Childhood, Adolescent and Young Adult Poor-Prognosis Rhabdomyosarcoma
Simple Summary
Abstract
1. Introduction
2. Biologically Poor-Risk Disease
2.1. PAX3(7)::FOXO1 Fusion-Positive RMS
2.2. PAX3(7)::FOXO1 Fusion-Negative Poor-Risk RMS Subtypes
2.2.1. TP53 Variants
2.2.2. MYOD1 Variants
2.3. PAX3(7)::FOXO1 Fusion-Negative Newly Emerging RMS Subtypes of Uncertain Prognostic Significance
2.3.1. TFCP2- and MEIS1-Associated Gene Fusions
2.3.2. ZFP64::NCOA3 Gene Fusions
3. Clinically Poor-Risk Disease
3.1. Rhabdomyosarcoma in Adolescents and Young Adults
3.2. Patients with Metastatic (M1) Disease at Presentation
3.2.1. Risk Stratification in Metastatic Disease
3.2.2. Single-Organ Metastatic Involvement
3.2.3. Systemic Therapy for Metastatic RMS
Adding Active Agents to Standard Backbone
Adding Targeted Agents to Standard Backbone
Dose Intensification with Interval-Compressed Chemotherapy
High-Dose Chemotherapy with Stem Cell Rescue
Maintenance Chemotherapy
3.2.4. Local Control in Metastatic RMS
- 1.
- Surgical Resection
- 2.
- Radiotherapy
- 3.
- Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy
3.2.5. Biologic Challenges in Metastatic RMS
3.3. Relapsed RMS
3.3.1. Relapse Risk
3.3.2. Patterns of Relapse
3.3.3. Systemic Therapy for Relapsed RMS
3.3.4. Local Control for Relapsed RMS
3.3.5. Outcomes of Relapsed RMS
- 1.
- Relapse of Initially Localised RMS
- 2.
- Relapse of Initially Metastatic RMS
4. Looking Forward—Advances in Developmental Diagnostics and Therapeutics
4.1. Diagnostics
4.2. Minimally Invasive Treatments/Interventional Oncology
4.3. Detecting Relapse: Current and Future Paradigms
4.4. Novel Therapies
4.5. Immune Checkpoint Inhibition
4.6. Engineered T Cell Therapy
4.7. Antibody Drug Conjugates
4.8. Therapeutic Cancer Vaccines
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | antibody drug conjugate |
AEIOP | Italian Association of Pediatric Hematology and Oncology |
ARMS | alveolar rhabdomyosarcoma |
ASCR | autologous stem cell rescue |
AYA | adolescent and young adult |
BMA/Bx | bone marrow aspirates and biopsies |
CAR | chimeric antigen receptor |
CEV | carboplatin, etoposide, vincristine |
CEVAIE | carboplatin, epirubicin, vincristine, actinomycin D, ifosfamide, etoposide |
cfDNA | cell-free DNA |
Cisplat | cisplatin |
Cixu | cixutumumab |
COG | Children’s Oncology Group |
CSF | cerebrospinal fluid |
CT | computed tomography |
CTCs | circulating tumour cells |
ctDNA | circulating tumour DNA |
CWS | Cooperative Weichteilsarkom Studiengruppe |
Cyclo | cyclophosphamide |
CYP | children and young people |
DFS | disease-free survival |
DWIBS | diffusion-weighted imaging with background suppression |
E | etoposide |
EFS | event-free survival |
EpSSG | European Paediatric Soft Tissue Sarcoma Study Group |
ERMS | embryonal rhabdomyosarcoma |
EVAIA | etoposide, vincristine, adriamycin, ifosfamide, actinomycin |
FAP | fibroblast activation protein |
FAPI | fibroblast activation protein inhibitor |
FaR-RMS | Frontline and Relapsed Rhabdomyosarcoma trial |
FDG-PET | fluorodeoxyglucose positron emission tomography |
FFS | failure free survival |
FN | fusion negative |
FP | fusion positive |
HDC | high-dose chemotherapy |
HIPEC | hyperthermic intraperitoneal chemotherapy |
HR | high risk |
ICG | Italian Cooperative group |
ICI | immune checkpoint inhibitor |
IE | ifosfamide, etoposide |
INSTRuCT | International Soft Tissue Sarcoma Consortium |
IR | intermediate risk |
IRE | irreversible electroporation |
IrIVA | irinotecan, ifosfamide, vincristine, actinomycin D |
IRSG | Intergroup Rhabdomyosarcoma Study Group |
IVA | ifosfamide, vincristine, actinomycin D |
IVADo | ifosfamide, vincristine, actinomycin D, doxorubicin |
LAFOV | long axial field of view |
LFS | Li–Fraumeni Syndrome |
LN(s) | lymph node(s) |
LoH | loss of heterozygosity |
LR | low risk |
M0 | non-metastatic |
M1 | metastatic |
MMT | Malignant Mesenchymal Tumour group |
MRI | magnetic resonance imaging |
MTTR | median time to relapse |
N0 | no locoregional nodal disease |
N1 | locoregional nodal disease |
OMT | oral metronomic therapy |
OS | overall survival |
PFS | progression-free survival |
RMS | rhabdomyosarcoma |
RT | radiotherapy |
SABR | stereotactic ablative body radiotherapy |
SCR | stem cell rescue |
SIOP | International society of Pediatric Oncology |
ssRMS | spindle cell/sclerosing rhabdomyosarcoma |
STS | soft tissue sarcoma |
TACE | trans-arterial chemoembolisation |
TE | trophosfamide, etoposide |
TI | trophosfamide, idarubicin |
TKI | tyrosine kinase inhibitor |
TME | tumour microenvironment |
TMZ | temozolomide |
Unk | unknown |
VAC | vincristine, actinomycin D, cyclophosphamide |
VACA | vincristine, actinomycin D, cyclophosphamide, adriamycin |
VAIA | vincristine, actinomycin D, ifosfamide, adriamycin |
VDC | vincristine, doxorubicin, cyclophosphamide |
VEGF | vascular endothelial growth factor |
VHR | Very High Risk |
VIE | vincristine, ifosfamide, epirubicin |
VIr | vincristine, irinotecan |
VIT | vincristine, irinotecan, temozolomide |
VLR | Very Low Risk |
VTC | vincristine, topotecan, cyclophosphamide |
WBMRI | whole-body magnetic resonance imaging |
WHO | World Health Organisation |
ZF | zinc finger |
References
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Prim. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2018; National Cancer Institute: Bethesda, MD, USA, 2021. Available online: https://seer.cancer.gov/csr/1975_2018/ (accessed on 1 May 2021).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Chisholm, J.; Mandeville, H.; Adams, M.; Minard-Collin, V.; Rogers, T.; Kelsey, A.; Shipley, J.; Van Rijn, R.R.; De Vries, I.; Van Ewijk, R.; et al. Frontline and Relapsed Rhabdomyosarcoma (FAR-RMS) Clinical Trial: A Report from the European Paediatric Soft Tissue Sarcoma Study Group (EpSSG). Cancers 2024, 16, 998. [Google Scholar] [CrossRef]
- Bisogno, G.; Minard-Colin, V.; Zanetti, I.; Ferrari, A.; Gallego, S.; Dávila Fajardo, R.; Mandeville, H.; Kelsey, A.; Alaggio, R.; Orbach, D.; et al. Nonmetastatic Rhabdomyosarcoma in Children and Adolescents: Overall Results of the European Pediatric Soft Tissue Sarcoma Study Group RMS2005 Study. J. Clin. Oncol. 2023, 41, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Schoot, R.A.; Chisholm, J.C.; Casanova, M.; Minard-Colin, V.; Geoerger, B.; Cameron, A.L.; Coppadoro, B.; Zanetti, I.; Orbach, D.; Kelsey, A.; et al. Metastatic Rhabdomyosarcoma: Results of the European Paediatric Soft Tissue Sarcoma Study Group MTS 2008 Study and Pooled Analysis With the Concurrent BERNIE Study. J. Clin. Oncol. 2022, 40, 3730–3740. [Google Scholar] [CrossRef] [PubMed]
- Gallego, S.; Zanetti, I.; Orbach, D.; Ranchère, D.; Shipley, J.; Zin, A.; Bergeron, C.; de Salvo, G.L.; Chisholm, J.; Ferrari, A.; et al. Fusion status in patients with lymph node-positive (N1) alveolar rhabdomyosarcoma is a powerful predictor of prognosis: Experience of the European Paediatric Soft Tissue Sarcoma Study Group (EpSSG). Cancer 2018, 124, 3201–3209. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, D.; Chisholm, J.; Kelsey, A.; Alaggio, R.; Bisogno, G.; Minard-Colin, V.; Jenney, M.; Dávila Fajardo, R.; Merks, J.H.; Shipley, J.M.; et al. Biological Role and Clinical Implications of MYOD1L122R Mutation in Rhabdomyosarcoma. Cancers 2023, 15, 1644. [Google Scholar] [CrossRef]
- Le Loarer, F.; Cleven, A.H.; Bouvier, C.; Castex, M.P.; Romagosa, C.; Moreau, A.; Salas, S.; Bonhomme, B.; Gomez-Brouchet, A.; Laurent, C.; et al. A subset of epithelioid and spindle cell rhabdomyosarcomas is associated with TFCP2 fusions and common ALK upregulation. Mod. Pathol. 2020, 33, 404–419. [Google Scholar] [CrossRef]
- Shern, J.F.; Selfe, J.; Izquierdo, E.; Patidar, R.; Chou, H.C.; Song, Y.K.; Yohe, M.E.; Sindiri, S.; Wei, J.; Wen, X.; et al. Genomic Classification and Clinical Outcome in Rhabdomyosarcoma: A Report From an International Consortium. J. Clin. Oncol. 2021, 39, 2859–2871. [Google Scholar] [CrossRef]
- Heinz, A.T.; Schönstein, A.; Ebinger, M.; Fuchs, J.; Timmermann, B.; Seitz, G.; Vokuhl, C.; Münter, M.; Pajtler, K.W.; Stegmaier, S.; et al. Cooperative Weichteilsarkom Studiengruppe. Significance of fusion status, Oberlin risk factors, local and maintenance treatment in pediatric and adolescent patients with metastatic rhabdomyosarcoma: Data of the European Soft Tissue Sarcoma Registry SoTiSaR. Pediatr. Blood Cancer 2024, 71, e30707. [Google Scholar] [CrossRef]
- Pappo, A.S.; Anderson, J.R.; Crist, W.M.; Wharam, M.D.; Breitfeld, P.P.; Hawkins, D.; Raney, R.B.; Womer, R.B.; Parham, D.M.; Qualman, S.J.; et al. Survival After Relapse in Children and Adolescents With Rhabdomyosarcoma: A Report From the Intergroup Rhabdomyosarcoma Study Group. J. Clin. Oncol. 1999, 17, 3487–3493. [Google Scholar] [CrossRef]
- Dehner, C.A.; Rudzinski, E.R.; Davis, J.L. Rhabdomyosarcoma: Updates on classification and the necessity of molecular testing beyond immunohistochemistry. Hum. Pathol. 2024, 147, 72–81. [Google Scholar] [CrossRef]
- Parham, D.M.; Barr, F.G. Classification of Rhabdomyosarcoma and its molecular basis. Adv. Anat. Pathol. 2013, 20, 387–397. [Google Scholar] [CrossRef]
- Shern, J.F.; Chen, L.; Chmielecki, J.; Wei, J.S.; Patidar, R.; Rosenberg, M.; Ambrogio, L.; Auclair, D.; Wang, J.; Song, Y.K.; et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014, 4, 216–231. [Google Scholar] [CrossRef]
- Ognjanovic, S.; Linabery, A.M.; Charbonneau, B.; Ross, J.A. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer 2009, 115, 4218–4226. [Google Scholar] [CrossRef]
- Williamson, D.; Missiaglia, E.; de Reynies, A.; Pierron, G.; Thuille, B.; Palenzuela, G.; Thway, K.; Orbach, D.; Laé, M.; Fréneaux, P.; et al. Fusion Gene–Negative Alveolar Rhabdomyosarcoma Is Clinically and Molecularly Indistinguishable From Embryonal Rhabdomyosarcoma. J. Clin. Oncol. 2010, 28, 2151–2158. [Google Scholar] [CrossRef]
- Davicioni, E.; Anderson, M.J.; Finckenstein, F.G.; Lynch, J.C.; Qualman, S.J.; Shimada, H.; Schofield, D.E.; Buckley, J.D.; Meyer, W.H.; Sorensen, P.H.; et al. Molecular Classification of Rhabdomyosarcoma—Genotypic and Phenotypic Determinants of Diagnosis: A Report from the Children’s Oncology Group. Am. J. Pathol. 2009, 174, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Skapek, S.X.; Anderson, J.; Barr, F.G.; Bridge, J.A.; Gastier-Foster, J.M.; Parham, D.M.; Rudzinski, E.R.; Triche, T.; Hawkins, D.S. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: A children’s oncology group report. Pediatr. Blood Cancer 2013, 60, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.A.; Anderson, J.R.; Gastier-Foster, J.M.; Barr, F.G.; Skapek, S.X.; Hawkins, D.S.; Raney Jr, R.B.; Parham, D.M.; Teot, L.A.; Rudzinski, E.R.; et al. Histology, Fusion Status, and Outcome in Alveolar Rhabdomyosarcoma With Low-Risk Clinical Features: A Report From the Children’s Oncology Group. Pediatr. Blood Cancer 2016, 63, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Missiaglia, E.; Williamson, D.; Chisholm, J.; Wirapati, P.; Pierron, G.; Petel, F.; Concordet, J.P.; Thway, K.; Oberlin, O.; Pritchard-Jones, K.; et al. PAX3/FOXO1 Fusion Gene Status Is the Key Prognostic Molecular Marker in Rhabdomyosarcoma and Significantly Improves Current Risk Stratification. J. Clin. Oncol. 2012, 30, 1670–1677. [Google Scholar] [CrossRef]
- Oberoi, S.; Crane, J.N.; Haduong, J.H.; Rudzinski, E.R.; Wolden, S.L.; Dasgupta, R.; Linardic, C.M.; Weiss, A.R.; Venkatramani, R.; Children’s Oncology Group Soft Tissue Sarcoma Committee. Children’s Oncology Group’s 2023 blueprint for research: Soft tissue sarcomas. Pediatr. Blood Cancer 2023, 70 (Suppl. S6), e30556. [Google Scholar] [CrossRef] [PubMed]
- Hettmer, S.; Linardic, C.M.; Kelsey, A.; Rudzinski, E.R.; Vokuhl, C.; Selfe, J.; Ruhen, O.; Shern, J.F.; Khan, J.; Kovach, A.R.; et al. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children’s Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur. J. Cancer 2022, 172, 367–386. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.A.; Xue, W.; Harrison, D.J.; Hawkins, D.S.; Dasgupta, R.; Wolden, S.; Shulkin, B.; Qumseya, A.; Routh, J.C.; MacDonald, T.; et al. Addition of temsirolimus to chemotherapy in children, adolescents, and young adults with intermediate-risk rhabdomyosarcoma (ARST1431): A randomised, open-label, phase 3 trial from the Children’s Oncology Group. Lancet Oncol. 2024, 25, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Shimose, S.; Fujimori, J.; Furuta, T.; Ochi, M. Prognostic value of PAX3/7-FOXO1 fusion status in alveolar rhabdomyosarcoma: Systematic review and meta-analysis. Crit. Rev. Oncol. 2015, 96, 46–53. [Google Scholar] [CrossRef]
- Sorensen, P.H.; Lynch, J.C.; Qualman, S.J.; Tirabosco, R.; Lim, J.F.; Maurer, H.M.; Bridge, J.A.; Crist, W.M.; Triche, T.J.; Barr, F.G. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2002, 20, 2672–2679. [Google Scholar] [CrossRef]
- Heske, C.M.; Chi, Y.Y.; Venkatramani, R.; Li, M.; Arnold, M.A.; Dasgupta, R.; Hiniker, S.M.; Hawkins, D.S.; Mascarenhas, L. Survival Outcomes of Patients With Localized FOXO1 Fusion-Positive Rhabdomyosarcoma Treated on Recent Clinical Trials: A Report From the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Cancer March 2020, 127, 946–956. [Google Scholar] [CrossRef]
- Duan, F.; Smith, L.M.; Gustafson, D.M.; Zhang, C.; Dunlevy, M.J.; Gastier-Foster, J.M.; Barr, F.G. Genomic and clinical analysis of fusion gene amplification in rhabdomyosarcoma: A report from the Children’s Oncology Group. Genes Chromosoes Cancer 2012, 51, 662–674. [Google Scholar] [CrossRef]
- Barr, F.G.; Duan, F.; Smith, L.M.; Gustafson, D.; Pitts, M.; Hammond, S.; Gastier-Foster, J.M. Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: A report from the children’s oncology group. Genes Chromosomes Cancer 2009, 48, 661–672. [Google Scholar] [CrossRef]
- Heinz, A.T.; Ciuffolotti, M.; Merks, J.H.; Schönstein, A.; Minard-Colin, V.; Fuchs, J.; Guillen, G.; Timmermann, B.; Vokuhl, C.; Koscielniak, E.; et al. Treatment of Pediatric, Adolescent, and Young Adult Patients With Fusion-Positive Alveolar Rhabdomyosarcoma Infiltrating Regional Lymph Nodes in the European CWS-2002P and RMS 2005 Studies and the Soft Tissue Sarcoma Registry. Pediatr. Blood Cancer 2025, 72, e31476. [Google Scholar] [CrossRef]
- Gallego, S.; Chi, Y.Y.; De Salvo, G.L.; Li, M.; Merks, J.H.; Rodeberg, D.A.; van Scheltinga, S.T.; Mascarenhas, L.; Orbach, D.; Jenney, M.; et al. Alveolar rhabdomyosarcoma with regional nodal involvement: Results of a combined analysis from two cooperative groups. Pediatr. Blood Cancer 2021, 68, e28832. [Google Scholar] [CrossRef]
- Huang, S.C.; Chen, S.; Kashikar, S.; Estilo, C.L.; Wolden, S.L.; Wexler, L.H.; Huryn, J.M.; Antonescu, C.R. A clinicopathologic study of head and neck rhabdomyosarcomas showing FOXO1 fusion-positive alveolar and MYOD1-mutant sclerosing are associated with unfavorable outcome. Oral Oncol. 2016, 61, 89–97. [Google Scholar] [CrossRef]
- Leiner, J.; Le Loarer, F. The current landscape of rhabdomyosarcomas: An update. Virchows Arch. 2020, 476, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Ameur, N.; Yilmaz, I.; Nafa, K.; Lau, C.Y.; Marchetti, A.; Borsu, L.; Barr, F.G.; Ladanyi, M. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin. Cancer Res. 2012, 18, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Stewart, E.; Shelat, A.A.; Qu, C.; Bahrami, A.; Hatley, M.; Wu, G.; Bradley, C.; McEvoy, J.; Pappo, A.; et al. Targeting Oxidative Stress in Embryonal Rhabdomyosarcoma. Cancer Cell 2013, 24, 710–724. [Google Scholar] [CrossRef]
- Seki, M.; Nishimura, R.; Yoshida, K.; Shimamura, T.; Shiraishi, Y.; Sato, Y.; Kato, M.; Chiba, K.; Tanaka, H.; Hoshino, N.; et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat. Commun. 2015, 6, 7557. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Yang, P.; Zhang, S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun. 2024, 44, 297–360. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, H.; Wiesmüller, L.; Chen, M. Canonical and non-canonical functions of p53 isoforms: Potentiating the complexity of tumor development and therapy resistance. Cell Death Dis. 2024, 15, 412. [Google Scholar] [CrossRef]
- Thoenen, E.; Curl, A.; Iwakuma, T. TP53 in bone and soft tissue sarcomas. Pharmacol. Ther. 2019, 202, 149–164. [Google Scholar] [CrossRef]
- Parrales, A.; Iwakuma, T. Targeting oncogenic mutant p53 for cancer therapy. Front. Oncol. 2015, 5, 288. [Google Scholar] [CrossRef]
- Lane, D.; Levine, A. p53 Research: The past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2010, 2, a000893. [Google Scholar] [CrossRef]
- Ranjan, A.; Iwakuma, T. Non-canonical cell death induced by p53. Int. J. Mol. Sci. 2016, 17, 2068. [Google Scholar] [CrossRef]
- Adhikari, A.S.; Iwakuma, T. Mutant p53 gain of oncogenic function: In vivo evidence, mechanism of action and its clinical implications. Fukuoka Igaku Zasshi Hukuoka Acta Med. 2009, 100, 217–228. [Google Scholar] [PubMed]
- Kim, M.P.; Lozano, G. Mutant p53 partners in crime. Cell Death Differ. 2018, 25, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, F.; Collavin, L.; Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019, 26, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Light, N.; Layeghifard, M.; Attery, A.; Subasri, V.; Zatzman, M.; Anderson, N.D.; Hatkar, R.; Blay, S.; Chen, D.; Novokmet, A.; et al. Germline TP53 mutations undergo copy number gain years prior to tumor diagnosis. Nat. Commun. 2023, 14, 77. [Google Scholar] [CrossRef]
- Haduong, J.H.; Heske, C.M.; Allen-Rhoades, W.; Xue, W.; Teot, L.A.; Rodeberg, D.A.; Donaldson, S.S.; Weiss, A.; Hawkins, D.S.; Venkatramani, R. An update on rhabdomyosarcoma risk stratification and the rationale for current and future Children’s Oncology Group clinical trials. Pediatr. Blood Cancer 2022, 69, e29511. [Google Scholar] [CrossRef]
- Shenoy, A.; Alvarez, E.; Chi, Y.Y.; Li, M.; Shern, J.F.; Khan, J.; Hiniker, S.M.; Granberg, C.F.; Hawkins, D.S.; Parham, D.M.; et al. The prognostic significance of anaplasia in childhood rhabdomyosarcoma: A report from the Children’s Oncology Group. Eur. J. Cancer 2021, 143, 127–133. [Google Scholar] [CrossRef]
- Hettmer, S.; Archer, N.M.; Somers, G.R.; Novokmet, A.; Wagers, A.J.; Diller, L.; Rodriguez-Galindo, C.; Teot, L.A.; Malkin, D. Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer 2014, 120, 1068–1075, Erratum in Cancer 2014, 120, 1910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Villani, A.; Tabori, U.; Schiffman, J.; Shlien, A.; Beyene, J.; Druker, H.; Novokmet, A.; Finlay, J.; Malkin, D. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: A prospective observational study. Lancet Oncol. 2011, 12, 559–567. [Google Scholar] [CrossRef]
- Goudie, C.; Coltin, H.; Witkowski, L.; Mourad, S.; Malkin, D.; Foulkes, W.D. The McGill Interactive Pediatric OncoGenetic Guidelines: An approach to identifying pediatric oncology patients most likely to benefit from a genetic evaluation. Pediatr. Blood Cancer 2017, 64, e26441. [Google Scholar] [CrossRef]
- Chisholm, J.C.; Selfe, J.L.; Alaggio, R.; Cheesman, E.; Zin, A.; Tombolan, L.; Parafioriti, A.; Milano, G.M.; Adams, M.; Popov, S.; et al. Clinicopathological Analysis of a European Cohort of MYOD1 Mutant Rhabdomyosarcomas in Children and Young Adults. Pediatr. Blood Cancer 2025, 72, e31428. [Google Scholar] [CrossRef]
- Alaggio, R.; Zhang, L.; Sung, Y.S.; Huang, S.C.; Chen, C.L.; Bisogno, G.; Zin, A.; Agaram, N.P.; LaQuaglia, M.P.; Wexler, L.H.; et al. A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am. J. Surg. Pathol. 2016, 40, 224–235. [Google Scholar] [CrossRef]
- Agaram, N.P.; Chen, C.L.; Zhang, L.; Laquaglia, M.P.; Wexler, L.; Antonescu, C.R. Recurrent MYOD1 mutations in pediatric and adult sclerosing and spindle cell rhabdomyosarcomas: Evidence for a common pathogenesis. Genes Chromosomes Cancer 2014, 53, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Kohsaka, S.; Shukla, N.; Ameur, N.; Ito, T.; Ng, C.K.; Wang, L.; Lim, D.; Marchetti, A.; Viale, A.; Pirun, M.; et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat. Genet. 2014, 46, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Agaram, N.P.; LaQuaglia, M.P.; Alaggio, R.; Zhang, L.; Fujisawa, Y.; Ladanyi, M.; Wexler, L.H.; Antonescu, C.R. MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: An aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod. Pathol. 2019, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Dehner, C.A.; Broski, S.M.; Meis, J.M.; Murugan, P.; Chrisinger, J.S.; Sosa, C.; Petersen, M.; Halling, K.C.; Gupta, S.; Folpe, A.L. Fusion-driven Spindle Cell Rhabdomyosarcomas of Bone and Soft Tissue: A Clinicopathologic and Molecular Genetic Study of 25 Cases. Mod. Pathol. 2023, 36, 100271. [Google Scholar] [CrossRef]
- Schöpf, J.; Uhrig, S.; Heilig, C.E.; Lee, K.S.; Walther, T.; Carazzato, A.; Dobberkau, A.M.; Weichenhan, D.; Plass, C.; Hartmann, M.; et al. Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions. Nat. Commun. 2024, 15, 51. [Google Scholar] [CrossRef]
- Fang, Z.; Duan, C.; Wang, S.; Fu, L.; Yang, P.; Yu, T.; Deel, M.D.; Lau, L.M.; Ma, X.; Ni, X.; et al. Pediatric spindle cell/sclerosing rhabdomyosarcoma with FUS–TFCP2 fusion: A case report and literature review. Transl. Pediatr. 2024, 13, 178. [Google Scholar] [CrossRef]
- Ginn, M.P.; Denu, R.A.; Ingram, D.R.; Wani, K.M.; Lazar, A.J.; Harrison, D.J.; Nakazawa, M.S.; Conley, A.P.; Patel, S.; Livingston, J.A. TFCP2 Fusion-Positive Rhabdomyosarcomas: A Report of 10 Cases and a Review of the Literature. Cancers 2025, 17, 1441. [Google Scholar] [CrossRef]
- Sivakumar, N.; Sharma, P.; Chandra, S.; Gupta, S.; Samadi, F.M.; Baghel, S. Clinicopathological and Molecular Characteristics of Intraosseous Rhabdomyosarcoma Involving Head and Neck Region: A Systematic Review and Meta-Analysis. Pediatr. Dev. Pathol. 2023, 26, 299–309. [Google Scholar] [CrossRef]
- Duan, F.L.; Yang, H.; Gong, X.; Zuo, Z.; Qin, S.; Ji, J.; Zhou, C.; Dai, J.; Guo, P.; Liu, Y. Clinicopathological features of rhabdomyosarcoma with novel FET::TFCP2 and TIMP3::ALK fusion: Report of two cases and literature review. Histopathology 2023, 82, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.D.; van Vliet, C.; Gaman, A.; Giardina, T.; Amanuel, B. Rhabdomyosarcoma with FUS re-arrangement: Additional case in support of a novel subtype. Pathology 2019, 51, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Csizmok, V.; Grisdale, C.J.; Williamson, L.M.; Lim, H.J.; Lee, L.; Renouf, D.J.; Jones, S.J.; Marra, M.A.; Laskin, J.; Smrke, A. Diagnostic and Therapeutic Implications of a FUS::TFCP2 Fusion and ALK Activation in a Metastatic Rhabdomyosarcoma. Genes Chromosomes Cancer 2024, 63, e23259. [Google Scholar] [CrossRef] [PubMed]
- Schöpf, J.; Uhrig, S.; Heilig, C.E.; Lee, K.S.; Walther, T.; Carazzato, A.; Dobberkau, A.M.; Weichenhan, D.; Plass, C.; Hartmann, M.; et al. Multidimensional Characterization of Soft-Tissue Sarcomas with FUS-TFCP2 or EWSR1-TFCP2 Fusions. bioRxiv 2023. [Google Scholar] [CrossRef]
- Han, R.; Dermawan, J.K.; Demicco, E.G.; Ferguson, P.C.; Griffin, A.M.; Swanson, D.; Antonescu, C.R.; Dickson, B.C. ZFP64::NCOA3 gene fusion defines a novel subset of spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2022, 61, e23052. [Google Scholar] [CrossRef]
- Xu, J.; Wu, R.C.; O’Malley, B.W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 2009, 9, 615–630. [Google Scholar] [CrossRef]
- Gupta, A.; Hossain, M.M.; Miller, N.; Kerin, M.; Callagy, G.; Gupta, S. NCOA3 coactivator is a transcriptional target of XBP1 and regulates PERK-eIF2α-ATF4 signalling in breast cancer. Oncogene 2016, 35, 5860–5871. [Google Scholar] [CrossRef]
- Li, Y.; Liang, J.; Dang, H.; Zhang, R.; Chen, P.; Shao, Y. NCOA3 is a critical oncogene in thyroid cancer via the modulation of major signaling pathways. Endocrine 2022, 75, 149–158. [Google Scholar] [CrossRef]
- Sakamoto, K.; Tamamura, Y.; Katsube, K.I.; Yamaguchi, A. Zfp64 participates in Notch signaling and regulates differentiation in mesenchymal cells. J. Cell Sci. 2008, 121, e023119. [Google Scholar] [CrossRef]
- Dermawan, J.K.; Malik, F.; Gross, J.M.; Baraban, E.; Pratilas, C.; Mneimneh, W.; Trucco, M.; Sun, W.; Barr, F.G.; Costa, F.D.A.; et al. Novel PAX3::MAML3 Fusion Identified in Alveolar Rhabdomyosarcoma, Using DNA Methylation Profiling to Expand the Genetic Spectrum of “Fusion-Positive” Cases. Mod. Pathol. 2024, 37, 100594. [Google Scholar] [CrossRef]
- Joshi, D.; Anderson, J.R.; Paidas, C.; Breneman, J.; Parham, D.M.; Crist, W. Age Is an Independent Prognostic Factor in Rhabdomyosarcoma: A Report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Pediatr. Blood Cancer 2004, 42, e10441. [Google Scholar] [CrossRef]
- Bisogno, G.; Compostella, A.; Ferrari, A.; Pastore, G.; Cecchetto, G.; Garaventa, A.; Indolfi, P.; De Sio, L.; Carli, M. Rhabdomyosarcoma in adolescents: A report from the AIEOP Soft Tissue Sarcoma Committee. Cancer 2012, 118, 821–827. [Google Scholar] [CrossRef]
- Ferrari, A.; Dileo, P.; Casanova, M.; Bertulli, R.; Meazza, C.; Gandola, L.; Navarria, P.; Collini, P.; Gronchi, A.; Olmi, P.; et al. Rhabdomyosarcoma in adults: A retrospective analysis of 171 patients treated at a single institution. Cancer 2003, 98, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Sultan, I.; Qaddoumi, I.; Yaser, S.; Rodriguez-Galindo, C.; Ferrari, A. Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: An analysis of 2600 patients. J. Clin. Oncol. 2009, 27, 3391–3397. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, J.C.; Van der Graaf, W.T.; Rikhof, B.; Van Hoesel, Q.G.; Teerenstra, S.; Suurmeijer, A.J.; Flucke, U.E.; Loeffen, J.L.; Sleijfer, S.; De Bont, E.S. The impact of age on outcome of embryonal and alveolar rhabdomyosarcoma patients. A multicenter study. Anticancer Res. 2012, 32, 4485–4497. [Google Scholar] [PubMed]
- Ferrari, A.; Gatz, S.A.; Minard-Colin, V.; Alaggio, R.; Hovsepyan, S.; Orbach, D.; Gasparini, P.; Defachelles, A.S.; Casanova, M.; Milano, G.M.; et al. Shedding a Light on the Challenges of Adolescents and Young Adults with Rhabdomyosarcoma. Cancers 2022, 14, 6060. [Google Scholar] [CrossRef]
- Ferrari, A.; Bernasconi, A.; Bergamaschi, L.; Botta, L.; Andreano, A.; Castaing, M.; Rugge, M.; Bisogno, G.; Falcini, F.; Sacerdote, C.; et al. Impact of Rhabdomyosarcoma Treatment Modalities by Age in a Population-Based Setting. J. Adolesc. Young Adult Oncol. 2021, 10, 309–315. [Google Scholar] [CrossRef]
- Bergamaschi, L.; Bertulli, R.; Casanova, M.; Provenzano, S.; Chiaravalli, S.; Gasparini, P.; Collini, P.; Sangalli, C.; Gandola, L.; Diletto, B.; et al. Rhabdomyosarcoma in adults: Analysis of treatment modalities in a prospective single-center series. Med. Oncol. 2019, 36, 59. [Google Scholar] [CrossRef]
- Ferrari, A.; Chisholm, J.C.; Jenney, M.; Minard-Colin, V.; Orbach, D.; Casanova, M.; Guillen, G.; Glosli, H.; van Rijn, R.R.; Schoot, R.A.; et al. Adolescents and young adults with rhabdomyosarcoma treated in the European paediatric Soft tissue sarcoma Study Group (EpSSG) protocols: A cohort study. Lancet Child Adolesc. Health 2022, 6, 545–554. [Google Scholar] [CrossRef]
- Breneman, J.C.; Lyden, E.; Pappo, A.S.; Link, M.P.; Anderson, J.R.; Parham, D.M.; Qualman, S.J.; Wharam, M.D.; Donaldson, S.S.; Maurer, H.M.; et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma-a report from the intergroup rhabdomyosarcoma study IV. J. Clin. Oncol. 2003, 21, 78–84. [Google Scholar] [CrossRef]
- Oberlin, O.; Rey, A.; Lyden, E.; Bisogno, G.; Stevens, M.C.; Meyer, W.H.; Carli, M.; Anderson, J.R. Prognostic Factors in Metastatic Rhabdomyosarcomas: Results of a Pooled Analysis From United States and European Cooperative Groups. J. Clin. Oncol. 2008, 26, 2384–2389. [Google Scholar] [CrossRef]
- Chisholm, J.C.; Merks, J.H.; Casanova, M.; Bisogno, G.; Orbach, D.; Gentet, J.C.; Thomassin-Defachelles, A.S.; Chastagner, P.; Lowis, S.; Ronghe, M.; et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur. J. Cancer 2017, 83, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hibbitts, E.; Chi, Y.Y.; Hawkins, D.S.; Barr, F.G.; Bradley, J.A.; Dasgupta, R.; Meyer, W.H.; Rodeberg, D.A.; Rudzinski, E.R.; Spunt, S.L.; et al. Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: A report from the Children’s Oncology Group. Cancer Med. 2019, 8, 6437–6448. [Google Scholar] [CrossRef] [PubMed]
- Mercolini, F.; Merks, J.H.; Minard-Colin, V.; Cameron, A.; van Scheltinga, S.E.T.; Sher, O.; Fichera, G.; Orbach, D.; Glosli, H.; Coppadoro, B.; et al. Metastatic rhabdomyosarcoma with exclusive distant lymph node involvement: A European Pediatric Soft tissue sarcoma Study Group (EpSSG) report. Pediatr. Blood Cancer 2023, 70, e30143. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, J.C.; Luo, L.Y.; Hiniker, S.M.; Rhee, D.S.; Dasgupta, R.; Chen, S.; Weigel, B.J.; Xue, W.; Venkatramani, R.; Arndt, C.A. Rhabdomyosarcoma with isolated lung metastases: A report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Pediatr. Blood Cancer 2023, 70, e30293. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, J.C.; Schoot, R.A.; Cameron, A.L.; Casanova, M.; Minard-Colin, V.; Coppadoro, B.; Garrido, M.; Rogers, T.; Orbach, D.; Glosli, H.; et al. Outcomes in lung-only metastatic rhabdomyosarcoma: An analysis of data from the European paediatric Soft tissue sarcoma Study Group MTS 2008 study. EJC Paediatr. Oncol. 2023, 2, 100018. [Google Scholar] [CrossRef]
- Weigel, B.J.; Lyden, E.; Anderson, J.R.; Meyer, W.H.; Parham, D.M.; Rodeberg, D.A.; Michalski, J.M.; Hawkins, D.S.; Arndt, C.A. Intensive multiagent therapy, including dose-compressed cycles of ifosfamide/etoposide and vincristine/doxorubicin/cyclophosphamide, irinotecan, and radiation, in patients with high-risk rhabdomyosarcoma: A report from the children’s oncology group. J. Clin. Oncol. 2016, 34, 117–122. [Google Scholar] [CrossRef]
- La, T.H.; Wolden, S.L.; Rodeberg, D.A.; Hawkins, D.S.; Brown, K.L.; Anderson, J.R.; Donaldson, S.S. Regional nodal involvement and patterns of spread along in-transit pathways in children with rhabdomyosarcoma of the extremity: A report from the children’s oncology group. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1151–1157. [Google Scholar] [CrossRef]
- Terwisscha van Scheltinga, S.E.; Wijnen, M.H.; Martelli, H.; Rogers, T.; Mandeville, H.; Gaze, M.N.; McHugh, K.; Corradini, N.; Orbach, D.; Jenney, M.; et al. Local staging and treatment in extremity rhabdomyosarcoma. A report from the EpSSG-RMS2005 study. Cancer Med. 2020, 9, 7580–7589. [Google Scholar] [CrossRef]
- van Scheltinga, C.T.; Wijnen, M.H.W.A.; Martelli, H.; Guerin, F.; Rogers, T.; Craigie, R.J.; Burrieza, G.G.; Dall’Igna, P.; De Corti, F.; Smeulders, N.; et al. In transit metastases in children, adolescents and young adults with localized rhabdomyosarcoma of the distal extremities: Analysis of the EpSSG RMS 2005 study. Eur. J. Surg. Oncol. 2022, 48, 1536–1542. [Google Scholar] [CrossRef]
- Sparber-Sauer, M.; von Kalle, T.; Seitz, G.; Dantonello, T.; Scheer, M.; Münter, M.; Fuchs, J.; Ladenstein, R.; Bielack, S.S.; Klingebiel, T.; et al. The prognostic value of early radiographic response in children and adolescents with embryonal rhabdomyosarcoma stage IV, metastases confined to the lungs: A report from the Cooperative Weichteilsarkom Studiengruppe (CWS). Pediatr. Blood Cancer 2017, 64, e26510. [Google Scholar] [CrossRef]
- Wyatt, K.D.; Birz, S.; Hawkins, D.S.; Minard-Colin, V.; Rodeberg, D.A.; Sparber-Sauer, M.; Bisogno, G.; Koscielniak, E.; De Salvo, G.L.; Ebinger, M.; et al. Creating a data commons: The INternational Soft Tissue SaRcoma ConsorTium (INSTRuCT). Pediatr. Blood Cancer 2022, 69, e29924. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, D.; Affinita, M.C.; Poli, E.; Bisogno, G. Systemic therapy in metastatic pediatric rhabdomyosarcoma: A history of challenges and the search for promising approaches. Expert Opin. Pharmacother. 2025, 26, 755–763. [Google Scholar] [CrossRef]
- Maurer, H.M.; Crist, W.; Lawrence, W.; Ragab, A.H.; Raney, R.B.; Webber, B.; Wharam, M.; Vietti, T.J.; Beltangady, M.; Gehan, E.A.; et al. The intergroup rhabdomyosarcoma study-I. A final report. Cancer 1988, 61, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.M.; Gehan, E.A.; Beltangady, M.; Crist, W.; Dickman, P.S.; Donaldson, S.S.; Fryer, C.; Hammond, D.; Hays, D.M.; Herrmann, J.; et al. The intergroup rhabdomyosarcoma study-II. Cancer 1993, 71, 1904–1922. [Google Scholar] [CrossRef]
- Crist, W.; Gehan, E.A.; Ragab, A.H.; Dickman, P.S.; Donaldson, S.S.; Fryer, C.; Hammond, D.; Hays, D.M.; Herrmann, J.; Heyn, R. The Third Intergroup Rhabdomyosarcoma Study. J. Clin. Oncol. 1995, 13, 610–630. [Google Scholar] [CrossRef]
- Pappo, A.S.; Lyden, E.; Breneman, J.; Wiener, E.; Teot, L.; Meza, J.; Crist, W.; Vietti, T. Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: An intergroup rhabdomyosarcoma study. J. Clin. Oncol. 2001, 19, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Walterhouse, D.O.; Lyden, E.R.; Breitfeld, P.P.; Qualman, S.J.; Wharam, M.D.; Meyer, W.H. Efficacy of topotecan and cyclophosphamide given in a phase II window trial in children with newly diagnosed metastatic rhabdomyosarcoma: A children’s oncology group study. J. Clin. Oncol. 2004, 22, 1398–1403. [Google Scholar] [CrossRef]
- Pappo, A.S.; Lyden, E.; Breitfeld, P.; Donaldson, S.S.; Wiener, E.; Parham, D.; Crews, K.R.; Houghton, P.; Meyer, W.H. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: The children’s oncology group. J. Clin. Oncol. 2007, 25, 362–369. [Google Scholar] [CrossRef]
- Arndt, C.A.; Stoner, J.A.; Hawkins, D.S.; Rodeberg, D.A.; Hayes-Jordan, A.A.; Paidas, C.N.; Parham, D.M.; Teot, L.A.; Wharam, M.D.; Breneman, J.C.; et al. Vincristine, Actinomycin, and Cyclophosphamide Compared With Vincristine, Actinomycin, and Cyclophosphamide Alternating With Vincristine, Topotecan, and Cyclophosphamide for Intermediate-Risk Rhabdomyosarcoma: Children’s Oncology Group Study D9803. J. Clin. Oncol. 2009, 27, 5182–5188. [Google Scholar] [CrossRef]
- Casey, D.L.; Chi, Y.Y.; Donaldson, S.S.; Hawkins, D.S.; Tian, J.; Arndt, C.A.; Rodeberg, D.A.; Routh, J.C.; Lautz, T.B.; Gupta, A.A.; et al. Increased local failure for patients with intermediate-risk rhabdomyosarcoma on ARST0531: A report from the Children’s Oncology Group. Cancer 2019, 125, 3242–3248. [Google Scholar] [CrossRef] [PubMed]
- Malempati, S.; Weigel, B.J.; Chi, Y.Y.; Tian, J.; Anderson, J.R.; Parham, D.M.; Teot, L.A.; Rodeberg, D.A.; Yock, T.I.; Shulkin, B.L.; et al. The addition of cixutumumab or temozolomide to intensive multiagent chemotherapy is feasible but does not improve outcome for patients with metastatic rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer 2019, 125, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Pastore, G.; Perilongo, G.; Grotto, P.; De Bernardi, B.; Ceci, A.; Di Tullio, M.; Madon, E.; Pianca, C.; Paolucci, G. Tumor response and toxicity after single high-dose versus standard five-day divided-dose dactinomycin in childhood rhabdomyosarcoma. J. Clin. Oncol. 1988, 6, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Colombatti, R.; Oberlin, O.; Bisogno, G.; Treuner, J.; Koscielniak, E.; Tridello, G.; Garaventa, A.; Pinkerton, R.; Stevens, M. European intergroup studies (MMT4-89 and MMT4-91) on childhood metastatic rhabdomyosarcoma: Final results and analysis of prognostic factors. J. Clin. Oncol. 2004, 22, 4787–4794. [Google Scholar] [CrossRef]
- Oberlin, O.; Rey, A.; Sanchez de Toledo, J.; Martelli, H.; Jenney, M.E.; Scopinaro, M.; Bergeron, C.; Merks, J.H.; Bouvet, N.; Ellershaw, C.; et al. Randomized comparison of intensified six-drug versus standard three-drug chemotherapy for high-risk nonmetastatic rhabdomyosarcoma and other chemotherapy-sensitive childhood soft tissue sarcomas: Long-term results from the International Society of Pediatric Oncology MMT95 study. J. Clin. Oncol. 2012, 30, 2457–2465, Erratum in J. Clin. Oncol. 2025, 43, 1398. https://doi.org/10.1200/JCO-25-00440. [Google Scholar] [CrossRef] [PubMed]
- McDowell, H.P.; Foot, A.B.M.; Ellershaw, C.; Machin, D.; Giraud, C.; Bergeron, C. Outcomes in paediatric metastatic rhabdomyosarcoma: Results of The International Society of Paediatric Oncology (SIOP) study MMT-98. Eur. J. Cancer 2010, 46, 1588–1595. [Google Scholar] [CrossRef]
- Chisholm, J.C.; Merks, J.H.; Casanova, M.; Bisogno, G.; Orbach, D.; Gentet, J.C.; Thomassin Defachelles, A.S.; Chastagner, P.B.; Lowis, S.; Ronghe, M.; et al. BERNIE: Open-label, randomized, phase II study of bevacizumab plus chemotherapy in pediatric metastatic rhabdomyosarcoma (RMS) and non-rhabdomyosarcoma soft tissue sarcoma (NRSTS). J. Clin. Oncol. 2016, 34, 11054. [Google Scholar] [CrossRef]
- Koscielniak, E.; Treuner, J.; Jürgens, H.; Winkler, K.; Bürger, D.; Herbst, M.; Ritter, J.; Niethammer, D.; Müller-Weihrich, S.; Bernhard, G.; et al. Treatment of soft tissue sarcomas in children and adolescents. Results of the CWS-81 Multicenter Therapy Study. Klin. Padiatr. 1991, 203, 211–219. [Google Scholar] [CrossRef]
- Koscielniak, E.; Harms, D.; Henze, G.; Jürgens, H.; Gadner, H.; Herbst, M.; Klingebiel, T.; Schmidt, B.F.; Morgan, M.; Knietig, R.; et al. Results of treatment for soft tissue sarcoma in childhood and adolescence: A final report of the German cooperative soft tissue sarcoma study CWS-86. J. Clin. Oncol. 1999, 17, 3706–3719. [Google Scholar] [CrossRef]
- Klingebiel, T.; Boos, J.; Beske, F.; Hallmen, E.; Int-Veen, C.; Dantonello, T.; Treuner, J.; Gadner, H.; Marky, I.; Kazanowska, B.; et al. Treatment of children with metastatic soft tissue sarcoma with oral maintenance compared to high-dose chemotherapy: Report of the HD CWS-96 trial. Pediatr. Blood Cancer 2008, 50, 739–745. [Google Scholar] [CrossRef]
- Bisogno, G.; Pastore, G.; Perilongo, G.; Sotti, G.; Cecchetto, G.; Dallorso, S.; Carli, M. Long-term results in childhood rhabdomyosarcoma: A report from the Italian Cooperative Study RMS 79. Pediatr. Blood Cancer 2012, 58, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Raney, R.B., Jr.; Crist, W.M.; Maurer, H.M.; Foulkes, M.A. Prognosis of children with soft tissue sarcoma who relapse after achieving a complete response. A report from the Intergroup Rhabdomyosarcoma Study I. Cancer 1983, 52, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Raney, R.B.; Maurer, H.M.; Anderson, J.R.; Andrassy, R.J.; Donaldson, S.S.; Qualman, S.J.; Wharam, M.D.; Wiener, E.S.; Crist, W.M. The Intergroup Rhabdomyosarcoma Study Group (IRSG): Major lessons from the IRS-I through IRS-IV studies as background for the current IRS-V treatment protocols. Sarcoma 2001, 5, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Breitfeld, P.P.; Lyden, E.; Raney, R.B.; Teot, L.A.; Wharam, M.; Lobe, T.; Crist, W.M.; Maurer, H.M.; Donaldson, S.S.; Ruymann, F.B. Ifosfamide and Etoposide Are Superior to Vincristine and Melphalan for Pediatric Metastatic Rhabdomyosarcoma When Administered With Irradiation and Combination Chemotherapy: A Report From the Intergroup Rhabdomyosarcoma Study Group. J. Pediatr. Hematol. 2001, 23, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Admiraal, R.; van der Paardt, M.; Kobes, J.; Kremer, L.C.; Bisogno, G.; Merks, J.H. High-dose chemotherapy for children and young adults with stage IV rhabdomyosarcoma. Cochrane Database Syst. Rev. 2010, CD006669. [Google Scholar] [CrossRef]
- Bisogno, G.; Ferrari, A.; Prete, A.; Messina, C.; Basso, E.; Cecchetto, G.; Indolfi, P.; Scarzello, G.; D’Angelo, P.; De Sio, L.; et al. Sequential high-dose chemotherapy for children with metastatic rhabdomyosarcoma. Eur. J. Cancer 2009, 45, 3035–3041. [Google Scholar] [CrossRef]
- Bisogno, G.; Hawkins, D.S. An unresolved issue in rhabdomyosarcoma treatment: The duration of chemotherapy. Pediatr. Blood Cancer 2020, 67, e28174. [Google Scholar] [CrossRef]
- Tramsen, L.; Bochennek, K.; Sparber-Sauer, M.; Salzmann-Manrique, E.; Scheer, M.; Dantonello, T.; Borkhardt, A.; Dirksen, U.; Thorwarth, A.; Greiner, J.; et al. Pediatric Patients with Stage IV Rhabdomyosarcoma Significantly Benefit from Long-Term Maintenance Therapy: Results of the CWS-IV 2002 and the CWS DOK IV 2004-Trials. Cancers 2023, 15, 2050. [Google Scholar] [CrossRef]
- Bisogno, G.; Minard-Colin, V.; Jenney, M.; Ferrari, A.; Chisholm, J.; Di Carlo, D.; Hjalgrim, L.L.; Orbach, D.; Merks, J.H.M.; Casanova, M. Maintenance Chemotherapy for Patients with Rhabdomyosarcoma. Cancers 2023, 15, 4012. [Google Scholar] [CrossRef]
- Bisogno, G.; De Salvo, G.L.; Bergeron, C.; Melcón, S.G.; Merks, J.H.; Kelsey, A.; Martelli, H.; Minard-Colin, V.; Orbach, D.; Glosli, H.; et al. Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019, 20, 1566–1575. [Google Scholar] [CrossRef]
- Dávila Fajardo, R.; Magelssen, H.; Cameron, A.L.; Boterberg, T.; Mandeville, H.C. Current and Future Developments in Radiation Oncology Approach for Rhabdomyosarcoma. Cancers 2025, 17, 1618. [Google Scholar] [CrossRef]
- Cameron, A.L.; Elze, M.C.; Casanova, M.; Geoerger, B.; Gaze, M.N.; Minard-Colin, V.; McHugh, K.; van Rijn, R.R.; Kelsey, A.; Martelli, H.; et al. The Impact of Radiation Therapy in Children and Adolescents With Metastatic Rhabdomyosarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 968–978. [Google Scholar] [CrossRef]
- Cameron, A.L.; Mandeville, H.; Coppadoro, B.; Periasamy, M.; Fajardo, R.D.; Ferrari, A.; Gaze, M.N.; Helfre, S.; Magelssen, H.; Minard-Colin, V.; et al. The Impact of Radiation Therapy on Metastatic Rhabdomyosarcoma: Results From the EpSSG MTS 2008 Study. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 388–402. [Google Scholar] [CrossRef]
- Ferrari, A.; Bergamaschi, L.; Chiaravalli, S.; Livellara, V.; Sironi, G.; Nigro, O.; Puma, N.; Gattuso, G.; Morosi, C.; Gasparini, P.; et al. Metastatic rhabdomyosarcoma: Evidence of the impact of radiotherapy on survival. A retrospective single-center experience. Pediatr. Blood Cancer 2022, 69, e29853. [Google Scholar] [CrossRef] [PubMed]
- Roy Moulik, N.; Vaidya, S.; Mandeville, H.; Chisholm, J.C. Managing peritoneal involvement in children and young people with rhabdomyosarcoma: A single-center experience from the United Kingdom. Pediatr. Blood Cancer 2019, 66, e27805. [Google Scholar] [CrossRef] [PubMed]
- Gesche, J.; Beckert, S.; Neunhoeffer, F.; Kachanov, D.; Königsrainer, A.; Seitz, G.; Fuchs, J. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: A safe treatment option for intraperitoneal rhabdomyosarcoma in children below 5 years of age. Pediatr. Blood Cancer 2019, 66, e27517. [Google Scholar] [CrossRef] [PubMed]
- Hayes-Jordan, A.; Green, H.; Lin, H.; Owusu-Agyemang, P.; Mejia, R.; Okhuysen-Cawley, R.; Cortes, J.; Fitzgerald, N.E.; McAleer, M.F.; Herzog, C.; et al. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for Children, Adolescents, and Young Adults: The First 50 Cases. Ann. Surg. Oncol. 2015, 22, 1726–1732. [Google Scholar] [CrossRef]
- Byrwa, D.J.; Twist, C.J.; Skitzki, J.; Repasky, E.; Ham, P.B.e.n.; Gupta, A. A Review of the Use of Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Malignancy in Pediatric Patients. Cancers 2023, 15, 2815. [Google Scholar] [CrossRef]
- Searcy, M.B.; Larsen, R.K., IV; Stevens, B.T.; Zhang, Y.; Jin, H.; Drummond, C.J.; Langdon, C.G.; Gadek, K.E.; Vuong, K.; Reed, K.B.; et al. PAX3-FOXO1 dictates myogenic reprogramming and rhabdomyosarcoma identity in endothelial progenitors. Nat. Commun. 2023, 14, 7291. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef]
- Kohama, I.; Kosaka, N.; Chikuda, H.; Ochiya, T. An insight into the roles of microRNAs and exosomes in sarcoma. Cancers 2019, 11, 428. [Google Scholar] [CrossRef]
- Junttila, M.R.; De Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501, 346–354. [Google Scholar] [CrossRef]
- Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Mol. Cell 2010, 40, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Bernauer, C.; Man, Y.K.S.; Chisholm, J.C.; Lepicard, E.Y.; Robinson, S.P.; Shipley, J.M. Hypoxia and its therapeutic possibilities in paediatric cancers. Br. J. Cancer 2021, 124, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Petragnano, F.; Pietrantoni, I.; Camero, S.; Codenotti, S.; Milazzo, L.; Vulcano, F.; Macioce, G.; Giordani, I.; Tini, P.; Cheleschi, S.; et al. Clinically relevant radioresistant rhabdomyosarcoma cell lines: Functional, molecular and immune-related characterization. J. Biomed. Sci. 2020, 27, 90. [Google Scholar] [CrossRef]
- Klega, K.; Imamovic-Tuco, A.; Ha, G.; Clapp, A.N.; Meyer, S.; Ward, A.; Clinton, C.; Nag, A.; Van Allen, E.; Mullen, E.; et al. Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis. Oncol. 2018, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Abbou, S.; Klega, K.; Tsuji, J.; Tanhaemami, M.; Hall, D.; Barkauskas, D.A.; Krailo, M.D.; Cibulskis, C.; Nag, A.; Thorner, A.R.; et al. Circulating Tumor DNA Is Prognostic in Intermediate-Risk Rhabdomyosarcoma: A Report from the Children’s Oncology Group. J. Clin. Oncol. 2023, 41, 2382–2393. [Google Scholar] [CrossRef]
- Heske, C.M.; Mascarenhas, L. Relapsed rhabdomyosarcoma. J. Clin. Med. 2021, 10, 804. [Google Scholar] [CrossRef]
- Defachelles, A.S.; Bogart, E.; Casanova, M.; Merks, H.; Bisogno, G.; Calareso, G.; Gallego Melcon, S.; Gatz, S.; Le Deley, M.C.; McHugh, K.; et al. Randomized phase 2 trial of the combination of vincristine and irinotecan with or without temozolomide, in children and adults with refractory or relapsed rhabdomyosarcoma (RMS). J. Clin. Oncol. 2019, 37, 10000. [Google Scholar] [CrossRef]
- Mascarenhas, L.; Lyden, E.R.; Breitfeld, P.P.; Walterhouse, D.O.; Donaldson, S.S.; Rodeberg, D.A.; Parham, D.M.; Anderson, J.R.; Meyer, W.H.; Hawkins, D.S. Risk-based treatment for patients with first relapse or progression of rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer 2019, 125, 2602–2609. [Google Scholar] [CrossRef]
- Chisholm, J.C.; Marandet, J.; Rey, A.; Scopinaro, M.; de Toledo, J.S.; Merks, J.H.; O‘Meara, A.; Stevens, M.C.; Oberlin, O. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: A nomogram to better define patients who can be salvaged with further therapy. J. Clin. Oncol. 2011, 29, 1319–1325. [Google Scholar] [CrossRef]
- Smith, L.M.; Anderson, J.R.; Qualman, S.J.; Crist, W.M.; Paidas, C.N.; Teot, L.A.; Pappo, A.S.; Link, M.P.; Grier, H.E.; Wiener, E.S.; et al. Which patients with microscopic disease and rhabdomyosarcoma experience relapse after therapy? A report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J. Clin. Oncol. 2001, 19, 4058–4064. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Bisogno, G.; Garaventa, A.; Cecchetto, G.; Ferrari, A.; Sotti, G.; Donfrancesco, A.; Madon, E.; Casula, L.; Carli, M.; et al. Outcomes and prognostic factors after recurrence in children and adolescents with nonmetastatic rhabdomyosarcoma. Cancer 2005, 104, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Dantonello, T.M.; Int-Veen, C.; Winkler, P.; Leuschner, I.; Schuck, A.; Schmidt, B.F.; Lochbuehler, H.; Kirsch, S.; Hallmen, E.; Veit-Friedrich, I.; et al. Initial patient characteristics can predict pattern and risk of relapse in localized rhabdomyosarcoma. J. Clin. Oncol. 2008, 26, 406–413, Erratum in J. Clin. Oncol. 2008, 26, 1911. [Google Scholar] [CrossRef] [PubMed]
- Affinita, M.C.; Ferrari, A.; Chiaravalli, S.; Melchionda, F.; Quaglietta, L.; Casanova, M.; Zanetti, I.; Scarzello, G.; Di Pasquale, L.; Di Cataldo, A.; et al. Defining the impact of prognostic factors at the time of relapse for nonmetastatic rhabdomyosarcoma. Pediatr. Blood Cancer 2020, 67, e28674. [Google Scholar] [CrossRef]
- Vaarwerk, B.; Mallebranche, C.; Affinita, M.C.; van der Lee, J.H.; Ferrari, A.; Chisholm, J.C.; Defachelles, A.S.; De Salvo, G.L.; Corradini, N.; Minard-Colin, V.; et al. Is surveillance imaging in pediatric patients treated for localized rhabdomyosarcoma useful? The European experience. Cancer 2020, 126, 823–831. [Google Scholar] [CrossRef]
- Rodeberg, D.A.; Garcia-Henriquez, N.; Lyden, E.R.; Davicioni, E.; Parham, D.M.; Skapek, S.X.; Hayes-Jordan, A.A.; Donaldson, S.S.; Brown, K.L.; Triche, T.J.; et al. Prognostic significance and tumor biology of regional lymph node disease in patients with rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2011, 29, 1304–1311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrari, A.; Casanova, M.; Bisogno, G.; Zanetti, I.; Cecchetto, G.; Bernardi, B.D.; Riccardi, R.; Tamaro, P.; Meazza, C.; Alaggio, R.; et al. Rhabdomyosarcoma in infants younger than one year old: A report from the Italian Cooperative Group. Cancer 2003, 97, 2597–2604. [Google Scholar] [CrossRef]
- Sparber-Sauer, M.; Stegmaier, S.; Vokuhl, C.; Seitz, G.; von Kalle, T.; Scheer, M.; Münter, M.; Bielack, S.S.; Weclawek-Tompol, J.; Ladenstein, R.; et al. Rhabdomyosarcoma diagnosed in the first year of life: Localized, metastatic, and relapsed disease. Outcome data from five trials and one registry of the Cooperative Weichteilsarkom Studiengruppe (CWS). Pediatr. Blood Cancer 2019, 66, e27652. [Google Scholar] [CrossRef]
- Malempati, S.; Rodeberg, D.A.; Donaldson, S.S.; Lyden, E.R.; Anderson, J.R.; Hawkins, D.S.; Arndt, C.A.S. Rhabdomyosarcoma in infants younger than 1 year: A report from the children’s oncology group. Cancer 2011, 117, 3493–3501. [Google Scholar] [CrossRef]
- Bradley, J.A.; Kayton, M.L.; Chi, Y.Y.; Hawkins, D.S.; Tian, J.; Breneman, J.; Wolden, S.L.; Walterhouse, D.; Rodeberg, D.A.; Donaldson, S.S. Treatment Approach and Outcomes in Infants With Localized Rhabdomyosarcoma: A Report From the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.H.; Heyn, R.; Tefft, M.; Hays, D.N.; Newton, W.A.; Beltangady, M. Infants younger than 1 year of age with rhabdomyosarcoma. Cancer 1986, 58, 2606–2610. [Google Scholar] [CrossRef]
- Mascarenhas, L.; Lyden, E.R.; Breitfeld, P.P.; Walterhouse, D.O.; Donaldson, S.S.; Paidas, C.N.; Parham, D.M.; Anderson, J.R.; Meyer, W.H.; Hawkins, D.S. Randomized phase II window trial of two schedules of irinotecan with vincristine in patients with first relapse or progression of rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2010, 28, 4658–4663, Erratum in J. Clin. Oncol. 2011, 29, 1394. https://doi.org/10.1200/JCO.2011.35.7715. Erratum in J. Clin. Oncol. 2015, 33, 2412. https://doi.org/10.1200/JCO.2015.63.3990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mascarenhas, L.; Chi, Y.Y.; Hingorani, P.; Anderson, J.R.; Lyden, E.R.; Rodeberg, D.A.; Indelicato, D.J.; Kao, S.C.; Dasgupta, R.; Spunt, S.L.; et al. Randomized phase II trial of bevacizumab or temsirolimus in combination with chemotherapy for first relapse rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2019, 37, 2866–2874. [Google Scholar] [CrossRef]
- Casanova, M.; Bautista, F.; Campbell-Hewson, Q.; Makin, G.; Marshall, L.V.; Verschuur, A.C.; Cañete Nieto, A.; Corradini, N.; Ploeger, B.A.; Brennan, B.J.; et al. Regorafenib plus Vincristine and Irinotecan in Pediatric Patients with Recurrent/Refractory Solid Tumors: An Innovative Therapy for Children with Cancer Study. Clin. Cancer Res. 2023, 29, 4341–4351. [Google Scholar] [CrossRef]
- Metts, J.; Xue, W.; Gao, Z.; Oberoi, S.; Weiss, A.R.; Venkatramani, R.; Harrison, D.J. Event-free survival in relapsed and refractory rhabdomyosarcoma treated on cooperative group phase II trials: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2024, 71, e31009. [Google Scholar] [CrossRef]
- Parsons, D.W.; Janeway, K.A.; Patton, D.R.; Winter, C.L.; Coffey, B.; Williams, P.M.; Roy-Chowdhuri, S.; Tsongalis, G.J.; Routbort, M.; Ramirez, N.C.; et al. Actionable Tumor Alterations and Treatment Protocol Enrollment of Pediatric and Young Adult Patients with Refractory Cancers in the National Cancer Institute-Children’s Oncology Group Pediatric MATCH Trial. J. Clin. Oncol. 2022, 40, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.; Shepherd, L.; Bryan, G.; Fulbright, H.; Crowther, S.; Wakeling, S.; Stewart, A.; Stewart, C.; Chisholm, J.; Gibson, F. A systematic review of early phase studies for children and young people with relapsed and refractory rhabdomyosarcoma: The REFoRMS-SR project. Int. J. Cancer 2024, 154, 1235–1260. [Google Scholar] [CrossRef] [PubMed]
- Defachelles, A.S.; Breunis, W.B.; Casanova, M.; Minard-Collin, V.; Hjadun, R.; Wasti, A.; Fajardo, R.D.; van Scheltinga, S.T.; Heenen, D.; Heinz, A.T.; et al. Relapsed rhabdomyosarcoma: Treatment recommendations from the European pediatric soft tissue sarcoma study group (EpSSG). Br. J. Cancer 2025, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Heinz, A.T.; Ebinger, M.; Schönstein, A.; Fuchs, J.; Timmermann, B.; Seitz, G.; Vokuhl, C.; Münter, M.W.; Pajtler, K.W.; Stegmaier, S.; et al. Second-line treatment of pediatric patients with relapsed rhabdomyosarcoma adapted to initial risk stratification: Data of the European Soft Tissue Sarcoma Registry (SoTiSaR). Pediatr. Blood Cancer 2023, 70, e30363. [Google Scholar] [CrossRef]
- Mattke, A.C.; Bailey, E.J.; Schuck, A.; Dantonello, T.; Leuschner, I.; Klingebiel, T.; Treuner, J.; Koscielniak, E. Does the time-point of relapse influence outcome in pediatric rhabdomyosarcomas? Pediatr. Blood Cancer 2009, 52, 772–776. [Google Scholar] [CrossRef]
- McCollough, C.H.; Rajendran, K.; Leng, S.; Yu, L.; Fletcher, J.G.; Stierstorfer, K.; Flohr, T.G. The technical development of photon-counting detector CT. Eur. Radiol. 2023, 33, 5321–5330. [Google Scholar] [CrossRef]
- Sawall, S.; Amato, C.; Klein, L.; Wehrse, E.; Maier, J.; Kachelrieß, M. Toward molecular imaging using spectral photon-counting computed tomography? Curr. Opin. Chem. Biol. 2021, 63, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Alberts, I.; Sari, H.; Mingels, C.; Afshar-Oromieh, A.; Pyka, T.; Shi, K.; Rominger, A. Long-axial field-of-view PET/CT: Perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023, 23, 28. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulou-Strauss, A.; Pan, L.; Sachpekidis, C. Long axial field of view (LAFOV) PET-CT: Implementation in static and dynamic oncological studies. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3354–3362. [Google Scholar] [CrossRef] [PubMed]
- Borgwardt, L.; Brok, J.; Andersen, K.F.; Madsen, J.; Gillings, N.; Fosbøl, M.Ø.; Denholt, C.L.; Petersen, I.N.; Sørensen, L.S.; Enevoldsen, L.H.; et al. Performing [18F]MFBG Long–Axial-Field-of-View PET/CT Without Sedation or General Anesthesia for Imaging of Children with Neuroblastoma. J. Nucl. Med. 2024, 65, 1286–1292. [Google Scholar] [CrossRef]
- Crane, J.N.; Graham, D.S.; Mona, C.E.; Nelson, S.D.; Samiei, A.; Dawson, D.W.; Dry, S.M.; Masri, M.G.; Crompton, J.G.; Benz, M.R.; et al. Fibroblast Activation Protein Expression in Sarcomas. Sarcoma 2023, 2023, 2480493. [Google Scholar] [CrossRef]
- Giammarile, F.; Knoll, P.; Paez, D.; Estrada Lobato, E.; Calapaquí Terán, A.K.; Delgado Bolton, R.C. Fibroblast Activation Protein Inhibitor (FAPI) PET Imaging in Sarcomas: A New Frontier in Nuclear Medicine. Semin. Nucl. Med. 2024, 54, 340–344. [Google Scholar] [CrossRef]
- Gu, B.; Liu, X.; Wang, S.; Xu, X.; Liu, X.; Hu, S.; Yan, W.; Luo, Z.; Song, S. Head-to-head evaluation of [18F]FDG and [68 Ga]Ga-DOTA-FAPI-04 PET/CT in recurrent soft tissue sarcoma. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2889–2901. [Google Scholar] [CrossRef]
- van Ewijk, R.; Vaarwerk, B.; Breunis, W.B.; Schoot, R.A.; Ter Horst, S.A.; van Rijn, R.R.; van der Lee, J.H.; Merks, J.H. The value of early tumor size response to chemotherapy in pediatric rhabdomyosarcoma. Cancers 2021, 13, 510. [Google Scholar] [CrossRef]
- Vaarwerk, B.; van der Lee, J.H.; Breunis, W.B.; Orbach, D.; Chisholm, J.C.; Cozic, N.; Jenney, M.; van Rijn, R.R.; McHugh, K.; Gallego, S.; et al. Prognostic relevance of early radiologic response to induction chemotherapy in pediatric rhabdomyosarcoma: A report from the International Society of Pediatric Oncology Malignant Mesenchymal Tumor 95 study. Cancer 2018, 124, 1016–1024. [Google Scholar] [CrossRef]
- Hawkins, C.M.; Gill, A.E. Introduction to interventional radiology’s role in palliative care for children with cancer: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatr. Blood Cancer 2023, 70, e30238. [Google Scholar] [CrossRef] [PubMed]
- Tomasian, A.; Filippiadis, D.K.; Tutton, S.; Deschamps, F.; Cazzato, R.L.; Prologo, J.D.; Kelekis, A.; Levy, J.; Gangi, A.; Garnon, J.; et al. Comprehensive Palliative Musculoskeletal Interventional Radiology Care for Patients with Cancer. Radiographics 2022, 42, 1654–1669. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Fang, A.; Khorshidi, F.; Habibollahi, P.; Kutsenko, O.; Etezadi, V.; Hunt, S.; Nezami, N. New Developments in Image-Guided Percutaneous Irreversible Electroporation of Solid Tumors. Curr. Oncol. Rep. 2023, 25, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Chapiro, J.; Geschwind, J.F.H. From the Guest Editor: Interventional Oncology: The Fourth Pillar of Oncology. Cancer J. 2016, 22, 363–364. [Google Scholar] [CrossRef]
- Patel, P.A.; Muñoz, F.G. Interventional oncology in children: Where are we now? J. Med. Imaging Radiat. Oncol. 2024. [Google Scholar] [CrossRef]
- Gómez, F.M.; Aguado, A.; Barnacle, A.M.; Runge, J.H.; Temple, M. Opportunities for interventional radiology in paediatric oncology. EJC Paediatr. Oncol. 2024, 3. [Google Scholar] [CrossRef]
- Roebuck, D.J. Paediatric interventional oncology. Cancer Imaging 2010, 10 (Suppl. A), S27. [Google Scholar] [CrossRef]
- van Ewijk, R.; Schoot, R.A.; Sparber-Sauer, M.; Ter Horst, S.A.; Jehanno, N.; Borgwardt, L.; de Keizer, B.; Merks, J.H.; de Luca, A.; McHugh, K.; et al. European guideline for imaging in paediatric and adolescent rhabdomyosarcoma—Joint statement by the European Paediatric Soft Tissue Sarcoma Study Group, the Cooperative Weichteilsarkom Studiengruppe and the Oncology Task Force of the European Society of Paediatric Radiology. Pediatr. Radiol. 2021, 51, 1940–1951. [Google Scholar] [CrossRef]
- Lak, N.S.; van Zogchel, L.M.; Zappeij-Kannegieter, L.; Javadi, A.; Van Paemel, R.; Vandeputte, C.; De Preter, K.; De Wilde, B.; Chicard, M.; Iddir, Y.; et al. Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Pediatric Rhabdomyosarcoma. JCO Precis. Oncol. 2023, 7, e2200113. [Google Scholar] [CrossRef]
- Ruhen, O.; Lak, N.S.; Stutterheim, J.; Danielli, S.G.; Chicard, M.; Iddir, Y.; Saint-Charles, A.; Di Paolo, V.; Tombolan, L.; Gatz, S.A.; et al. Molecular Characterization of Circulating Tumor DNA in Pediatric Rhabdomyosarcoma: A Feasibility Study. JCO Precis. Oncol. 2022, 6, e2100534. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of Circulating Tumor DNA in Early-and Late-Stage Human Malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef]
- Siravegna, G.; Mussolin, B.; Venesio, T.; Marsoni, S.; Seoane, J.; Dive, C.; Papadopoulos, N.; Kopetz, S.; Corcoran, R.B.; Siu, L.L.; et al. How liquid biopsies can change clinical practice in oncology. Ann. Oncol. 2019, 30, 1580–1590. [Google Scholar] [CrossRef]
- Chicard, M.; Colmet-Daage, L.; Clement, N.; Danzon, A.; Bohec, M.; Bernard, V.; Baulande, S.; Bellini, A.; Deveau, P.; Pierron, G.; et al. Whole-exome sequencing of cell-free DNA reveals temporo-spatial heterogeneity and identifies treatment-resistant clones in neuroblastoma. Clin. Cancer Res. 2018, 24, 939–949. [Google Scholar] [CrossRef]
- Lak, N.S.; Voormanns, T.L.; Zappeij-Kannegieter, L.; van Zogchel, L.M.; Fiocco, M.; van Noesel, M.M.; Merks, J.H.; van der Schoot, C.E.; Tytgat, G.A.; Stutterheim, J. Improving Risk Stratification for Pediatric Patients with Rhabdomyosarcoma by Molecular Detection of Disseminated Disease. Clin. Cancer Res. 2021, 27, 5576–5585. [Google Scholar] [CrossRef]
- Yohe, M.E.; Heske, C.M.; Stewart, E.; Adamson, P.C.; Ahmed, N.; Antonescu, C.R.; Chen, E.; Collins, N.; Ehrlich, A.; Galindo, R.L.; et al. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr. Blood Cancer 2019, 66, e27869. [Google Scholar] [CrossRef]
- Van Erp, A.E.M.; Versleijen-Jonkers, Y.M.H.; Van Der Graaf, W.T.A.; Fleuren, E.D.G. Targeted therapy-based combination treatment in rhabdomyosarcoma. Mol. Cancer Ther. 2018, 17, 1365–1380. [Google Scholar] [CrossRef]
- Fleuren, E.D.G.; Terry, R.L.; Meyran, D.; Omer, N.; Trapani, J.A.; Haber, M.; Neeson, P.J.; Ekert, P.G. Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors. Biomedicines 2021, 9, 1798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Majzner, R.G.; Rietberg, S.P.; Labanieh, L.; Sotillo, E.; Weber, E.W.; Lynn, R.C.; Theruvath, J.L.; Yuan, C.M.; Xu, P.; Nguyen, S.M.; et al. Low CD19 Antigen Density Diminishes Efficacy of CD19 CAR T Cells and Can be Overcome By Rational Redesign of CAR Signaling Domains. Blood 2018, 132 (Suppl. S1), 963. [Google Scholar] [CrossRef]
- Anderson, J. Unleashing the immune response against childhood solid cancers. Pediatr. Blood Cancer 2017, 64, e26548. [Google Scholar] [CrossRef]
- Dean, A.Q.; Luo, S.; Twomey, J.D.; Zhang, B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021, 13, 1951427, Erratum in MAbs 2021, 13, 1966993. https://doi.org/10.1080/19420862.2021.1966993. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olsen, H.E.; Lynn, G.M.; Valdes, P.A.; Cerecedo Lopez, C.D.; Ishizuka, A.S.; Arnaout, O.; Bi, W.L.; Peruzzi, P.P.; Chiocca, E.A.; Friedman, G.K.; et al. Therapeutic cancer vaccines for pediatric malignancies: Advances, challenges, and emerging technologies. Neuro-Oncol. Adv. 2021, 3, vdab027. [Google Scholar] [CrossRef]
- Chen, C.; Dorado Garcia, H.; Scheer, M.; Henssen, A.G. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front. Oncol. 2019, 9, 1458. [Google Scholar] [CrossRef]
Risk Group | Subgroup | OS (%) * | EFS (%) * | Fusion | IRS Group | Site | Nodes | Size or Age |
---|---|---|---|---|---|---|---|---|
Low | A | 96.7 | 93.7 | FN | I | Any | N0 | Both Fav |
Standard | B | 93.2 | 87.4 | FN | I | Any | N0 | One/both Unf |
C | 93.4 | 76.9 | FN | II, III | Fav | N0 | Any | |
High | D | 84.0 | 73.3 | FN | II, III | Unf | N0 | Any |
E | 76.7 | 67.3 | FN | II, III | Any | N1 | Any | |
F | FP | I, II, III | Any | N0 | Any | |||
Very High | G | 49.7 | 48.8 | FP | II, III | Any | N1 | Any |
H | 49.3 ** | 35.5 ** | Any | IV | Any | Any | Any |
Site | Modality | Comment |
---|---|---|
Primary site | MRI | Imaging should include regional LN. |
Lungs | CT | Definition of lung metastases: ≥1 nodule(s) ≥10 mm max diameter; ≥2 nodules 5–10 mm diameter; or ≥5 nodules <5 mm diameter. Lesions not fulfilling these criteria should be regarded as indeterminate nodules, do not require biopsy and will not upstage to Very High Risk. |
Bones | 18FDG PET-CT/MR | |
Distant or regional LN | 18FDG PET-CT/MR, WB-MRI | Any LNs beyond regional nodal basin are considered distant. If suspicion, sampling is indicated. If radiographically normal but primary is paratesticular or extremity, sampling is recommended. |
Bone marrow | 18FDG PET-CT/MR, WBMRI, BMA/Bx | Variations in practice for BMA/Bx; false negative 18FDG PET-CT is rare. |
Pleural/peritoneal nodules | MRI or CT | If present, consider M1. |
Serosal effusions | MRI | If no nodularity, but moderate- to high-volume effusion, cytologic examination recommended to look for malignant cells. |
CSF | CSF cytology | Part of staging in parameningeal RMS. If positive, consider M1. |
Multifocal disease | MRI or CT | If present, consider M1. |
Consortium | Study | Years | Chemo | Author [Ref.] |
---|---|---|---|---|
IRSG | IRS I | 1972–1978 | VAC + Doxorubicin | Maurer [95] |
IRSG | IRS II | 1978–1984 | VAC + Doxorubicin | Maurer [96] |
IRSG | IRS III | 1984–1991 | VAC + Doxorubicin + Cisplat ± E | Crist [97] |
IRSG | IRS IV | 1991–1995 | IE or Vincristine + Melphalan | Breneman [81] |
IRSG | CCG6941/POG9490 | 1994–1996 | Topo | Pappo [98] |
IRSG | D9501 | 1996–1999 | Window Topo/Cyclo | Walterhouse [99] |
IRSG | D9802 | 1999–2000 | Window Irinotecan ± vincristine | Pappo [100] |
IRSG | D9803 | 1999–2005 | VAC/VTC | Arndt [101] |
COG | ARST0431 | 2006–2008 | VDC/IE VIr/VAC | Weigel [88] |
COG | ARST0531 | 2006–2012 | VAC vs. VAC/VIr | Casey [102] |
COG | ARST08P1 | 2010–2013 | ARST0431 backbone + cixu or TMZ | Malempati [103] |
COG | ARST1431 | 2016–2022 | VAC/VIr vs. VAC/VIr +Temsirolimus | Gupta [24] |
ICG | RMS79 | 1979–1987 | VDC/VAC (2 schedules Actinomycin) | Carli [104] |
MMT | MMT89 | 1989–1991 | CEV/IVA/VIE | Carli [105] |
MMT | MMT91 | 1991–1995 | CEV/IVA/VIE/Mephalan + ASCR | Carli [105] |
MMT | MMT95 | 1995–2003 | IVA/IVA + carbo, epirubicin, E | Oberlin [106] |
MMT | MMT98 | 1998–2005 | 6-drug + VAC maintenance × 9 cycles | McDowell [107] |
EpSSG | MTS2008 | 2010–2016 | IVADO | Schoot [6] |
EpSSG | BERNIE | 2010–2016 | IVADO ± Bevacizumab | Chisholm [108] |
CWS | CWS81 | 1981–1986 | VACA | Koscielniak [109] |
CWS | CWS86 | 1985–1990 | VAIA | Koscielniak [110] |
CWS | CWS91 | 1990–1995 | EVAIA or CEV/IVA/VIE + HDC | Sparber-Sauer [92] |
CWS | CWS96 | 1995–2003 | CEVAIE + HD or OMT | Klingebiel [111] |
CWS | CWS-IV 2002 | 2002–2010 | Topo/Carbo + IVA/IVDo + Topo/Cyclo or IVA/CEV/IVE | Heinz [11] |
CWS | CWS DOK IV 2004 | 2002–2010 | CEVAIE or VAIA | Heinz [11] |
AIEOP | RMS 4.99 | 1999–2009 | HDC | Bisogno [112] |
Reference | Raney [113] | Pappo [12] | Mazzoleni [144] | Dantonello [145] | Oberlin [82] | Chisholm [142] |
---|---|---|---|---|---|---|
Consortium | COG | COG | AIEOP | CWS | COG, MMT, AIEOP | MMT |
Studies | IRS I | IRS III, IV pilot, IV | RMS 79, 88, 96 | CWS 81, 86, 91, 96 | IRS III, IV pilot, IV, MMT 84, 89, 91, 98, AIEOP RMS 4.99 | MMT 84, 89, 95 |
N | 115 | 605 | 125 | 337 | 788 | 474 |
Diagnosis type | M1 and M0 | M1 and M0 | M0 | M0 | M1 | M0 |
Relapse rate | 34% | 26% | 31% | 29% | - | 36% |
OS | 6% (5-year) | 17% (5-year) | 28.3% (5-year) | 24% (5-year) | 34% (3-year) | 37% (3-year) |
MTTR (months) | - | 13.2 | 17.8 | 17.2 | - | 14 |
Relapse Type | M0 38% M1 62% | M0 46% M1 41% Unk 8% | M0 72% M1 28% | M0 64.4% M1 35.5% | - | M0 76% M1 24% |
Agent | Class | Trial Identifier | Phase |
---|---|---|---|
Lorvotuzumab | ADC | NCT02452554 | 2 |
Tumour-Associated Antigen-Specific Cytotoxic T-Lymphocytes | Cellular therapy | NCT02239861 | 1 |
Eribulin mesylate + Irinotecan | Cytotoxic | NCT03245450 | 1 + 2 |
Nab-paclitaxel | Cytotoxic | NCT01962103 | 1 + 2 |
Vincristine/Irinotecan ± Temozolomide | Cytotoxic | NCT01355445 | 2 |
Trabectedin | Cytotoxic | NCT01453283 | 1 |
Temozolomide + O6-benzylguanine | Cytotoxic | NCT00020150 | 1 |
Liposomal doxorubicin | Cytotoxic | NCT00019630 | 1 |
Oxaliplatin + Irinotecan | Cytotoxic | NCT00101270 | 1 |
ABT-751 | Cytotoxic | NCT00036959 | 1 |
Ixabepilone | Cytotoxic | NCT00030108 | 1 |
Vincristine + irinotecan | Cytotoxic | NCT00025363 | 2 |
Eribulin | Cytotoxic | NCT03441360 | 2 |
Exatecan | Cytotoxic | NCT00055939 | 2 |
Trabectedin | Cytotoxic | NCT00070109 | 2 |
Ixabepilone | Cytotoxic | NCT00331643 | 2 |
Pemetrexed | Cytotoxic | NCT00520936 | 2 |
Topotecan | Cytotoxic | NCT00003745 | 2 |
Irinotecan | Cytotoxic | NCT00004078 | 2 |
Auristatin | Cytotoxic | NCT00064220 | 2 |
Vinorelbine | Cytotoxic | NCT00003234 | 2 |
Arsenic trioxide | Cytotoxic | NCT00024258 | 2 |
Brostallicin | Cytotoxic | NCT00041249 | 2 |
Exatecan | Cytotoxic | NCT00041236 | 2 |
Docetaxel | Cytotoxic | NCT00002825 | 2 |
Oxaliplatin | Cytotoxic | NCT00091182 | 2 |
Becatecarin | Cytotoxic | NCT00006102 | 2 |
Sirolimus + celecoxib + etoposide/cyclophosphamide | Cytotoxic + mTORi | NCT01331135 | 1 |
Temsirolimus + liposomal doxorubicin | Cytotoxic + mTORi | NCT00949325 | 1 + 2 |
Vinblastine + Cyclophosphamide + Temsirolimus or Bevacizumab | Cytotoxic + mTORi | NCT01222715 | 2 |
Gefitinib + Irinotecan | Cytotoxic + TKI | NCT00132158 | 1 |
Surufatinib + Gemcitabine | Cytotoxic + TKI | NCT05093322 | 1 + 2 |
Sorafenib + Irinotecan | Cytotoxic + TKI | NCT01518413 | 1 |
Erlotinib + Temozolomide | Cytotoxic + TKI | NCT00077454 | 1 |
Continuous Hyperthermic Peritoneal Perfusion (Cisplatin) | HIPEC | NCT00436657 | 1 |
Bempegaldesleukin + Nivolumab | Immunotherapy | NCT04730349 | 1 + 2 |
Atezolizumab | Immunotherapy | NCT02541604 | 1 |
Tumour Vaccination + R-hIL-7 after cytotoxic chemo | Immunotherapy | NCT00923351 | 1 + 2 |
Nivolumab ± Ipilimumab | Immunotherapy | NCT02304458 | 1 + 2 |
Donor lymphocyte infusions | Immunotherapy | NCT00161187 | 1 |
JX-594 (Vaccinia GM-CSF/Thymidine Kinase-Deactivated Virus) | Intratumoural Local control | NCT01169584 | 1 |
R1507 | MAb | NCT00642941 | 2 |
TB-403 | MAb | NCT02748135 | 1 |
Enoblitzumab | MAb | NCT02982941 | 1 |
Cixutumumab + Doxorubicin | MAb | NCT00720174 | 1 |
Cixutumumab + Temsirolimus | MAb | NCT01614795 | 2 |
Cixutumumab | MAb | NCT00831844 | 2 |
Sonidegib | Other | NCT01125800 | 1 + 2 |
Afatinib | Other | NCT02372006 | 1 + 2 |
Vorinostat | Other | NCT00918489 | 2 |
Auto SCT followed by Cyclophosphamide + Thalidomide | Other | NCT01661400 | 1 |
Gallium nitrate | Other | NCT00002543 | 1 |
Simvastatin + Topotecan + Cyclophosphamide | Other | NCT02390843 | 1 |
Tanespimycin | Other | NCT00093821 | 1 |
Abemaciclib | Other | NCT02644460 | 1 |
Adavosertib + Irinotecan | Other | NCT02095132 | 1 + 2 |
Alvocidib | Other | NCT00012181 | 1 |
Talabostat + Temozolomide or Carboplatin | Other | NCT00303940 | 1 |
Alisertib | Other | NCT01154816 | 2 |
Temsirolimus | TKI | NCT00106353 | 1 |
Regorafenib | TKI | 2013-003579-36 | 1 |
Cobimetinib | TKI | NCT02639546 | 1 + 2 |
Pazopanib | TKI | NCT01956669 | 2 |
Everolimus | TKI | NCT00187174 | 1 |
Lenvatinib + Everolimus | TKI | NCT03245151 | 1 + 2 |
Ceritinib | TKI | NCT01742286 | 1 |
Imatinib | TKI | NCT00006357 | 1 + 2 |
Regorafenib | TKI | NCT02048371 | 2 |
Sorafenib | TKI | NCT01502410 | 2 |
Dasatinib | TKI | NCT00464620 | 2 |
Crizotinib | TKI | NCT01524926 | 2 |
Imatinib | TKI | NCT00031915 | 2 |
Imatinib | TKI | NCT00154388 | 2 |
Decitabine + Vaccine Therapy | Vaccine | NCT01241162 | 1 |
Seneca Valley Virus-001 + Cyclophosphamide | Vaccine | NCT01048892 | 1 |
Herpes Simplex Virus-1 Mutant HSV1716 | Vaccine | NCT00931931 | 1 |
Ganitumab + Dasatinib | Mab + TKI | NCT3041701 | 1 |
Vinorelbine + Mocetinostat | Cytotoxic + HDACi | NCT4299113 | 1 |
Prexasertib + Irinotecan | Cytotoxic + CHK1i | NCT4095221 | 1 + 2 |
Abemaciclib + Irinotecan or Irinotecan/Temozolomide | Cytotoxic + CDK4/6 | NCT4238819 | 1 |
Sirolimus + metronomic chemotherapy | Cytotoxic + mTORi | NCT2574728 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasti, A.T.; Bisogno, G.; Hladun, R.; Defachelles, A.-S.; Casanova, M.; Breunis, W.B.; Gatz, S.A.; Schoot, R.A.; Ferrari, A.; Jenney, M.; et al. Childhood, Adolescent and Young Adult Poor-Prognosis Rhabdomyosarcoma. Cancers 2025, 17, 3100. https://doi.org/10.3390/cancers17193100
Wasti AT, Bisogno G, Hladun R, Defachelles A-S, Casanova M, Breunis WB, Gatz SA, Schoot RA, Ferrari A, Jenney M, et al. Childhood, Adolescent and Young Adult Poor-Prognosis Rhabdomyosarcoma. Cancers. 2025; 17(19):3100. https://doi.org/10.3390/cancers17193100
Chicago/Turabian StyleWasti, Ajla T., Gianni Bisogno, Raquel Hladun, Anne-Sophie Defachelles, Michela Casanova, Willemijn B. Breunis, Susanne A. Gatz, Reineke A. Schoot, Andrea Ferrari, Meriel Jenney, and et al. 2025. "Childhood, Adolescent and Young Adult Poor-Prognosis Rhabdomyosarcoma" Cancers 17, no. 19: 3100. https://doi.org/10.3390/cancers17193100
APA StyleWasti, A. T., Bisogno, G., Hladun, R., Defachelles, A.-S., Casanova, M., Breunis, W. B., Gatz, S. A., Schoot, R. A., Ferrari, A., Jenney, M., Alaggio, R., Davila Fajardo, R., Terwisscha van Scheltinga, S., Shipley, J., Meister, M. T., R. van Rijn, R., Anderson, J., Sparber-Sauer, M., Chisholm, J. C., & Merks, J. H. M. (2025). Childhood, Adolescent and Young Adult Poor-Prognosis Rhabdomyosarcoma. Cancers, 17(19), 3100. https://doi.org/10.3390/cancers17193100