Interaction Between Mesenchymal Stromal Cells and Tumor Cells Present in Cervical Cancer Influences Macrophage Polarization
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture of Mesenchymal Stromal Cells (MSCs)
2.2. Culture of Tumor Cell Lines
2.3. Obtention of Peripheral Blood Mononuclear Cells (PBMCs)
2.4. Obtention of Monocytes
2.5. Obtention of CD3+/CD4+ T Lymphocytes
2.6. Evaluation of Membrane Markers in Macrophages
2.7. Assessment of Macrophage Phagocytic Capacity
2.8. Detection of Intracellular IDO, IL-4, and IL-10 Molecules in Macrophages
2.9. T Lymphocyte Proliferation Inhibition Capacity of Macrophages
2.10. Capacity of Macrophages for Generation of Regulatory T Lymphocytes
2.11. Evaluation of Cytokines Present in the Supernatant
2.12. Statistical Analysis
3. Results
3.1. NCx-MSCs in Contrast to CeCa-MSCs Decreased the CD163 Expression on Macrophages Cocultured with the CaSki Cell Line
3.2. NCx-MSCs in Contrast to CeCa-MSCs Decreased the Intracellular Expression of IL-4 and IL-10 in Macrophages Cocultured with the C33A Cell Line
3.3. Macrophages from Cocultures with NCx-MSCs and C33A and CaSki Cell Lines Did Not Decrease T Lymphocyte Proliferation
3.4. Macrophages from Cocultures with TCs/NCx-MSCs Decreased Their Capacity to Induce the Generation of CD4+CD25+FOXP3+ Regulatory T Cells
3.5. NCx-MSCs Decreased the Percentage of Macrophages with Phagocytic Capacity Cocultured with Tumor Cell Lines
3.6. NCx-MSCs Decreased Soluble IL-10 in Cocultures of Macrophages with Tumor Cells and Increased Soluble IL-6 in Those with the C33A Cell Line
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez-Rodriguez, I.E.; Medina-Gomez, Y.G.; Balderrama-Ibarra, R.I.; Ramos-Vega, J.C.; Ramos-Vega, K.W. Cervical Cancer in Mexico: From a Renowned Vaccination Program to Unfulfilled Needs in Treatment Access. Cureus 2024, 16, e61553. [Google Scholar] [CrossRef]
- Wang, M.; Huang, K.; Wong, M.C.S.; Huang, J.; Jin, Y.; Zheng, Z.-J. Global Cervical Cancer Incidence by Histological Subtype and Implications for Screening Methods. J. Epidemiol. Glob. Health 2024, 14, 94–101. [Google Scholar] [CrossRef]
- Kousar, K.; Ahmad, T.; Naseer, F.; Kakar, S.; Anjum, S. Review Article: Immune Landscape and Immunotherapy Options in Cervical Carcinoma. Cancers 2022, 14, 4458. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Cirilo, L.; Weiss-Steider, B.; Vargas-Angeles, C.A.; Corona-Ortega, M.T.; Rangel-Corona, R. Immune Microenvironment of Cervical Cancer and the Role of IL-2 in Tumor Promotion. Cytokine 2023, 170, 156334. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, D.; Kim, N.Y.; Seo, I.; Park, N.J.; Chong, G.O. Role of Tumor-Associated Macrophages in Cervical Cancer: Integrating Classical Perspectives with Recent Technological Advances. Life 2024, 14, 443. [Google Scholar] [CrossRef]
- Sánchez-Reyes, K.; Bravo-Cuellar, A.; Hernández-Flores, G.; Lerma-Díaz, J.M.; Jave-Suárez, L.F.; Gómez-Lomelí, P.; de Celis, R.; Aguilar-Lemarroy, A.; Domínguez-Rodríguez, J.R.; Ortiz-Lazareno, P.C. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile. BioMed Res. Int. 2014, 2014, 683068. [Google Scholar] [CrossRef]
- Kerneur, C.; Cano, C.E.; Olive, D. Major Pathways Involved in Macrophage Polarization in Cancer. Front. Immunol. 2022, 13, 1026954. [Google Scholar] [CrossRef]
- Zhang, Q.; Sioud, M. Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting. Int. J. Mol. Sci. 2023, 24, 7493. [Google Scholar] [CrossRef]
- Kos, K.; Salvagno, C.; Wellenstein, M.D.; Aslam, M.A.; Meijer, D.A.; Hau, C.-S.; Vrijland, K.; Kaldenbach, D.; Raeven, E.A.M.; Schmittnaegel, M.; et al. Tumor-Associated Macrophages Promote Intratumoral Conversion of Conventional CD4+ T Cells into Regulatory T Cells via PD-1 Signalling. OncoImmunology 2022, 11, 2063225. [Google Scholar] [CrossRef] [PubMed]
- Lecoultre, M.; Chliate, S.; Espinoza, F.I.; Tankov, S.; Dutoit, V.; Walker, P.R. Radio-Chemotherapy of Glioblastoma Cells Promotes Phagocytosis by Macrophages in Vitro. Radiother. Oncol. 2024, 190, 110049. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends Immunol. 2002, 23, 549–555. [Google Scholar] [CrossRef]
- Puthenveetil, A.; Dubey, S. Metabolic Reprograming of Tumor-Associated Macrophages. Ann. Transl. Med. 2020, 8, 16. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Liu, L.; Wang, J.; Wu, J.; Sun, C. Role of Macrophages in Tumor Progression and Therapy (Review). Int. J. Oncol. 2022, 60, 57. [Google Scholar] [CrossRef]
- Pedraza-Brindis, E.J.; Sánchez-Reyes, K.; Hernández-Flores, G.; Bravo-Cuellar, A.; Jave-Suárez, L.F.; Aguilar-Lemarroy, A.; Gómez-Lomelí, P.; López-López, B.A.; Ortiz-Lazareno, P.C. Culture Supernatants of Cervical Cancer Cells Induce an M2 Phenotypic Profile in THP-1 Macrophages. Cell. Immunol. 2016, 310, 42–52. [Google Scholar] [CrossRef]
- Castro-Manrreza, M.E.; Mayani, H.; Monroy-García, A.; Flores-Figueroa, E.; Chávez-Rueda, K.; Legorreta-Haquet, V.; Santiago-Osorio, E.; Montesinos, J.J. Human Mesenchymal Stromal Cells from Adult and Neonatal Sources: A Comparative In Vitro Analysis of Their Immunosuppressive Properties Against T Cells. Stem Cells Dev. 2014, 23, 1217–1232. [Google Scholar] [CrossRef]
- Hazrati, A.; Malekpour, K.; Mirsanei, Z.; Khosrojerdi, A.; Rahmani-Kukia, N.; Heidari, N.; Abbasi, A.; Soudi, S. Cancer-Associated Mesenchymal Stem/Stromal Cells: Role in Progression and Potential Targets for Therapeutic Approaches. Front. Immunol. 2023, 14, 1280601. [Google Scholar] [CrossRef]
- Liu, T.; Guo, S.; Ji, Y.; Zhu, W. Role of Cancer-Educated Mesenchymal Stromal Cells on Tumor Progression. Biomed. Pharmacother. 2023, 166, 115405. [Google Scholar] [CrossRef]
- Cortés-Morales, V.A.; Chávez-Sánchez, L.; Rocha-Zavaleta, L.; Espíndola-Garibay, S.; Monroy-García, A.; Castro-Manrreza, M.E.; Fajardo-Orduña, G.R.; Apresa-García, T.; Gutiérrez-de la Barrera, M.; Mayani, H.; et al. Mesenchymal Stem/Stromal Cells Derived from Cervical Cancer Promote M2 Macrophage Polarization. Cells 2023, 12, 1047. [Google Scholar] [CrossRef] [PubMed]
- Marrero-Rodriguez, D.; Cortes-Morales, V.A.; Cano-Zaragoza, A.; Martinez-Mendoza, F.; Kerbel-Suton, J.; Vela-Patiño, S.; Chavez-Santoscoy, A.; Hinojosa-Alvarez, S.; Hernandez-Perez, J.; Gomez-Apo, E.; et al. Mesenchymal Stem Cells Induce an Immunosuppressive Microenvironment in Pituitary Tumors. J. Clin. Endocrinol. Metab. 2024, 109, dgae212. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Luna, V.M.; Montesinos, J.J.; Cortés-Morales, V.A.; Navarro-Betancourt, J.R.; Peralta-Ildefonso, J.; Cisneros, B.; Hernández-Gutiérrez, S. In Vitro Evidence of Differential Immunoregulatory Response between MDA-MB-231 and BT-474 Breast Cancer Cells Induced by Bone Marrow-Derived Mesenchymal Stromal Cells Conditioned Medium. CIMB 2022, 45, 268–285. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, J.J.; Mora-García, M.d.L.; Mayani, H.; Flores-Figueroa, E.; García-Rocha, R.; Fajardo-Orduña, G.R.; Castro-Manrreza, M.E.; Weiss-Steider, B.; Monroy-García, A. In Vitro Evidence of the Presence of Mesenchymal Stromal Cells in Cervical Cancer and Their Role in Protecting Cancer Cells from Cytotoxic T Cell Activity. Stem Cells Dev. 2013, 22, 2508–2519. [Google Scholar] [CrossRef]
- García-Rocha, R.; Moreno-Lafont, M.; Mora-García, M.L.; Weiss-Steider, B.; Montesinos, J.J.; Piña-Sánchez, P.; Monroy-García, A. Mesenchymal Stromal Cells Derived from Cervical Cancer Tumors Induce TGF-Β1 Expression and IL-10 Expression and Secretion in the Cervical Cancer Cells, Resulting in Protection from Cytotoxic T Cell Activity. Cytokine 2015, 76, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, H.; Lu, J.; Bi, P.; Wang, F.; Liu, X.; Zhang, B.; Luo, Y.; Li, X. Tumor Cells Induced-M2 Macrophage Favors Accumulation of Treg in Nasopharyngeal Carcinoma. Int. J. Clin. Exp. Pathol. 2017, 10, 8389–8401. [Google Scholar]
- Wang, L.; Wang, C.; Tao, Z.; Zhu, W.; Su, Y.; Choi, W.S. Tumor-Associated Macrophages Facilitate Oral Squamous Cell Carcinomas Migration and Invasion by MIF/NLRP3/IL-1β Circuit: A Crosstalk Interrupted by Melatonin. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2023, 1869, 166695. [Google Scholar] [CrossRef]
- Sousa, S.; Brion, R.; Lintunen, M.; Kronqvist, P.; Sandholm, J.; Mönkkönen, J.; Kellokumpu-Lehtinen, P.-L.; Lauttia, S.; Tynninen, O.; Joensuu, H.; et al. Human Breast Cancer Cells Educate Macrophages toward the M2 Activation Status. Breast Cancer Res. 2015, 17, 101. [Google Scholar] [CrossRef]
- Chen, L.; Shi, Y.; Zhu, X.; Guo, W.; Zhang, M.; Che, Y.; Tang, L.; Yang, X.; You, Q.; Liu, Z. IL-10 Secreted by Cancer-associated Macrophages Regulates Proliferation and Invasion in Gastric Cancer Cells via c-Met/STAT3 Signaling. Oncol. Rep. 2019, 42, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, Y.; Du, W.; Gong, L.; Chang, H.; Zou, Z. Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. J. Biomed. Sci. 2019, 26, 78. [Google Scholar] [CrossRef]
- Berti, F.C.B.; Pereira, A.P.L.; Cebinelli, G.C.M.; Trugilo, K.P.; Brajão de Oliveira, K. The Role of Interleukin 10 in Human Papilloma Virus Infection and Progression to Cervical Carcinoma. Cytokine Growth Factor Rev. 2017, 34, 1–13. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, F.; Wang, X.; Liu, K. The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers 2022, 14, 2756. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Moriyama, M.; Furukawa, S.; Rafiul, H.A.S.M.; Maruse, Y.; Jinno, T.; Tanaka, A.; Ohta, M.; Ishiguro, N.; Yamauchi, M.; et al. CD163+CD204+ Tumor-Associated Macrophages Contribute to T Cell Regulation via Interleukin-10 and PD-L1 Production in Oral Squamous Cell Carcinoma. Sci. Rep. 2017, 7, 1755. [Google Scholar] [CrossRef]
- Li, M.; He, L.; Zhu, J.; Zhang, P.; Liang, S. Targeting Tumor-Associated Macrophages for Cancer Treatment. Cell Biosci. 2022, 12, 85. [Google Scholar] [CrossRef]
- Min, H.; Xu, L.; Parrott, R.; Overall, C.C.; Lillich, M.; Rabjohns, E.M.; Rampersad, R.R.; Tarrant, T.K.; Meadows, N.; Fernandez-Castaneda, A.; et al. Mesenchymal Stromal Cells Reprogram Monocytes and Macrophages with Processing Bodies. Stem Cells 2021, 39, 115–128. [Google Scholar] [CrossRef]
- Solís-Martínez, R.; Hernández-Flores, G.; Ochoa-Carrillo, F.J.; Ortiz-Lazareno, P.; Bravo-Cuellar, A. Macrófagos Asociados a Tumores Contribuyen a La Progresión Del Cáncer de Próstata. Gac. Mex. Oncol. 2015, 14, 97–102. [Google Scholar] [CrossRef]
- Gao, J.; Liang, Y.; Wang, L. Shaping Polarization Of Tumor-Associated Macrophages in Cancer Immunotherapy. Front. Immunol. 2022, 13, 888713. [Google Scholar] [CrossRef]
- Lendeckel, U.; Venz, S.; Wolke, C. Macrophages: Shapes and Functions. ChemTexts 2022, 8, 12. [Google Scholar] [CrossRef]
- Li, L.; Yu, S.; Zang, C. Low Necroptosis Process Predicts Poor Treatment Outcome of Human Papillomavirus Positive Cervical Cancers by Decreasing Tumor-Associated Macrophages M1 Polarization. Gynecol. Obstet. Investig. 2018, 83, 259–267. [Google Scholar] [CrossRef]
- Tfilin, M.; Gobshtis, N.; Fozailoff, D.; Fraifeld, V.E.; Turgeman, G. Polarized Anti-Inflammatory Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Improve Cognitive Function in Aged Mice. Int. J. Mol. Sci. 2023, 24, 4490. [Google Scholar] [CrossRef]
- Zhou, C.; Bai, X.-Y. Strategies for the Induction of Anti-Inflammatory Mesenchymal Stem Cells and Their Application in the Treatment of Immune-Related Nephropathy. Front. Med. 2022, 9, 891065. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez, F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef]
- Strizova, Z.; Benesova, I.; Bartolini, R.; Novysedlak, R.; Cecrdlova, E.; Foley, L.K.; Striz, I. M1/M2 Macrophages and Their Overlaps—Myth or Reality? Clin. Sci. 2023, 137, 1067–1093. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.-H.; Jin, L. Macrophage Polarization in Physiological and Pathological Pregnancy. Front. Immunol. 2019, 10, 792. [Google Scholar] [CrossRef]
- Ferns, D.M.; Kema, I.P.; Buist, M.R.; Nijman, H.W.; Kenter, G.G.; Jordanova, E.S. Indoleamine-2,3-Dioxygenase (IDO) Metabolic Activity Is Detrimental for Cervical Cancer Patient Survival. OncoImmunology 2015, 4, e981457. [Google Scholar] [CrossRef]
- Giri, J.; Das, R.; Nylen, E.; Chinnadurai, R.; Galipeau, J. CCL2 and CXCL12 Derived from Mesenchymal Stromal Cells Cooperatively Polarize IL-10+ Tissue Macrophages to Mitigate Gut Injury. Cell Rep. 2020, 30, 1923–1934.e4. [Google Scholar] [CrossRef]
- Martínez, V.R.; Londoño, J.; Ávila-Portillo, L.M.; Rueda, J.C.; Padilla-Ortiz, D.M.; Salgado, D.; Muñoz, N.; Santos, A.M. Células Estromales Mesenquimales Representan Una Opción Terapéutica En Pacientes Con Esclerosis Sistémica. Rev. Colomb. Reumatol. 2020, 27, 126–134. [Google Scholar] [CrossRef]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The Multifaceted Nature of IL-10: Regulation, Role in Immunological Homeostasis and Its Relevance to Cancer, COVID-19 and Post-COVID Conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef]
- Deimel, L.P.; Li, Z.; Roy, S.; Ranasinghe, C. STAT3 Determines IL-4 Signalling Outcomes in Naïve T Cells. Sci. Rep. 2021, 11, 10495. [Google Scholar] [CrossRef]
- Guan, T.; Zhou, X.; Zhou, W.; Lin, H. Regulatory T Cell and Macrophage Crosstalk in Acute Lung Injury: Future Perspectives. Cell Death Discov. 2023, 9, 9. [Google Scholar] [CrossRef]
- de Vos van Steenwijk, P.J.; Ramwadhdoebe, T.H.; Goedemans, R.; Doorduijn, E.M.; van Ham, J.J.; Gorter, A.; van Hall, T.; Kuijjer, M.L.; van Poelgeest, M.I.E.; van der Burg, S.H.; et al. Tumor-Infiltrating CD14-Positive Myeloid Cells and CD8-Positive T-Cells Prolong Survival in Patients with Cervical Carcinoma. Int. J. Cancer 2013, 133, 2884–2894. [Google Scholar] [CrossRef]
- Davidsson, S.; Fiorentino, M.; Giunchi, F.; Eriksson, M.; Erlandsson, A.; Sundqvist, P.; Carlsson, J. Infiltration of M2 Macrophages and Regulatory T Cells Plays a Role in Recurrence of Renal Cell Carcinoma. Eur. Urol. Open Sci. 2020, 20, 62–71. [Google Scholar] [CrossRef]
- Muijlwijk, T.; Nijenhuis, D.N.L.M.; Ganzevles, S.H.; Ekhlas, F.; Ballesteros-Merino, C.; Peferoen, L.A.N.; Bloemena, E.; Fox, B.A.; Poell, J.B.; Leemans, C.R.; et al. Immune Cell Topography of Head and Neck Cancer. J. Immunother. Cancer 2024, 12, e009550. [Google Scholar] [CrossRef]
- Jaggi, U.; Yang, M.; Matundan, H.H.; Hirose, S.; Shah, P.K.; Sharifi, B.G.; Ghiasi, H. Increased Phagocytosis in the Presence of Enhanced M2-like Macrophage Responses Correlates with Increased Primary and Latent HSV-1 Infection. PLOS Pathog. 2020, 16, e1008971. [Google Scholar] [CrossRef]
- Astuti, Y.; Raymant, M.; Quaranta, V.; Clarke, K.; Abudula, M.; Smith, O.; Bellomo, G.; Chandran-Gorner, V.; Nourse, C.; Halloran, C.; et al. Efferocytosis Reprograms the Tumor Microenvironment to Promote Pancreatic Cancer Liver Metastasis. Nat. Cancer 2024, 5, 774–790. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Huang, L. Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. Adv. Funct. Mater. 2021, 31, 2006220. [Google Scholar] [CrossRef]
- Torres-Pineda, D.B.; Mora-García, M.D.L.; García-Rocha, R.; Hernández-Montes, J.; Weiss-Steider, B.; Montesinos-Montesinos, J.J.; Don-López, C.A.; Marín-Aquino, L.A.; Muñóz-Godínez, R.; Ibarra, L.R.Á.; et al. Adenosine Augments the Production of IL-10 in Cervical Cancer Cells through Interaction with the A2B Adenosine Receptor, Resulting in Protection against the Activity of Cytotoxic T Cells. Cytokine 2020, 130, 155082. [Google Scholar] [CrossRef] [PubMed]
- Shoshina, O.O.; Kozhin, P.M.; Shadrin, V.S.; Romashin, D.D.; Rusanov, A.L.; Luzgina, N.G. Phenotypic Features of Mesenchymal Stem Cell Subpopulations Obtained under the Influence of Various Toll-Like Receptors Ligands. Bull. Exp. Biol. Med. 2021, 170, 555–559. [Google Scholar] [CrossRef]
- Ciavarella, C.; Pasquinelli, G. The Dual Nature of Mesenchymal Stem Cells (MSCs): Yin and Yang of the Inflammatory Process. In Update on Mesenchymal and Induced Pluripotent Stem Cells; Ahmed Al-Anazi, K., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78923-807-5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista-Sebastián, E.; Cortés-Morales, V.A.; Fajardo-Orduña, G.R.; Monroy-García, A.; Castro-Manrreza, M.E.; Saucedo-Campos, A.D.; Barrera, M.G.-d.l.; Mayani, H.; Montesinos, J.J. Interaction Between Mesenchymal Stromal Cells and Tumor Cells Present in Cervical Cancer Influences Macrophage Polarization. Cancers 2025, 17, 3099. https://doi.org/10.3390/cancers17193099
Bautista-Sebastián E, Cortés-Morales VA, Fajardo-Orduña GR, Monroy-García A, Castro-Manrreza ME, Saucedo-Campos AD, Barrera MG-dl, Mayani H, Montesinos JJ. Interaction Between Mesenchymal Stromal Cells and Tumor Cells Present in Cervical Cancer Influences Macrophage Polarization. Cancers. 2025; 17(19):3099. https://doi.org/10.3390/cancers17193099
Chicago/Turabian StyleBautista-Sebastián, Eduardo, Víctor Adrián Cortés-Morales, Guadalupe Rosario Fajardo-Orduña, Alberto Monroy-García, Marta Elena Castro-Manrreza, Alberto Daniel Saucedo-Campos, Marcos Gutiérrez-de la Barrera, Héctor Mayani, and Juan José Montesinos. 2025. "Interaction Between Mesenchymal Stromal Cells and Tumor Cells Present in Cervical Cancer Influences Macrophage Polarization" Cancers 17, no. 19: 3099. https://doi.org/10.3390/cancers17193099
APA StyleBautista-Sebastián, E., Cortés-Morales, V. A., Fajardo-Orduña, G. R., Monroy-García, A., Castro-Manrreza, M. E., Saucedo-Campos, A. D., Barrera, M. G.-d. l., Mayani, H., & Montesinos, J. J. (2025). Interaction Between Mesenchymal Stromal Cells and Tumor Cells Present in Cervical Cancer Influences Macrophage Polarization. Cancers, 17(19), 3099. https://doi.org/10.3390/cancers17193099