Rev. Cancer 2022, 22, 381–396. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, B.; Huang, C.; Deng, Y.; Wang, C.; Yang, Y.; Xiang, Z.; Ni, Y.; Wang, Z.; Wang, L.; et al. CTRP6 Protects against Ferroptosis to Drive Lung Cancer Progression and Metastasis by Destabilizing SOCS2 and Augmenting the xCT/GPX4 Pathway. Cancer Lett 2023, 579, 216465. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, P.; Chen, K.; Zhou, X.; Tao, H.; Peng, F.; Tang, Z.; Du, M.; Fan, Y.; He, X.; et al. N6-Methyladenosine Regulated Ctrp6 Attenuates Ferroptosis in Radio-Recalcitrant Nasopharyngeal Carcinoma. Available online: https://ssrn.com/abstract=5289494 (accessed on 25 August 2025). [CrossRef]
- Evan, G.I.; Vousden, K.H. Proliferation, Cell Cycle and Apoptosis in Cancer. Nature 2001, 411, 342–348. [Google Scholar] [CrossRef]
- Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; et al. Sustained Proliferation in Cancer: Mechanisms and Novel Therapeutic Targets. Semin. Cancer Biol 2015, 35, S25–S54. [Google Scholar] [CrossRef]
- Lin, G.; Lin, L.; Lin, H.; Xu, Y.; Chen, W.; Liu, Y.; Wu, J.; Chen, S.; Lin, Q.; Zeng, Y.; et al. C1QTNF6 Regulated by miR-29a-3p Promotes Proliferation and Migration in Stage I Lung Adenocarcinoma. BMC Pulm. Med. 2022, 22, 285. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Zhang, X.; Han, Y.; Tan, M.; Fan, J.; Du, J.; Fan, Y.; Zhao, X. The Biomechanical Signature of Tumor Invasion. Genes Dis. 2025, 101771. [Google Scholar] [CrossRef]
- van Zijl, F.; Krupitza, G.; Mikulits, W. Initial Steps of Metastasis: Cell Invasion and Endothelial Transmigration. Mutat. Res. 2011, 728, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Moghbeli, M. PI3K/AKT Pathway as a Pivotal Regulator of Epithelial-Mesenchymal Transition in Lung Tumor Cells. Cancer Cell Int. 2024, 24, 165. [Google Scholar] [CrossRef] [PubMed]
- Sever, R.; Brugge, J.S. Signal Transduction in Cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a006098. [Google Scholar] [CrossRef]
- Garg, M. Epithelial-Mesenchymal Transition-Activating Transcription Factors-Multifunctional Regulators in Cancer. World J. Stem Cells 2013, 5, 188–195. [Google Scholar] [CrossRef]
- Gonzalez, D.M.; Medici, D. Signaling Mechanisms of the Epithelial-Mesenchymal Transition. Sci. Signal. 2014, 7, re8. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A.; Andoh, A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025, 14, 488. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Sarver, D.C.; Lei, X.; Sahagun, A.; Zhong, J.; Na, C.H.; Rudich, A.; Wong, G.W. CTRP6 Promotes the Macrophage Inflammatory Response, and Its Deficiency Attenuates LPS-Induced Inflammation. J. Biol. Chem. 2024, 300, 105566. [Google Scholar] [CrossRef]
- Lei, X.; Seldin, M.M.; Little, H.C.; Choy, N.; Klonisch, T.; Wong, G.W. C1q/TNF-Related Protein 6 (CTRP6) Links Obesity to Adipose Tissue Inflammation and Insulin Resistance. J. Biol. Chem. 2017, 292, 14836–14850. [Google Scholar] [CrossRef]
- Bollrath, J.; Greten, F.R. IKK/NF-κB and STAT3 Pathways: Central Signalling Hubs in Inflammation-mediated Tumour Promotion and Metastasis. EMBO Rep. 2009, 10, 1314–1319. [Google Scholar] [CrossRef]
- Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The Relation between PI3K/AKT Signalling Pathway and Cancer. Gene 2019, 698, 120–128. [Google Scholar] [CrossRef]
- Fruman, D.A.; Rommel, C. PI3K and Cancer: Lessons, Challenges and Opportunities. Nat. Rev. Drug Discov. 2014, 13, 140–156. [Google Scholar] [CrossRef]
- Mayer, I.A.; Arteaga, C.L. The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu. Rev. Med. 2016, 67, 11–28. [Google Scholar] [CrossRef]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef]
- Nicolaus, H.F.; Klonisch, T.; Paulsen, F.; Garreis, F. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro. Int. J. Mol. Sci. 2023, 24, 6839. [Google Scholar] [CrossRef]
- Wu, W.; Sun, Y.; Zhao, C.; Zhao, C.; Chen, X.; Wang, G.; Pang, W.; Yang, G. Lipogenesis in Myoblasts and Its Regulation of CTRP6 by AdipoR1/Erk/PPAR Signaling Pathway. Acta Biochim. Biophys. Sin. 2016, 48, 509–519. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef]
Cancer Type | CTRP6 Expression | Role in Tumor Biology | Clinical Relevance |
---|---|---|---|
Hepatocellular carcinoma (HCC) | Upregulated | Promotes angiogenesis and survival via AKT signaling [25,26] | Associated with tumor vascularization |
Lung cancer (LUAD/NSCLC) | Upregulated | Enhances proliferation, migration, invasion; inhibits ferroptosis [20,28,29] | Poor prognosis, therapy resistance |
Gastric cancer (GC) | Upregulated/context-dependent | Promotes or suppresses proliferation and fibrosis depending on subtype [35,36] | Prognostic marker; conflicting results |
Oral/Head and neck squamous cell carcinoma (OSCC/HNSCC) | Variable | Dual role: suppresses invasion [37] or promotes proliferation [38,39] | Context-dependent behavior |
Clear cell renal cell carcinoma (ccRCC) | Upregulated | Promotes metastasis and progression [40] | Correlates with TNM stage and tumor grade |
Bladder cancer (BC) | Upregulated | Enhances migration and invasion [41] | Predicts poor prognosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehboob, M.Z.; Lei, X. CTRP6 in Cancer: Mechanistic Insights and Therapeutic Potential. Cancers 2025, 17, 3409. https://doi.org/10.3390/cancers17213409
Mehboob MZ, Lei X. CTRP6 in Cancer: Mechanistic Insights and Therapeutic Potential. Cancers. 2025; 17(21):3409. https://doi.org/10.3390/cancers17213409
Chicago/Turabian StyleMehboob, Muhammad Zubair, and Xia Lei. 2025. "CTRP6 in Cancer: Mechanistic Insights and Therapeutic Potential" Cancers 17, no. 21: 3409. https://doi.org/10.3390/cancers17213409
APA StyleMehboob, M. Z., & Lei, X. (2025). CTRP6 in Cancer: Mechanistic Insights and Therapeutic Potential. Cancers, 17(21), 3409. https://doi.org/10.3390/cancers17213409