The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.1.1. Inclusion Criteria
- Histologically confirmed locally advanced rectal adenocarcinoma (LARC);
- Radiological staging: T4 with or without nodal involvement (N+);
- Pre-treatment staging MRI of the rectum is available;
- Absence of metastatic disease (M0) at presentation;
- Underwent pelvic exenteration with curative intent.
2.1.2. Exclusion Criteria
- Palliative resection;
- Insufficient follow-up (<3 years);
- Distant metastases (M1) at presentation;
- Recurrent rectal cancer.
2.2. Treatment and Follow-Up
2.3. Imaging Acquisition and Segmentation
2.4. Radiomics Feature Extraction
2.5. Clinical and Histopathological Variables
2.6. Model Development
2.7. Model Evaluation
3. Results
3.1. Patient Characteristics
3.2. Radiomic Signature
- Wavelet LLL first-order Minimum (OR = 0.63; 95% CI: 0.44–0.90; p = 0.012).
- Wavelet LLL GLSZM Gray Level Non-Uniformity Normalized (OR = 1.57; 95% CI: 1.11–2.21; p = 0.011).
- Original shape Sphericity (OR = 1.54; 95% CI: 1.11–2.14; p = 0.010).
- Original GLCM Cluster Shade (OR = 0.66; 95% CI: 0.47–0.93; p = 0.016).
- Wavelet LLH GLCM IMC2 (OR = 1.64; 95% CI: 1.15–2.34; p = 0.006).
OR | Lower CI | Upper CI | P | |
---|---|---|---|---|
(Intercept) | 1.045 | 0.769 | 1.419 | 0.779 |
Wavelet LLL first order Minimum | 0.628 | 0.436 | 0.904 | * 0.012 |
Wavelet LLL glszm Gray Level Non Uniformity Normalized | 1.565 | 1.109 | 2.209 | * 0.011 |
Original shape Sphericity | 1.54 | 1.109 | 2.139 | * 0.01 |
Original glcm Cluster Shade | 0.659 | 0.469 | 0.926 | * 0.016 |
Wavelet LLH glcm Imc2 | 1.64 | 1.152 | 2.335 | * 0.006 |
Feature | Type | Definition |
---|---|---|
(Intercept) | Model coefficient | Baseline log-odds of recurrence when all feature values are zero. |
Wavelet LLL First-Order Minimum | First-order (wavelet) | Minimum voxel intensity after applying low-pass filters in all directions (LLL). Reflects lowest signal region. |
Wavelet LLL GLSZM Gray Level Non-Uniformity Normalized | Texture (GLSZM, wavelet) | Measures gray-level variability across homogeneous zones. Higher values = greater intensity heterogeneity. |
Original Shape Sphericity | Shape | Quantifies how spherical the tumour is. Values closer to 1 = more spherical. |
Original GLCM Cluster Shade | Texture (GLCM) | Reflects asymmetry in voxel intensity distribution. Higher values = more heterogeneity. |
Wavelet LLH GLCM IMC2 | Texture (GLCM, wavelet) | Measures complexity of intensity relationships. Higher values = greater texture complexity. |
3.3. Model Performance
3.3.1. Model Performance and Validation
3.3.2. Nomogram
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Affiliations:
- 1
- Trinity St. James Cancer Institute (TSJCI), Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
- 2
- Department of Digestive Surgery, Pontificia Universidad Católica De Chile, Santiago 8320165, Chile
- 3
- Atakent Hospital Gastrointestinal Oncology Unit, Acibadem University, Istanbul 34638, Turkey
- 4
- University Hospital Gregorio Marañón, 28007 Madrid, Spain
- 5
- Diagnostic Radiology, Dokuz Eylul University Medical Faculty, Izmir 35220, Turkey
- 6
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide 5000, Australia
- 7
- Department of Radiology, Pontificia Universidad Católica De Chile, Santiago 8320165, Chile
- 8
- Department of Radiology, Institute of Oncology, 1000 Ljubljana, Slovenia
- 9
- KRC Clinic for Colorectal Surgery and Peritoneal Surface Malignancies, Izmir 35220, Turkey
- 10
- Department of Radiology, St James’s Hospital, Dublin, Ireland
- 11
- Faculty of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- 12
- Christchurch Hospital, Christchurch 4710, New Zealand
- 13
- Division of Colorectal Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- 14
- National Cancer Center, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
- 15
- Department of Radiology, Haukeland University Hospital, 5009 Bergen, Norway
- 16
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133 Milan, Italy
- 17
- Surgery Department, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
- 18
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands
- 19
- Division of Abdominal Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- 20
- Department of Surgery, St. Vincent’s University Hospital, Dublin, Ireland
- †
- These authors contributed equally to this manuscript.
References
- PelvEx Collaborative. Contemporary Management of Locally Advanced and Recurrent Rectal Cancer: Views from the PelvEx Collaborative. Cancers 2022, 14, 1161. [Google Scholar] [CrossRef]
- Ferenschild, F.T.; Vermaas, M.; Verhoef, C.; Ansink, A.C.; Kirkels, W.J.; Eggermont, A.M.M.; de Wilt, J.H.W. Total pelvic exenteration for primary and recurrent malignancies. World J. Surg. 2009, 33, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- PelvEx Collaborative. Contemporary results from the PelvEx collaborative: Improvements in surgical outcomes for locally advanced and recurrent rectal cancer. Color. Dis. 2024, 26, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.G.; Solomon, M.J.; Koh, C.E.; Sutton, P.A.; Aguiar, S.; Bezerra, T.S.; Clouston, H.W.; Desouza, A.; Dozois, E.J.; Ersryd, A.L.; et al. Defining Benchmarks for Pelvic Exenteration Surgery: A Multicentre Analysis of Patients with Locally Advanced and Recurrent Rectal Cancer. Ann. Surg. 2024, 10–1097. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.X.; Morris, D.L.; Chua, T.C. Pelvic Exenteration for Rectal Cancer: A Systematic Review. Dis. Colon Rectum 2013, 56, 519–531. [Google Scholar] [CrossRef]
- Shine, R.J.; Glyn, T.; Frizelle, F. Pelvic exenteration: A review of current issues/controversies. ANZ J. Surg. 2022, 92, 2822–2828. [Google Scholar] [CrossRef]
- Brown, K.G.; Morkaya, J.; Solomon, M.J.; Ng, K.-S.; White, K.; Sutton, P.; Winter, D.C.; Ansari, N.; Steffens, D. Priority outcomes of pelvic exenteration for rectal cancer: A patient, carer, and clinician consensus. Br. J. Surg. 2024, 111, znae298. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Parekh, V.; Jacobs, M.A. Radiomics: A new application from established techniques. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 207–226. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Li, H.; Chai, L.; Pu, H.; Yin, L.-L.; Li, M.; Zhang, X.; Liu, Y.-S.; Pang, M.-H.; Lu, T. T2WI-based MRI radiomics for the prediction of preoperative extranodal extension and prognosis in resectable rectal cancer. Insights Imaging 2024, 15, 57. [Google Scholar] [CrossRef]
- Meng, Y.; Ai, Q.; Hu, Y.; Han, H.; Song, C.; Yuan, G.; Hou, X.; Weng, W. Clinical development of MRI-based multi-sequence multi-regional radiomics model to predict lymph node metastasis in rectal cancer. Abdom. Radiol. 2024, 49, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Shen, F.; Jia, Y.; Xia, Y.; Li, Q.; Lu, J. MRI-based radiomics of rectal cancer: Preoperative assessment of the pathological features. BMC Med. Imaging 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- PelvEx Collaborative. 2024. Available online: https://www.pelvex.org/ (accessed on 19 December 2024).
- Horvat, N.; Carlos Tavares Rocha, C.; Clemente Oliveira, B.; Petkovska, I.; Gollub, M.J. MRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and Management. Radiographics 2019, 39, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Z.; Yan, M.; Yu, J.; Dekker, A.; Zhao, L.; Wee, L. Radiomics and dosiomics signature from whole lung predicts radiation pneumonitis: A model development study with prospective external validation and decision-curve analysis. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 746–758. [Google Scholar] [CrossRef]
- Compter, I.; Verduin, M.; Shi, Z.; Woodruff, H.C.; Smeenk, R.J.; Rozema, T.; Leijenaar, R.T.; Monshouwer, R.; Eekers, D.B.; Hoeben, A.; et al. Deciphering the glioblastoma phenotype by computed tomography radiomics. Radiother. Oncol. 2021, 160, 132–139. [Google Scholar] [CrossRef]
- O’Sullivan, N.J.; Tohidinezhad, F.; Temperley, H.C.; Ajredini, M.; Sokmen, B.K.; Atabey, R.; Ozer, L.; Aytac, E.; Corr, A.; Traverso, A.; et al. Multi-Institutional MR-Derived Radiomics to Predict Post-Exenteration Disease Recurrence in Patients With T4 Rectal Cancer. Cancer Med. 2025, 14, e70699. [Google Scholar] [CrossRef]
- Onakpojeruo, E.P.; Sancar, N. A Two-Stage Feature Selection Approach Based on Artificial Bee Colony and Adaptive LASSO in High-Dimensional Data. AppliedMath 2024, 4, 1522–1538. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image biomarker standardisation initiative. arXiv 2016, arXiv:161207003. [Google Scholar]
- Huynh, L.M.; Bonebrake, B.; Tran, J.; Marasco, J.T.; Ahlering, T.E.; Wang, S.; Baine, M.J. Multi-Institutional Development and Validation of a Radiomic Model to Predict Prostate Cancer Recurrence Following Radical Prostatectomy. J. Clin. Med. 2023, 12, 7322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, X.; Tian, Q.; Li, B.; Wu, Y.; Yang, Z.; Liang, Z.; Liu, Y.; Cui, G.; Lu, H. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J. Magn. Reson. Imaging 2017, 46, 1281–1288. [Google Scholar] [CrossRef]
- Chen, K.; Collins, G.; Wang, H.; Toh, J.W.T. Pathological features and prognostication in colorectal cancer. Curr. Oncol. 2021, 28, 5356–5383. [Google Scholar] [CrossRef]
- Kos, F.T.; Cecen Kaynak, S.; Akturk Esen, S.; Arslan, H.; Uncu, D. Comparison of Different Machine Learning Models for Predicting Long-Term Overall Survival in Non-metastatic Colorectal Cancers. Cureus 2024, 16, e75713. [Google Scholar] [CrossRef]
- Santini, D.; Danti, G.; Bicci, E.; Galluzzo, A.; Bettarini, S.; Busoni, S.; Innocenti, T.; Galli, A.; Miele, V. Radiomic features are predictive of response in rectal cancer undergoing therapy. Diagnostics 2023, 13, 2573. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Inchingolo, R.; Maino, C.; Cannella, R.; Vernuccio, F.; Cortese, F.; Dezio, M.; Pisani, A.R.; Giandola, T.; Gatti, M.; Giannini, V.; et al. Radiomics in colorectal cancer patients. World J. Gastroenterol. 2023, 29, 2888. [Google Scholar] [CrossRef]
- Sanduleanu, S.; Woodruff, H.C.; De Jong, E.E.; van Timmeren, J.E.; Jochems, A.; Dubois, L.; Lambin, P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother. Oncol. 2018, 127, 349–360. [Google Scholar] [CrossRef]
- Sala, E.; Mema, E.; Himoto, Y.; Veeraraghavan, H.; Brenton, J.; Snyder, A.; Weigelt, B.; Vargas, H. Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 2017, 72, 3–10. [Google Scholar] [CrossRef]
- Alvarez-Jimenez, C.; Antunes, J.T.; Talasila, N.; Bera, K.; Brady, J.T.; Gollamudi, J.; Marderstein, E.; Kalady, M.F.; Purysko, A.; Willis, J.E.; et al. Radiomic texture and shape descriptors of the rectal environment on post-chemoradiation T2-weighted MRI are associated with pathologic tumor stage regression in rectal cancers: A retrospective, multi-institution study. Cancers 2020, 12, 2027. [Google Scholar] [CrossRef]
- McQuerry, J.A.; Chang, J.T.; Bowtell, D.D.; Cohen, A.; Bild, A.H. Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J. Mol. Med. 2017, 95, 1167–1178. [Google Scholar] [CrossRef]
- Brancato, V.; Garbino, N.; Aiello, M.; Salvatore, M.; Cavaliere, C. Exploratory Analysis of Radiomics and Pathomics in Uterine Corpus Endometrial Carcinoma. Sci. Rep. 2024, 14, 30727. [Google Scholar] [CrossRef]
- García-Figueiras, R.; Baleato-González, S.; Padhani, A.R.; Luna-Alcalá, A.; Vallejo-Casas, J.A.; Sala, E.; Vilanova, J.C.; Koh, D.-M.; Herranz-Carnero, M.; Vargas, H.A. How clinical imaging can assess cancer biology. Insights Imaging 2019, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Iasonos, A.; Schrag, D.; Raj, G.V.; Panageas, K.S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 2008, 26, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [PubMed]
- Rudloff, U.; Jacks, L.M.; Goldberg, J.I.; Wynveen, C.A.; Brogi, E.; Patil, S.; Van Zee, K.J. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J. Clin. Oncol. 2010, 28, 3762–3769. [Google Scholar] [CrossRef]
- Venclovas, Z.; Muilwijk, T.; Matjosaitis, A.J.; Jievaltas, M.; Joniau, S.; Milonas, D. Head-to-head comparison of two nomograms predicting probability of lymph node invasion in prostate cancer and the therapeutic impact of higher nomogram threshold. J. Clin. Med. 2021, 10, 999. [Google Scholar] [CrossRef]
Characteristic | Total (N = 191) |
---|---|
Age | 61 (53, 71) |
≤60 | 92 (48%) |
>60 | 99 (52%) |
Gender | |
Female | 77 (40%) |
Male | 114 (60%) |
BMI (kg/m2) | 25.9 (22.3, 29.0) |
ASA classification (N = 135) | |
I | 32 (17%) |
II | 94 (49%) |
III | 32 (17%) |
IV | 1 (0.5%) |
CEA (ng/mL) (N = 134) | 4.7 (2.0, 15.1) |
CEA ≥ 5 ng/mL | 62 (46%) |
Differentiation grade | |
Poor | 32 (17%) |
Moderate | 118 (62%) |
Well | 41 (21%) |
cN stage | |
0 | 55 (29%) |
1 | 76 (40%) |
2–3 | 60 (31%) |
Distance from anal verge (cm) | 6 (4, 10) |
≤6 cm | 95 (50%) |
>6 cm | 96 (50%) |
Tumour location | |
Lower rectum | 70 (37%) |
Middle rectum | 50 (26%) |
Upper rectum | 29 (15%) |
Unspecified | 6 (3%) |
Postoperative recurrence | 98 (51%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collaborative, P. The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative. Cancers 2025, 17, 3061. https://doi.org/10.3390/cancers17183061
Collaborative P. The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative. Cancers. 2025; 17(18):3061. https://doi.org/10.3390/cancers17183061
Chicago/Turabian StyleCollaborative, PelvEx. 2025. "The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative" Cancers 17, no. 18: 3061. https://doi.org/10.3390/cancers17183061
APA StyleCollaborative, P. (2025). The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative. Cancers, 17(18), 3061. https://doi.org/10.3390/cancers17183061