Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment
Simple Summary
Abstract
1. Introduction
2. Intracellular Regucalcin Regulates Several Signaling Pathways
3. The Suppressive Role of Intracellular Regucalcin in Cell Growth
4. The Role of Intracellular Regucalcin as a Suppressor of Human Cancer
5. Extracellular Regucalcin Suppresses Human Cancer Cell Growth
5.1. Liver Cancer Cells
5.2. Pancreatic Cancer Cells
5.3. Breast Cancer Cells
5.4. Prostate Cancer Cells
5.5. Ovarian Cancer Cells
5.6. Osteosarcoma Cells
5.7. Glioblastoma Cells
6. Extracellular Regucalcin Levels Are Attenuated by Several Factors
7. Conclusions and Perspectives
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasmussen, J. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 1970, 170, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.Y. Calmodulin plays a pivotal role in cellular regulation. Science 1980, 202, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Nishizuka, Y. Studies and perspectives of protein kinase C. Science 1986, 233, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.R.; Monck, J.R. Hormonal effects on cellular Ca2+ fluxes. Annu. Rev. Physiol. 1989, 51, 107–124. [Google Scholar] [CrossRef]
- Li, W.; Ye, C.; He, M.; Ko, W.K.W.; Cheng, C.H.K.; Chan, Y.W.; Wong, A.O.L. Differential involvement of cAMP/PKA-, PLC/PKC- and Ca2+/calmodulin-dependent pathways in GnRH-induced prolactin secretion and gene expression in grass carp pituitary cells. Front. Endocrinol. 2024, 15, 1399274. [Google Scholar] [CrossRef]
- Elies, J.; Yanez, M.; Pereira, T.M.C.; Gil-Longo, J.; MacDougall, D.A.; Campos-Toimil, M. An update to calcium binding proteins. Adv. Exp. Med. Biol. 2020, 1131, 183–213. [Google Scholar]
- Yamaguchi, M.; Yamamoto, T. Purification of calcium binding substance from soluble fraction of normal rat liver. Chem. Pharm. Bull. 1978, 26, 1915–1918. [Google Scholar] [CrossRef]
- Yamaguchi, M. Role of regucalcin in calcium signaling. Life Sci. 2000, 66, 1769–1780. [Google Scholar] [CrossRef]
- Shimokawa, N.; Yamaguchi, M. Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett. 1993, 327, 251–255. [Google Scholar] [CrossRef]
- Fujita, T.; Shirasawa, T.; Uchida, K.; Maruyama, N. Isolation of cDNA clone encoding rat senescence marker protein-30 (SMP30) and its tissue distribution. Biochim. Biophys. Acta 1992, 1132, 297–305. [Google Scholar] [CrossRef]
- Misawa, H.; Yamaguchi, M. The gene of Ca2+-binding protein regucalcin is highly conserved in vertebrate species. Int. J. Mol. Med. 2000, 6, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, N.; Matsuda, Y.; Yamaguchi, M. Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol. Cell. Biochem. 1995, 151, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Makino, R.; Shimokawa, N. The 5’end seguences and exon organization in rat regucalcin gene. Mol. Cell. Biochem. 1996, 165, 145–150. [Google Scholar] [CrossRef]
- Thiselton, D.L.; McDowall, J.; Brandau, O.; Ramser, J.; d’Esposito, F.; Bhattacharga, S.S.; Ross, M.T.; Hardcastle, A.J.; Meindl, A. An integrated, functionally annotated gene map of the DXS8026-ELK1 internal on human Xp11.3-Xp11.23: Potential hotspot for neurogenetic disorders. Genomics 2002, 79, 560–572. [Google Scholar] [CrossRef]
- Murata, T.; Yamaguchi, M. Ca2+ administration stimulates the binding of AP-1 factor to the 5′-flanking region of the rat gene for the Ca2+-binding protein regucalcin. Biochem. J. 1998, 329, 157–163. [Google Scholar] [CrossRef]
- Murata, T.; Yamaguchi, M. Promoter characterization of the rat gene for Ca2+- binding protein regucalcin. Transcriptional regulation by signaling factors. J. Biol. Chem. 1999, 274, 1277–1285. [Google Scholar] [CrossRef]
- Misawa, H.; Yamaguchi, M. Molecular cloning and sequencing of the cDNA coding for a novel regucalcin gene promoter region-related protein in rat, mouse and human liver. Int. J. Mol. Med. 2001, 8, 513–520. [Google Scholar] [CrossRef]
- Yamaguchi, M. Novel protein RGPR-p117: Its role as the regucalcin gene transcription factor. Mol. Cell. Biochem. 2009, 327, 53–63. [Google Scholar] [CrossRef]
- Nejak-Bowen, K.N.; Zeng, G.; Tan, X.; Cieply, B.; Monga, S.P. β-Catenin regulates vitamic C biosynthesis and cell survival in murine liver. J. Biol. Chem. 2009, 284, 28115–28127. [Google Scholar] [CrossRef]
- Yamaguchi, M. The transcriptional regulation of regucalcin gene expression. Mol. Cell. Biochem. 2011, 346, 147–171. [Google Scholar] [CrossRef]
- Yamaguchi, M. Role of regucalcin in maintaining cell homeostasis and function (Review). Int. J. Mol. Med. 2005, 15, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Regucalcin and cell regulation: Role as a suppressor in cell signaling. Mol. Cell. Biochem. 2011, 353, 101–137. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.; Maia, C.J.; Vaz, C.; Correia, S.; Socorro, S. The diverse roles of calcium-binding protein regucalcin in cell biology: From tissue expression and signalling to disease. Cell. Mol. Life Sci. 2014, 71, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Role of regucalcin in cell nuclear regulation: Involvement as a transcription factor. Cell Tissue Res. 2013, 354, 331–341. [Google Scholar] [CrossRef]
- Yamaguchi, M. Suppressive role of regucalcin in liver cell proliferation: Involvement in carcinogenesis. Cell Prolif. 2013, 46, 243–253. [Google Scholar] [CrossRef]
- Yamaguchi, M. The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways. Apoptosis 2013, 18, 1145–1153. [Google Scholar] [CrossRef]
- Yamaguchi, M. Regucalcin and metabolic disorder: Osteoporosis and hyperlipidemia are induced in regucalcin transgenic rats. Mol. Cell. Biochem. 2010, 341, 119–133. [Google Scholar] [CrossRef]
- Laurentino, S.S.; Correia, S.; Cavaco, J.E.; Oliveira, P.F.; de Sousa, M.; Barros, A.; Socorro, S. Regucalcin, a calcium-binding protein with a role in male reproduction. Mol. Hum. Reprod. 2012, 18, 161–170. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Involvement of regucalcin in lipid metabolism and diabetes. Metabolism 2013, 62, 1045–1051. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, R. Functional pleiotropy of calcium binding protein Regucalcin in signaling and diseases. Cell Signal. 2023, 102, 110533. [Google Scholar] [CrossRef]
- Yamaguchi, M. Regulatory role of regucalcin in heart calcium signaling: Insight into cardiac failure (Review). Biomed Rep. 2014, 2, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Vaz, C.V.; Correia, S.; Cardoso, H.J.; Figueira, M.I.; Marques, R.; Maia, C.J.; Socorro, S. The emerging role of regucalcin as a tumor suppressor: Facts and view. Curr. Mol. Med. 2016, 16, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Involvement of regucalcin as a suppressor protein in human carcinogenesis: Insight into the gene therapy. J. Cancer Res. Clin. Oncol. 2015, 141, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Regucalcin is a potential regulator in human cancer: Aiming to expand into cancer therapy. Cancers 2023, 15, 5489. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Weitzmann, M.N.; El-Rayes, B.F.; Shoji, M.; Murata, T. Prolonged survival in hepatocarcinoma patients with increased regucalcin. gene expression: HepG2 cell proliferation is suppressed by overexpression of. regucalcin in vitro. Int. J. Oncol. 2016, 49, 1686–1694. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Weitzmann, M.N.; Shoji, M.; Murata, T. Prolonged. survival in pancreatic cancer patients with increased regucalcin gene expression: Overexpression of regucalcin suppresses the proliferation in human pancreatic cancer MIA PaCa-2 cells in vitro. Int. J. Oncol. 2016, 48, 1955–1964. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Weitzmann, M.N.; El-Rayes, B.F.; Shoji, M.; Murata, T. Increased regucalcin gene expression extends survival in breast cancer patients: Overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro. Int. J. Oncol. 2016, 49, 812–822. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Shoji, M.; Weitzmann, M.N.; Murata, T. Survival of lung cancer patients is prolonged with higher regucalcin gene expression: Suppressed proliferation of lung adenocarcinoma A549 cells in vitro. Mol. Cell. Biochem. 2017, 430, 37–46. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Murata, T. Prolonged survival of colorectal cancer patients is associated with higher regucalcin gene expression: Overexpressed regucalcin suppresses growth of human colorectal carcinoma cells in vitro. Int. J. Oncol. 2018, 53, 1313–1322. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Hankinson, O.; Murata, T. Prolonged survival of renal cancer patients are concomitant with a higher regucalcin gene expression in the tumor tissues: Overexpression of regucalcin depresses the growth of human renal cell carcinoma cells in vitro. Int. J. Oncol. 2019, 54, 188–198. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Murata, T.; Ramos, J.W. Progression-free survival of prostate cancer patients are prolonged with a higher regucalcin expression in the tumor tissues: Overexpressed regucalcin suppresses the growth and bone metastatic activity of PC-3 cells in vitro. Transl. Oncol. 2021, 14, 100955. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, N.Z.; Yamaguchi, M. Regucalcin downregulation in human cancer tissue. Life Sci. 2024, 340, 122448. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Oishi, K.; Isogai, M. Expression of hepatic calcium-binding protein regucalcin mRNA is elevated by refeeding of fasted rats: Involvement of glucose, insulin and calcium as stimulating factors. Mol. Cell. Biochem. 1995, 142, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Isogai, M.; Shimokawa, N.; Yamaguchi, M. Hepatic calcium-binding protein regucalcin is released into the serum of rats administered orally carbon tetrachloride. Mol. Cell. Biochem. 1994, 131, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Regucalcin as a potential biomarker for metabolic and neuronal diseases. Mol. Cell. Biochem. 2014, 391, 157–166. [Google Scholar] [CrossRef]
- Sripusanapan, A.; Yanpiset, P.; Sriwichaiin, S.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Hyperpolarization-activated cyclic nucleotide-gated channel inhibitor in myocardial infarction: Potential benefits beyond heart rate modulation. Acta Physiol. 2024, 240, e14085. [Google Scholar] [CrossRef]
- Kang, J.H.; Kawano, T.; Murata, M.; Toita, R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci. 2024, 336, 122309. [Google Scholar] [CrossRef]
- Bergantin, L.B. Debating the “bidirectional link” between diabetes and depression through the Ca2+/cAMP signalling: Off-label effects of Ca2+ channel blockers. Pharmacol. Res. 2019, 141, 298–302. [Google Scholar] [CrossRef]
- Haynes, V.; Giulivi, C. Calcium-dependent interaction of nitric oxide synthase with cytochrome c oxidase: Implications for brain bioenergetics. Brain Sci. 2023, 13, 1534. [Google Scholar] [CrossRef]
- Semenikhina, M.; Stefanenko, M.; Spires, D.R.; Ilatovskaya, D.V.; Palygin, O. Nitric-oxide-mediated signaling in podocyte pathophysiology. Biomolecules 2022, 12, 745. [Google Scholar] [CrossRef]
- Takata, T.; Araki, S.; Tsuchiya, Y.; Watanabe, Y. Oxidative stress orchestrates MAPK and nitric oxide synthase signal. Int. J. Mol. Sci. 2020, 21, 8750. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Dinenno, F.A.; Tang, P.; Kontaridis, M.I. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: From mechanisms to therapeutics. Front. Cardiovasc. Med. 2024, 11, 1445739. [Google Scholar] [CrossRef] [PubMed]
- Attachaipanich, T.; Chattipakorn, S.C.; Chattipakorn, N. Cardiovascular toxicities by calcineurin inhibitors: Cellular mechanisms behind clinical manifesttations. Acta Physiol. 2024, 240, 214199. [Google Scholar] [CrossRef]
- Omura, M.; Yamaguchi, M. Inhibition of Ca2+/calmodulin-dependent phosphatase activity by regucalcin in rat liver cytosol: Involvement of calmodulin binding. J. Cell. Biochem. 1998, 71, 140–148. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Mori, S. Effect of calcium-binding protein regucalcin on hepatic protein synthesis: Inhibition of aminoacyl-tRNA synthetase activity. Mol. Cell. Biochem. 1990, 99, 25–32. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Nishina, N. Characterization of regucalcin effect on proteolytic activity in rat liver cytosol: Relation to cysteinyl-proteases. Mol. Cell. Biochem. 1995, 148, 67–72. [Google Scholar] [CrossRef]
- Baba, T.; Yamaguchi, M. Stimulatory effect of regucalcin on proteolytic activity is impaired in the kidney cortex cytosol of rats with saline ingestion. Mol. Cell. Biochem. 2000, 206, 1–6. [Google Scholar] [CrossRef]
- Omura, M.; Yamaguchi, M. Regulation of protein phosphatase activity by regucalcin localization in rat liver nuclei. J. Cell. Biochem. 1999, 75, 437–445. [Google Scholar] [CrossRef]
- Tsurusaki, Y.; Misawa, H.; Yamaguchi, M. Translocation of regucalcin to rat liver nucleus: Involvement of nuclear protein kinase and protein phosphatase regulation. Int. J. Mol. Med. 2000, 6, 655–660. [Google Scholar] [CrossRef]
- Boynton, A.L.; Whitfield, J.F.; MacManus, J.P. Calmodulin stimulates DNA synthesis by rat liver cells. Biochem. Biophys Res. Commun. 1980, 95, 745–749. [Google Scholar] [CrossRef]
- Pujol, M.J.; Soriano, M.; Alique, R.; Carafoli, E.; Bachs, O. Effect of alpha-adrenergic blockers on calmodulin associate with the nuclear matrix of rat liver cells during proliferative activation. J. Biol. Chem. 1989, 264, 18863–18865. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Yamaguchi, M. Nuclear localization of regucalcin is enhanced in culture with protein kinase C activation in cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int. J. Mol. Med. 2008, 21, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.P.; McConkey, D.J.; Nicotera, P.; Orrenius, S. Calcium activated DNA fragmentation in rat liver nuclei. J. Biol. Chem. 1989, 264, 6398–6403. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Sakurai, T. Inhibitory effect of calcium-binding protein regucalcin on Ca2+-activated DNA fragmentation in rat liver nuclei. FEBS Lett. 1991, 279, 281–284. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kanayama, Y. Calcium-binding protein regucalcin inhibits deoxyribonucleic acid synthesis in the nuclei of regenerating rat liver. Mol. Cell. Biochem. 1996, 162, 121–126. [Google Scholar] [CrossRef]
- Tsurusaki, Y.; Yamaguchi, M. Suppressive role of endogenous regucalcin in the enhancement of deoxyribonucleic acid synthesis activity in the nucleus of regenerating rat liver. J. Cell. Biochem. 2002, 85, 516–552. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ueoka, S. Inhibitory effect of calcium-binding protein regucalcin on ribonucleic acid synthesis in isolated rat liver nuclei. Mol. Cell. Biochem. 1997, 173, 169–175. [Google Scholar] [CrossRef]
- Tsurusaki, Y.; Yamaguchi, M. Role of endogenous regucalcin in nuclear regulation of regenerating rat liver: Suppression of the enhanced ribonucleic acid synthesis activity. J. Cell. Biochem. 2002, 87, 450–457. [Google Scholar] [CrossRef]
- Nakajima, M.; Murata, T.; Yamaguchi, M. Expression of calcium-binding protein regucalcin mRNA in the cloned rat hepatoma cells (H4-II-E) is stimulated through Ca2+ signaling factors: Involvement of protein kinase C. Mol. Cell. Biochem. 1999, 198, 101–107. [Google Scholar] [CrossRef]
- Murata, T.; Shinya, N.; Yamaguchi, M. Expression of calcium-binding protein regucalcin mRNA in the cloned human hepatoma cells (Hep G2): Stimulation by insulin. Mol. Cell. Biochem. 1997, 175, 163–168. [Google Scholar] [CrossRef]
- Izumi, T.; Yamaguchi, M. Overexpression of regucalcin suppresses cell death in cloned rat hepatoma H4-II-E cells induced by tumor necrosis factor-α or thapsigargin. J. Cell. Biochem. 2004, 92, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Izumi, T.; Yamaguchi, M. Overexpression of regucalcin suppresses cell death and apoptosis in cloned rat hepatoma H4-II-E cells induced by lipopolysaccharide, PD98059, dibucaine, or Bay K 8644. J. Cell. Biochem. 2004, 93, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Yamaguchi, M. Over expression of regucalcin suppresses apoptotic cell death in cloned normal rat kidney proximal tubular epithelial NRK52E cells: Change in apoptosis-related gene expression. J. Cell. Biochem. 2005, 96, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, S.; Yamaguchi, M. Suppressive role of endogenous regucalcin in the enhancement of protein kinase activity with proliferation of cloned rat hepatoma cells (H4-II-E). J. Cell. Biochem. 2001, 36 (Suppl. 36), 12–18. [Google Scholar] [CrossRef]
- Inagaki, S.; Yamaguchi, M. Regulatory role of endogenous regucalcin in the enhancement of nuclear deoxyribonucleic acid synthesis with proliferation of cloned rat hepatoma cells (H4-II-E). J. Cell. Biochem. 2001, 82, 704–711. [Google Scholar] [CrossRef]
- Inagaki, S.; Misawa, H.; Yamaguchi, M. Role of endogenous regucalcin in protein tyrosine phosphatase regulation in the cloned rat hepatoma cells (H4-II-E). Mol. Cell. Biochem. 2000, 213, 43–50. [Google Scholar] [CrossRef]
- Inagaki, S.; Yamaguchi, M. Enhancement of protein tyrosine phosphatase activity in the proliferation of cloned rat hepatoma H4-II-E cells: Suppressive role of endogenous regucalcin. Int. J. Mol. Med. 2000, 6, 323–328. [Google Scholar] [CrossRef]
- Misawa, H.; Inagaki, S.; Yamaguchi, M. Suppression of cell proliferation and deoxyribonucleic acid synthesis in cloned rat hepatoma H4-II-E cells overexpressing regucalcin. J. Cell. Biochem. 2002, 84, 143–149. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Daimon, Y. Overexpression of regucalcin suppresses cell proliferation in cloned rat hepatoma H4-II-E cells: Involvement of intracellular signaling factors and cell cycle-related genes. J. Cell. Biochem. 2005, 95, 1169–1177. [Google Scholar] [CrossRef]
- Meijer, L.; Borgne, A.; Mulner, O.; Chhong, J.P.; Blow, J.J.; Inagaki, N.; Inagaki, M.; Delcros, J.G.; Moulinoux, J.P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 1997, 243, 527–536. [Google Scholar] [CrossRef]
- Singh, S.V.; Herman-Antosiewice, A.; Singh, A.V.; Lew, K.L.; Srivastava, S.K.; Kamath, R.; Brown, K.D.; Zhang, L.; Baskaran, R. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J. Biol. Chem. 2004, 279, 25813–25822. [Google Scholar] [CrossRef] [PubMed]
- Charollais, R.H.; Buquet, C.; Mester, J. Butyrate blocks the accumulation of CDC2 mRNA in late G1 phase but inhibits both early and late G1 progression in chemically transformed mouse fibroblasts BP-A31. J. Cell. Physiol. 1990, 145, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Curran, T. Fos and June: Intermediary transcription factors. In The Hormonal Control of Gene Transcription; Cohen, P., Foulkes, J.G., Eds.; Elsevier: New York, NY, USA, 1991; pp. 295–308. [Google Scholar]
- Hulla, J.E.; Schneider, R.P. Structure of the rat p53 tumor suppressor gene. Nucleic Acids Res. 1993, 21, 713–717. [Google Scholar] [CrossRef]
- Nakagawa, T.; Sawada, N.; Yamaguchi, M. Overexpression of regucalcin suppresses cell proliferation of cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int. J. Mol. Med. 2005, 16, 637–643. [Google Scholar]
- Higgins, G.M.; Anderson, R.M. Experimental pathology of the liver. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 1931, 12, 186–202. [Google Scholar]
- Higuchi, O.; Nakamura, T. Identification and change in the receptor for hepatocyte growth factor in rat liver after partial hepatectomy or induced hepatitis. Biochem. Biophys. Res. Commun. 1991, 176, 599–607. [Google Scholar] [CrossRef]
- Baffy, G.; Yang, L.; Michalopoulos, G.K.; Williamson, J.R. Hepatocyte growth factor induces calcium mobilization and inositol phosphate production in rat hepatocytes. J. Cell. Physiol. 1992, 153, 332–339. [Google Scholar] [CrossRef]
- Pinol, M.R.; Berchtold, M.W.; Backs, O.; Heizmann, C.W. Increased calmodulin synthesis in the pre-replicative phase of rat liver regeneration. FEBS Lett. 1988, 231, 445–450. [Google Scholar] [CrossRef]
- Kanayama, Y.; Yamaguchi, M. Enhancement of nuclear Ca2+-ATPase activity in regenerating rat liver: Involvement of nuclear DNA increase. Mol. Cell. Biochem. 1995, 146, 179–186. [Google Scholar] [CrossRef]
- Yamaguchi, M. Effect of calcium-binding protein regucalcin on Ca2+ transport system in rat liver nuclei: Stimulation of Ca2+ release. Mol. Cell. Biochem. 1992, 113, 63–70. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kanayama, Y. Enhanced expression of calcium-binding protein regucalcin mRNA in regenerating rat liver. J. Cell. Biochem. 1995, 57, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, T.; Yamaguchi, M. Inhibitory effect of calcium-binding protein regucalcin on protein kinase activity in the nuclei of regenerating rat liver. J. Cell. Biochem. 1998, 71, 569–576. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Katsumata, T. Enhancement of protein kinase activity in the cytosol of regenerating rat liver: Regulatory role of endogenous regucalcin. Int. J. Mol. Med. 1999, 3, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Omura, M.; Yamaguchi, M. Enhancement of neutral phosphatase activity in the cytosol and nuclei of regenerating rat liver: Role of endogenous regucalcin. J. Cell. Biochem. 1999, 73, 332–341. [Google Scholar] [CrossRef]
- Yamaguchi, M. The role of regucalcin in nuclear regulation of regenerating liver. Biochem. Biophys. Res. Comm. 2000, 276, 1–6. [Google Scholar] [CrossRef]
- Tsurusaki, Y.; Yamaguchi, M. Suppressive effect of endogenous regucalcin on the enhancement of protein synthesis and aminoacyl-tRNA synthetase activity in regenerating rat liver. Int. J. Mol. Med. 2000, 6, 295–299. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Overexpression of regucalcin suppresses the growth of human osteosarcoma cells in vitro: Repressive effect of extracellular regucalcin. Cancer Investig. 2020, 38, 37–51. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T.; Ramos, J.W. The overexpressed regucalcin represses the growth via regulating diverse pathways linked to EGF signaling in human ovarian cancer SK-OV-3 cells: Involvement of extracellular regucalcin. Life Sci. 2023, 314, 121328. [Google Scholar] [CrossRef]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCA 2008. Int. J. Cancer 2012, 127, 2893–2917. [Google Scholar] [CrossRef]
- El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med. 2011, 365, 1118–1127. [Google Scholar] [CrossRef]
- Mo, Z.; Zheng, S.; Ly, Z.; Zhuang, Y.; Lan, X.; Wang, F.; Lu, X.; Zhao, Y.; Zhou, S. Senescence marker protein 30 (SMP30) serves as a potential prognostic indicator in hepatocellular carcinoma. Sci. Rep. 2016, 6, 39376. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.S.; Neal, J.W.; Wakelee, H. Review of the current targeted therapies for non-small-cell lung cancer. Wold J. Clin. Oncol. 2014, 5, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, J.; Tian, M.; Piao, C.; Ruan, J.; Gao, L.; Qi, X.; Gao, G.; Su, X. The role of CHMP4C on proliferation in the human lung cancer A549 cells. J. Cancer Ther. 2015, 6, 1223–1228. [Google Scholar] [CrossRef]
- Phillips, R.J.; Mestas, J.; Gharaee-Kermani, M.; Burdick, M.D.; Sica, A.; Belperio, J.A.; Keane, M.P.; Strieter, R.M. EGF and hypoxia-induced expression of CXCR4 on non-small cell lung cancer cells are regulated by the PI3-kinase/PTEN/Akt/mTOR signaling pathway and activation of HIF-1α. J. Biol. Chem. 2005, 280, 22473–22481. [Google Scholar] [CrossRef]
- Gower, A.; Wang, Y.; Giaccone, G. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer. J. Mol. Med. 2014, 92, 697–707. [Google Scholar] [CrossRef]
- van der Waal, M.S.; Hengeveld, R.C.C.; van der Horst, A.; Lens, S.M.A. Cell division by the chromosomal passenger complex. Exp. Cell Res. 2009, 318, 1407–1420. [Google Scholar] [CrossRef]
- Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 2009, 8, 547–566. [Google Scholar] [CrossRef]
- Yu, X.; Riley, T.; Levine, A.J. The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 2009, 276, 2201–2212. [Google Scholar] [CrossRef]
- Nitschkowski, D.; Marwitz, S.; Kotanidou, S.; Reck, M.; Kugler, C.; Rabe, K.F.; Ammerpohl, O.; Goldmann, T. Live and let die: Epigenetic modifications of Survivin and Regucalcin in non-small cell lung cancer tissues contribute to malignancy. Clin. Epigenetics 2019, 11, 157. [Google Scholar] [CrossRef]
- Shao, C.; Guo, K.; Xu, L.; Zhang, Y.; Duan, H.; Feng, Y.; Pan, M.; Lu, D.; Ren, X.; Ganti, A.K.; et al. Senescence marker protein 30 inhibits tumor growth by reducing HDAC4 expression in non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 4558–4573. [Google Scholar] [CrossRef]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestri, F. Metastatic bone disease: Pathogenesis and therapeutic options up-date on bone metastasis management. J. Bone Oncol. 2019, 15, 100205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 2019, 39, 76. [Google Scholar] [CrossRef] [PubMed]
- Probert, C.; Dottorini, T.; Speakman, A.; Hunt, S.; Nafee, T.; Fafee, T.; Wood, S.; Brown, J.E.; James, V. Communication of prostate cancer cells with bone cells via extracellular vesicle RND; a potential mechanism of metastasis. Oncogene 2019, 38, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.; Clezardin, P. Bone-targeted therapies in cancer-induced bone diseases. Calcif. Tissue Int. 2018, 102, 227–250. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T.; Ramos, J.W. Overexpression of regucalcin blocks the migration, invasion, and bone metastatic activity of human prostate cancer cells: Crosstalk between cancer cells and bone cells. Prostate 2022, 82, 1025–1039. [Google Scholar] [CrossRef]
- Sharma, S.; Pei, X.; Xing, F.; Wu, S.Y.; Wu, K.; Tyagi, A.; Zhao, D.; Desphande, R.; Ruiz, M.G.; Singh, R.; et al. Regucalcin promotes dormancy of prostate cancer. Oncogene 2021, 40, 1012–1026. [Google Scholar] [CrossRef]
- Boyce, B.F.; Yoneda, T.; Guise, T.A. Factors regulating the growth of metastasis cancer in bone. Endocr. Relat. Cancer 1999, 6, 333–347. [Google Scholar] [CrossRef]
- Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 2, 584–593. [Google Scholar] [CrossRef]
- Roodman, C.D. Mechanism of bone metastasis. N. Engl. J. Med. 2004, 350, 1655–1664. [Google Scholar] [CrossRef]
- Akhtari, M.; Mansuri, J.; Newman, K.A.; Guise, T.M.; Seth, P. Biology of breast cancer bone metastasis. Cancer Biol. Ther. 2008, 7, 3–9. [Google Scholar] [CrossRef]
- Coleman, R.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 2001, 27, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Sosnoski, D.M.; Mastro, A.M. Breast cancer metastasis to the bone: Mechanisms of bone loss. Breast Cancer Res. 2010, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Suarez, E.; Jacob, A.P.; Jones, J.; Miller, R.; Roudier-Meyer, M.P.; Enwert, R.; Branstetter, D.; Dougall, W.C. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010, 468, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Zhang, H.; Zeng, Q.; Dai, J.; Keller, E.T.; Giordano, T.; Gu, K.; Shah, V.; Pei, L.; Zarbo, R.J.; et al. NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat. Med. 2007, 13, 62–69. [Google Scholar] [CrossRef]
- Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: A fatal attraction. Nat. Rev. Cancer 2011, 11, 411–425. [Google Scholar] [CrossRef]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef]
- Sousa, C.M.; Kimmelman, A.C. The complex landscape of pancreatic cancer metabolism. Carcinogenesis 2014, 35, 1441–1450. [Google Scholar] [CrossRef]
- Singh, D.; Upadhyay, G.; Srivastava, R.K.; Shankar, S. Recent advances in pancreatic cancer: Biology, treatment, and prevention. Biochim. Biophys. Acta 2015, 1856, 13–27. [Google Scholar] [CrossRef]
- Porter, M.G.; Stoeger, S.M. A typical colorectal neoplasm. Surg. Clin. N. Am. 2017, 97, 641–656. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures 2016; American Cancer Society: Atlanta, GA, USA, 2016. [Google Scholar]
- Siegel, R.I.; Miller, K.D.; Jemal, A. Cancer statics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Alnabulsi, A.; Murray, G.I. Integrative analysis of the colorectal cancer proteome: Potential clinical impact. Expert Rev. Proteom. 2016, 13, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Alnabulsi, A.; Swan, R.; Cash, B.; Alnabulsi, A.; Murray, G.I. The differential expression of omega-3 and omega-6 fatty acid metabolizing enzymes in colorectal cancer and its prognostic significance. Br. J. Cancer 2017, 116, 1612–1620. [Google Scholar] [CrossRef]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Kattar, A.A.L.; Bou-Assi, T.; Jurius, R.; Damiani, P.; Leone, A.; et al. Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar]
- Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behaviour and prevention. Int. J. Mol. Sci. 2013, 14, 16365–16385. [Google Scholar] [CrossRef]
- Kudryavtseva, A.V.; Lipatova, A.V.; Zaretsky, A.R.; Moskalev, A.A.; Fedorova, M.S.; Rasskazova, A.S.; Shibukhova, G.A.; Snezhkina, A.V.; Kaprin, A.D.; Alekseev, B.Y.; et al. Important molecular genetic markers of colorectal cancer. Oncotarget 2016, 7, 53959–53983. [Google Scholar] [CrossRef]
- Jones, R.P.; Sutton, P.A.; Evans, J.P.; Clifford, R.; McAvoy, A.; Lewis, J.; Rousseau, A.; Mountford, R.; McWhirter, D.; Malik, H.Z. Specific mutations in KRAS codon 12 is associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br. J. Cancer 2017, 116, 923–929. [Google Scholar] [CrossRef]
- Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 2003, 3, 11–22. [Google Scholar] [CrossRef]
- Shroff, E.H.; Eberlin, L.S.; Dang, V.M.; Gouw, A.M.; Gabay, M.; Adam, S.J.; Bellovin, D.I.; Tran, P.T.; Philbrick, W.M.; Garcia-Ocana, A.; et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl. Acad. Sci. USA 2015, 112, 6539–6544. [Google Scholar] [CrossRef]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Juengel, E.; Afschar, M.; Makarevic, J.; Rutz, J.; Tsaur, I.; Mani, J.; Nelson, K.; Haferkamp, A.; Roman, A. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism. Int. J. Mol. Med. 2016, 37, 843–850. [Google Scholar] [CrossRef] [PubMed]
- He, Y.H.; Chen, C.; Shi, Z. The biological roles and clinical implications of microRNAs in clear cell renal cell carcinoma. J. Cell. Physiol. 2018, 233, 4458–4465. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S. Paraneoplastic cough and renal cell carcinoma. Can. Respir. J. 2016, 2016, 5938536. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, R.C.; Camphell, S.C.; Clark, J.I.; Picken, M.M. Metastatic renal cell carcinoma. Curr. Treat. Opin. Oncol. 2003, 4, 385–390. [Google Scholar] [CrossRef]
- Capitanio, U.; Montorsi, F. Renal cancer. Lancet 2016, 387, 894–906. [Google Scholar] [CrossRef]
- Thakur, A.; Jain, S.K. Kidney cancer: Current progress in treatment. World J. Oncol. 2011, 2, 158–165. [Google Scholar]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Y.; Liang, P.; Guo, X.; Ying, Y.; Shu, X.-S.; Gao, M., Jr.; Cheng, Y. OSR1 is a novel epigenetic silenced tumor suppressor regulating invasion and proliferation in renal cell carcinoma. Oncotarget 2017, 8, 30008–30018. [Google Scholar] [CrossRef]
- Rini, B.I.; Atkins, M.B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009, 10, 992–1000. [Google Scholar] [CrossRef]
- Rini, B.I. New strategies in kidney cancer: Therapeutic advances through understanding the molecular basis of response and resistance. Clin. Cancer Res. 2010, 16, 1348–1354. [Google Scholar] [CrossRef]
- Chen, X.Z.; Zhu, R.; Zheng, J.; Chen, C.; Huang, C.; Ma, J.; Xu, C.; Zhai, W.; Zheng, J. Cryptotanshinone inhibits proliferation yet induces apoptosis by suppressing STAT3 signals in renal cell carcinoma. Oncotarget 2017, 8, 50023–50033. [Google Scholar] [CrossRef] [PubMed]
- Denny, L. Cervical cancer: Prevention and treatment. Dis. Med. 2012, 14, 1250131. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Totrre, L.A.; Jemal, A. Global cancer statics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Smith, H.O.; Tiffany, M.F.; Qualls, C.R.; Key, C.R. The rising incidence of adenocarcinoma relative to squamous cell carcinoma of the uterine cervix in the United States-a 24-year population-based study. Gynecol. Oncol. 2000, 78, 97–105. [Google Scholar] [CrossRef]
- Garlic, V.; Herzog, T.J.; Lewin, S.N.; Neugut, A.I.; Burke, W.M.; Lu, Y.S.; Hershman, D.L.; Wright, J.D. Prognostic significance of adenocarcinoma histology in women with cervical cancer. Gynecol. Oncol. 2012, 125, 287–291. [Google Scholar] [CrossRef]
- Shimada, M.; Kigawa, J.; Nishimura, R.; Yamaguchi, S.; Kuzuya, K.; Nakanishi, T.; Suzuki, M.; Kita, T.; Iwasaka, T.; Terakawa, N. Ovarian metastasis in carcinoma of the uterine cervix. Gynecol. Oncol. 2006, 101, 234–237. [Google Scholar] [CrossRef]
- Huang, Y.T.; Wang, C.C.; Tsai, C.S.; Lai, C.H.; Chang, T.C.; Chou, H.H.; Hsueh, S.; Chen, C.K.; Lee, S.P.; Hong, J.H. Long-term outcome and prognosis factors for adenocarcinoma/adenosquamous carcinoma of the cervix after definitive radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 429–436. [Google Scholar] [CrossRef]
- Katanyoo, K.; Tangjitgamol, S.; Chongthankorn, M.; Tantivatana, T.; Manusirivithaya, S.; Ronggsriyam, K.; Cholpaisal, A. Treatment outcome of concurrent weekly carboplatin with radiation therapy in locally advanced cervical cancer patients. Glynecol. Oncol. 2011, 123, 571–576. [Google Scholar] [CrossRef]
- Yee, G.P.; de Souza, P.; Khachigian, L.M. Current and potential treatment for cervical cancer. Curr. Cancer Drug Targets 2013, 13, 205–220. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Guo, S.; Xie, M.; Bin, X.; Shi, M.; Chen, A.; Chen, S.; Wu, F.; Hu, Q.; et al. Exogenous regucalcin negatively regulates the progression of cervical adenocarcinoma. Oncol. Lett. 2019, 18, 609–616. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Wang, P.; Song, W.; Yao, Q.; Hu, Q.; Zhou, S. A mechanism of regucalcin knock-down in the promotion of proliferation and movement of human cervical cancer HeLa cells. Transl. Cancer Res. 2019, 8, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.S.; Markovic, S.N. Novel therapeutics for the treatment of metastatic melanoma. Future Oncol. 2009, 5, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S. AJCC melanoma staging and classification. J. Clin. Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef] [PubMed]
- Redpath, M.; van Kempen, L.; Robert, C.; Spatz, A. Molecular Testing in Cutaneous Melanoma Molecular Testing in Cancer; Springer: New York, NY, USA, 2014; pp. 363–374. [Google Scholar]
- Bystrom, S.; Fredolini, C.; Edqvisit, P.H.; Nyaiesh, E.N.; Drobin, K.; Uhlen, M.; Bergqvist, M.; Ponten, F.; Jochen, M.; Schwenk, J.M. Affinity proteomics exploration of melanoma identifies proteins in serum with assocuations. Curr. Opin. Oncol. 2017, 30, 252–259. [Google Scholar]
- Wedekind, M.F.; Wagner, L.M.; Cripe, T.P. Immunotherapy for osteosarcoma: Where do we go from here? Pediatr. Blood Cancer 2018, 65, e27227. [Google Scholar] [CrossRef]
- Strauss, S.J.; Whelan, J.S. Current question in bone sarcomas. Curr. Opin. Oncol. 2018, 30, 252–259. [Google Scholar] [CrossRef]
- Song, C.; Tong, T.; Dai, B.; Zhu, Y.; Chen, E.; Zhang, M.; Zhang, W. Osteoimmunology in bone malignancies: A symphony with evil. J. Natl. Cancer Center 2024, 4, 354–368. [Google Scholar] [CrossRef]
- Mirabello, L.; Troisi, R.J.; Savage, S.A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer 2009, 125, 229–234. [Google Scholar] [CrossRef]
- Whelan, J.; McTiernan, A.; Cooper, N.; Wong, Y.K.; Francis, M.; Vernon, S.; Strauss, S.J. Incidence and survival of malignant bone sarcomas in England 1979–2007. Int. J. Cancer 2012, 131, E508–E517. [Google Scholar] [CrossRef]
- Leu, K.M.; Ostruszka, L.J.; Shewach, D.; Zalupski, M.; Sondak, V.; Biermann, J.S.; Lee, J.S.J.; Couwlier, C.; Palazzolo, K.; Baker, L.H. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. J. Clin. Oncol. 2004, 22, 1706–1712. [Google Scholar] [CrossRef]
- Luetke, A.; Meyers, P.A.; Lewis, I.; Juergens, H. Osteosarcoma treatment-where do we stand? A state of the art review. Cancer Treat. Rev. 2014, 40, 523–532. [Google Scholar] [CrossRef]
- Palangat, M.; Grass, J.A.; Langelier, M.F.; Coulombe, B.; Landick, R. The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation. Mol. Cell. Biol. 2011, 31, 3312–3325. [Google Scholar] [CrossRef]
- Tang, S.C.; Chen, Y.C. Novel therapeutic targets for pancreatic cancer. World J. Gastroenterol. 2014, 20, 10825–10844. [Google Scholar] [CrossRef]
- Altamura, C.; Greco, M.R.; Carrratu, M.R.; Cardone, R.A.; Desaphy, J.-F. Emerging roles for ion channels in ovarian cancer: Pathomechanisms and pharmacological treatment. Cancers 2021, 13, 668. [Google Scholar] [CrossRef]
- Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019, 69, 280–304. [Google Scholar] [CrossRef]
- Guo, S.W. Endometriosis and ovarian cancer: Potential benefits and harmas of screening and risk-reducing surgery. Fertil. Steril. 2015, 104, 813–830. [Google Scholar] [CrossRef]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obs. Gynaeccol. 2017, 41, 3–14. [Google Scholar] [CrossRef]
- Gaia-Oltean, A.I.; Braicu, C.; Gulei, D.; Ciortea, R.; Mihu, D.; Roman, H.; Irimie, A.; Berindan-Neagoe, I. Ovarian endometriosis, a precursor of ovarian cancer: Histological aspects, gene expression and microRNA alterations (Review). Exp. Therpeutic Med. 2021, 21, 243–255. [Google Scholar] [CrossRef]
- Alshamrani, A.A. Roles of microRNAs in ovarian cancer tumorigenesis: Two decades later, what have we learned? Front. Oncol. 2020, 10, 1064. [Google Scholar] [CrossRef]
- Shih, I.M.; Wang, Y.; Wang, T.L. The origin of ovarian cancer species and precancerous landscape. Am. J. Pathol. 2021, 191, 26–39. [Google Scholar] [CrossRef]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef]
- Domcke, S.; Sinha, R.; Levine, D.A.; Sandra, C.; Schultz, N. Evaluating cell lines as tumor models by comparison of genomic profiles. Nat. Commun. 2013, 4, 2126. [Google Scholar] [CrossRef]
- Michalak, M.; Lach, M.S.; Antoszczak, M.; Huczynski, A.; Suchorska, W.M. Overcoming resistant to platinum-based drugs in ovarian cancer by adryamycin and its derivatives—An in vitro study. Molecules 2020, 25, 537. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Isogai, M. Tissue concentration of calcium-binding protein regucalcin in rats by enzyme-linked immunoadsorbent assay. Mol. Cell. Biochem. 1993, 122, 65–68. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Isogai, M.; Shimada, N. Potential sensitivity of hepatic specific protein regucalcin as a marker of chronic liver injury. Mol. Cell. Biochem. 1997, 167, 187–190. [Google Scholar] [CrossRef]
- Carolan, J.C.; Fitzroy, C.I.; Ashton, P.D.; Douglas, A.E.; Wilkinson, T.L. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum charecterised by mass spectrometry. Proteomics 2009, 9, 2457–2467. [Google Scholar] [CrossRef]
- Stafford-Banks, C.A.; Rotenberg, D.; Johnson, B.R.; Whitfield, A.E.; Ullman, D.E. Analysis of the salivary gland transcriptome of Frankliniella occidentails. PLoS ONE 2014, 9, e94447. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Mori, S.; Kato, S. Calcium-binding protein regucalcin is an activator (Ca2+-Mg2+)-adenosine triphosphatase in the plasma membranes of rat liver. Chem. Pharm. Bull. 1988, 36, 3532–3539. [Google Scholar] [CrossRef]
- Zhang, S.C.; Huang, P.; Zhao, Y.X.; Liu, S.Y.; He, S.J.; Xie, X.X.; Luo, G.R.; Zhou, S.F. Soluble expression of recombinant human SMP30 for detecting serum SMP30 antibody levels in hepatocellular carcinoma patients. Asian Pac. J. Cancer Prev. 2013, 14, 2383–2386. [Google Scholar] [CrossRef]
- Wei, X.; Yu, H.; Zhao, P.; Xie, L.; Li, L.; Zhang, J. Serum regucalcin is a useful indicator of liver injury severity in patients with hepatitis B virus-related liver diseases. Braz. J. Med. Biol. Res. 2019, 52, e8845. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yun, Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J. Biol. Chem. 1998, 273, 25510–25515. [Google Scholar] [CrossRef] [PubMed]
- Andrisani, O.M.; Barnabas, S. The transcriptional function of the hepatitis B virus X protein and its role in hepatocarcinogenesis (Review). Int. J. Oncol. 1999, 15, 373–379. [Google Scholar] [CrossRef]
- Benn, J.; Schneider, R.J. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc. Natl. Acad. Sci. USA 1994, 91, 10350–10354. [Google Scholar] [CrossRef]
- Cha, M.Y.; Kim, C.M.; Park, Y.M.; Ryu, W.S. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology 2004, 39, 1683–1693. [Google Scholar] [CrossRef]
- Mir, I.H.; Guha, S.; Behera, J.; Thirunavukkarasu, C. Targeting molecular signal transduction pathway in hepatocellular carcinoma and its implications for cancer therapy. Cell Biol. Int. 2021, 45, 2161–2177. [Google Scholar] [CrossRef]
- Zhou, S.F.; Mo, F.R.; Bin, Y.H.; Hou, G.Q.; Xie, X.X.; Lug, G.R. Serum immunoreactivity of SMP30 and its tissues expression in hepatocellular carcinoma. Clin. Biochem. 2011, 44, 331–336. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro. Oncol. Rep. 2018, 39, 2924–2930. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Yuan, Z. Pancreatic cancer stem cells. Am. J. Cancer Res. 2015, 5, 894–906. [Google Scholar]
- Oettle, H. Progress in the knowledge and treatment of advanced pancreatic cancer: From bench side to bedside. Cancer Treat. Rev. 2014, 40, 1039–1047. [Google Scholar] [CrossRef]
- Moniri, M.R.; Dai, L.-J.; Warnock, G.L. The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells. Cancer Gene Ther. 2014, 21, 12–23. [Google Scholar] [CrossRef] [PubMed]
- McCarroll, J.A.; Naim, S.; Sharbeen, G.; Russia, N.; Lee, J.; Kavallaris, M.; Goldstein, D.; Phillips, P.A. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Front. Physiol. 2014, 5, 141. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.A.; di Magliano, M.P. K-ras as a key oncogene and therapeutic target in pancreatic cancer. Front. Physiol. 2014, 4, 407. [Google Scholar] [CrossRef] [PubMed]
- Almoguuera, C.; Shibata, D.; Forrester, K.; Martin, J.; Amheim, N.; Percho, M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988, 53, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Pylayyeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Suppressive effects of exogenous regucalcin on cell proliferation in human pancreatic cancer MiaPaCa-2 cells in vitro. Int. J. Mol. Med. 2015, 35, 1773–1778. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Exogenous regucalcin suppresses cell proliferation human breast cancer MDA-MB-231-bone metastatic cells in vitro. Mol. Med. Rep. 2015, 12, 7801–7805. [Google Scholar] [CrossRef]
- Randall, R.L. A promise to our patients with metastasis bone disease. Ann. Surg. Oncol. 2014, 21, 4049–4050. [Google Scholar] [CrossRef]
- Ardura, J.A.; Alvarez-Carrion, L.; Cutierrrez-Rojas, I.; Alonso, V. Role of calcium signaling in prostate cancer progression: Effects on cancer hallmarks and bone metastatic mechanisms. Cancers 2020, 12, 1071. [Google Scholar] [CrossRef]
- Quiroz-Munoz, M.; Izadmehr, S.; Arumugam, D.; Wong, B.; Kirschenhaum, A.; Levine, A.C. Mechanisms of osteoblastic bone metastasis in prostate cancer: Role of prostatic acid phosphatase. J. Endocr. Soc. 2019, 3, 655–664. [Google Scholar] [CrossRef]
- Malinowaski, B.; Wicinski, M.; Musiala, N.; Osowska, H.; Previous, S.M. Current, and future pharmacotherapy and diagnosis of prostate cancer-A comprehensive review. Diagnostics 2019, 9, 161. [Google Scholar] [CrossRef]
- Gravis, G. Systemic treatment for metastatic prostate cancer. Asian J. Urol. 2019, 6, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Zustovich, F.; Barsantiu, R. Targeted α therapies for the treatment of bone metastases. Int. J. Mol. Sci. 2018, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Janiczek, M.; Szylberg, L.; Kasperska, A.; Kowalewski, A.; Parol, M.; Antosik, P.; Radecka, B.; Marszalek, A. Immunotherapy as a promising treatment for prostate cancer: A systemic review. J. Immunol. Res. 2017, 2017, 4861570. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Murata, T.; Ramos, J.W. Extracellular regucalcin suppresses the growth, migration, invasion and adhesion of metastatic human prostate cancer cells. Oncology 2022, 100, 300–412. [Google Scholar] [CrossRef]
- Westermark, B.; Heldin, C.H. Growth factors and oncogenes in human malignant glioma. Neurol. Clin. 1985, 3, 785–799. [Google Scholar] [CrossRef]
- Kleihues, P.; Lubbe, J.; Watanabe, K.; von Ammon, K.; Ohaki, H. Genetic alterations associated with glioma progression. Verh. Dtsch. Ges. Pathol. 1994, 78, 43–47. [Google Scholar]
- Giamanco, K.A.; Matthews, R.T. The role of BEHAB/Brevican in the tumor microenvironment: Mediating glioma cell invasion and motility. Adv. Exp. Med. Biol. 2020, 1272, 117–132. [Google Scholar]
- Artene, S.A.; Tuta, C.; Dragoi, A.; Alexandru, O.; Ogano, P.S.; Tache, D.E.; Danciulescu, M.M.; Bolddeanu, M.V.; Silosi, C.A.; Dricu, A. Current and emerging EGFR therapies for glioblastoma. J. Immunoass. Immunochem. 2018, 39, 1–11. [Google Scholar] [CrossRef]
- Pandey, V.; Bhaskara, V.K.; Babu, P.P. Implications of mitogen-activated protein kinase signaling in glioma. J. Neurosci. Res. 2016, 94, 114–127. [Google Scholar] [CrossRef]
- Gadi, M.; Crous, A.M.; Fortin, D.; Krcek, J.; Torchia, M.; Mai, S.; Drouin, R.; Klonisch, T. EGF receptor inhibitors in the treatment of glioblastoma multiform: Old clinical allies and newly emerging theeraprutic concepts. Eur. J. Pharmacol. 2009, 625, 23–30. [Google Scholar] [CrossRef]
- Vecchio, C.A.D.; Li, G.; Wong, A.J. Targeting EGF receptor variant III: Tumor-specific peptide vaccination for malignant gliomas. Expert Rev. Vaccines 2012, 11, 133–144. [Google Scholar] [CrossRef] [PubMed]
- von Deimling, A.; Louis, D.N.; Wiestler, O.D. Molecular pathways in the formation of gliomas. Glia 1995, 15, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Gran, T.E.; Guarino, A.M.; Greene, F.E.; Gigon, P.L.; Gillette, J.R. Effect of partial hepatectomy on the responsiveness of microsomal enzymes and cytochrome P-450 to phenobarbital or 3-methylcholanthrene. Biochem. Pharmacol. 1968, 17, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Isogai, M.; Oishi, K.; Shimokawa, N.; Yamaguchi, M. Expression of hepatic calcium-binding protein regucalcin mRNA is decreased by phenobarbital administration in rats. Mol. Cell. Biochem. 1994, 141, 15–19. [Google Scholar] [CrossRef]
- Zheng, S.X.; Xiang, B.D.; Long, J.M.; Qu, C.; Mo, Z.J.; Li, K.; Zhuang, Y.; Ly, Z.L.; Zhou, S.F. Diagnostic value of serum SMP30 and anti-SMP30 antibody in hepatocellular carcinoma. Lab. Med. 2018, 49, 203–210. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kurota, H. Expression of calcium-binding protein regucalcin in the kidney cortex of rats: The stimulation by calcium administration. Mol. Cell. Biochem. 1995, 146, 71–77. [Google Scholar] [CrossRef]
- Yamaguchi, M. The potential role of regucalcin in kidney cell regulation: Involvement in renal failure (Review). Int. Mol. Med. 2015, 36, 1191–1199. [Google Scholar] [CrossRef]
- Shinya, N.; Yamaguchi, M. Alterations in Ca2+-ATPase activity and calcium- binding protein regucalcin mRNA expression in the kidney cortex of rats with saline ingestion. Mol. Cell. Biochem. 1997, 170, 17–22. [Google Scholar] [CrossRef]
- Shinya, N.; Yamaguchi, M. Stimulatory effect of calcium administration on regucalcin mRNA expression is attenuated in the kidney cortex of rats with saline ingestion. Mol. Cell. Biochem. 1998, 178, 275–281. [Google Scholar] [CrossRef]
- Elfarra, A.A.; Jakobson, I.; Anders, M.W. Mechanism of S-(1,2 dichlorovinyl) glutathione induced nephrotoxicity. Biochem. Pharmacol. 1986, 35, 283–288. [Google Scholar] [CrossRef]
- Tune, B.M.; Fravert, D.; Hsu, C.-Y. Oxidative and mitochondrial toxic effects of cephalosporine antibiotics in the kidney. A comparative study of cephaloridine and cephaloglycin. Biochem. Pharmacol. 1989, 38, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Montine, T.J.; Borch, R.F. Role of endogenous sulfur-containing nucleotides in an in vitro model of cis-diamminechloro platinum (II)-induced nephrotoxicity. Biochem. Pharmacol. 1990, 39, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.S.; Pasino, D.A.; Hewitt, W.R.; Hook, J.B. Biochemical mechanism of cephaloridine nephrotoxicity: Time and concentration dependence of peroxidative injury. Toxicol. Appl. Pharmacol. 1986, 83, 261–270. [Google Scholar] [CrossRef]
- Kurota, H.; Yamaguchi, M. Suppressed expression of calcium-binding protein regucalcin mRNA in the renal cortex of rats with chemically induced kidney damage. Mol. Cell. Biochem. 1995, 151, 55–60. [Google Scholar] [CrossRef]
- Arbillaga, L.; Vettorazzi, A.; Gil, A.G.; van Delft, J.H.; Garcia-Jalon, J.A.; Lopez de Cerain, A. Gene expression changes induced by ochratoxin A in renal and hepatic tissues of male F344 rat after oral repeated administration. Toxicol. Appl. Pharmacol. 2008, 230, 197–207. [Google Scholar] [CrossRef]
- Wu, H.Z.; Guo, L.; Mak, Y.F.; Liu, N.; Poon, W.T.; Chan, Y.W.; Cai, Z. Proteomics investigation on aristolochic acid nephropathy: A case study on rat kidney tissues. Anal. Bioanal. Chem. 2011, 399, 3431–3439. [Google Scholar] [CrossRef]
- Zubiri, I.; Posada-Ayala, M.; Benito-Martin, A.; Maroto, A.S.; Martin-Lorenzo, M.; Cannata-Ortiz, P.; de la Cuesta, F.; Gonzalez-Calero, L.; Barderas, M.G.; Fernandez- Fernandez, B.; et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Transl. Res. 2015, 166, 474–484. [Google Scholar] [CrossRef]
- Wang, M.; Shu, H.; Cheng, X.; Xiao, H.; Jin, Z.; Yao, N.; Mao, S.; Zong, Z. Exosome as a crucial communicator between tumor microenvironment and gastric cancer (Review). Int. J. Oncol. 2024, 64, 28. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Hanahisa, Y.; Murata, T. Expression of calcium-binding protein regucalcin and microsomal Ca2+-ATPase regulation in rat brain: Attenuation with increasing age. Mol. Cell. Biochem. 1999, 200, 43–49. [Google Scholar] [CrossRef]
- Yamaguchi, M. Role of regucalcin in brain calcium signalling: Involving aging. Int. Biol. 2012, 4, 825–837. [Google Scholar]
- Van Dijk, K.D.; Berendes, H.W.; Drukarch, B.; Fratantoni, S.A.; Pham, T.V.; Piersma, S.R.; Huisman, E.; Breve, J.J.; Groenewegen, H.J.; Jimenez, C.R.; et al. The proteome of the locus ceruleus in Parkinson’s disease: Relevance to pathogenesis. Brain Pathol. 2012, 22, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, E.K.; Park, S.A.; Kim, N.H.; Kim, C.W. Proteomic analysis of plasma from a Tau transgenic mouse. Int. J. Dev. Neurosci. 2012, 30, 277–283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, M. Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment. Cancers 2025, 17, 240. https://doi.org/10.3390/cancers17020240
Yamaguchi M. Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment. Cancers. 2025; 17(2):240. https://doi.org/10.3390/cancers17020240
Chicago/Turabian StyleYamaguchi, Masayoshi. 2025. "Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment" Cancers 17, no. 2: 240. https://doi.org/10.3390/cancers17020240
APA StyleYamaguchi, M. (2025). Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment. Cancers, 17(2), 240. https://doi.org/10.3390/cancers17020240