The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.1.1. Inclusion Criteria
- Histologically confirmed locally advanced rectal adenocarcinoma (LARC);
- Radiological staging: T4 with or without nodal involvement (N+);
- Pre-treatment staging MRI of the rectum is available;
- Absence of metastatic disease (M0) at presentation;
- Underwent pelvic exenteration with curative intent.
2.1.2. Exclusion Criteria
- Palliative resection;
- Insufficient follow-up (<3 years);
- Distant metastases (M1) at presentation;
- Recurrent rectal cancer.
2.2. Treatment and Follow-Up
2.3. Imaging Acquisition and Segmentation
2.4. Radiomics Feature Extraction
2.5. Clinical and Histopathological Variables
2.6. Model Development
2.7. Model Evaluation
3. Results
3.1. Patient Characteristics
3.2. Radiomic Signature
- Wavelet LLL first-order Minimum (OR = 0.63; 95% CI: 0.44–0.90; p = 0.012).
- Wavelet LLL GLSZM Gray Level Non-Uniformity Normalized (OR = 1.57; 95% CI: 1.11–2.21; p = 0.011).
- Original shape Sphericity (OR = 1.54; 95% CI: 1.11–2.14; p = 0.010).
- Original GLCM Cluster Shade (OR = 0.66; 95% CI: 0.47–0.93; p = 0.016).
- Wavelet LLH GLCM IMC2 (OR = 1.64; 95% CI: 1.15–2.34; p = 0.006).
| OR | Lower CI | Upper CI | P | |
|---|---|---|---|---|
| (Intercept) | 1.045 | 0.769 | 1.419 | 0.779 |
| Wavelet LLL first order Minimum | 0.628 | 0.436 | 0.904 | * 0.012 |
| Wavelet LLL glszm Gray Level Non Uniformity Normalized | 1.565 | 1.109 | 2.209 | * 0.011 |
| Original shape Sphericity | 1.54 | 1.109 | 2.139 | * 0.01 |
| Original glcm Cluster Shade | 0.659 | 0.469 | 0.926 | * 0.016 |
| Wavelet LLH glcm Imc2 | 1.64 | 1.152 | 2.335 | * 0.006 |
| Feature | Type | Definition |
|---|---|---|
| (Intercept) | Model coefficient | Baseline log-odds of recurrence when all feature values are zero. |
| Wavelet LLL First-Order Minimum | First-order (wavelet) | Minimum voxel intensity after applying low-pass filters in all directions (LLL). Reflects lowest signal region. |
| Wavelet LLL GLSZM Gray Level Non-Uniformity Normalized | Texture (GLSZM, wavelet) | Measures gray-level variability across homogeneous zones. Higher values = greater intensity heterogeneity. |
| Original Shape Sphericity | Shape | Quantifies how spherical the tumour is. Values closer to 1 = more spherical. |
| Original GLCM Cluster Shade | Texture (GLCM) | Reflects asymmetry in voxel intensity distribution. Higher values = more heterogeneity. |
| Wavelet LLH GLCM IMC2 | Texture (GLCM, wavelet) | Measures complexity of intensity relationships. Higher values = greater texture complexity. |
3.3. Model Performance
3.3.1. Model Performance and Validation
3.3.2. Nomogram
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A
- Affiliations:
- 1
- Trinity St. James Cancer Institute (TSJCI), Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
- 2
- Department of Digestive Surgery, Pontificia Universidad Católica De Chile, Santiago 8320165, Chile
- 3
- Atakent Hospital Gastrointestinal Oncology Unit, Acibadem University, Istanbul 34638, Turkey
- 4
- University Hospital Gregorio Marañón, 28007 Madrid, Spain
- 5
- Diagnostic Radiology, Dokuz Eylul University Medical Faculty, Izmir 35220, Turkey
- 6
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide 5000, Australia
- 7
- Department of Radiology, Pontificia Universidad Católica De Chile, Santiago 8320165, Chile
- 8
- Department of Radiology, Institute of Oncology, 1000 Ljubljana, Slovenia
- 9
- KRC Clinic for Colorectal Surgery and Peritoneal Surface Malignancies, Izmir 35220, Turkey
- 10
- Department of Radiology, St James’s Hospital, Dublin, Ireland
- 11
- Faculty of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- 12
- Christchurch Hospital, Christchurch 4710, New Zealand
- 13
- Division of Colorectal Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- 14
- National Cancer Center, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
- 15
- Department of Radiology, Haukeland University Hospital, 5009 Bergen, Norway
- 16
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133 Milan, Italy
- 17
- Surgery Department, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
- 18
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands
- 19
- Division of Abdominal Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- 20
- Department of Surgery, St. Vincent’s University Hospital, Dublin, Ireland
- †
- These authors contributed equally to this manuscript.
References
- PelvEx Collaborative. Contemporary Management of Locally Advanced and Recurrent Rectal Cancer: Views from the PelvEx Collaborative. Cancers 2022, 14, 1161. [Google Scholar] [CrossRef]
- Ferenschild, F.T.; Vermaas, M.; Verhoef, C.; Ansink, A.C.; Kirkels, W.J.; Eggermont, A.M.M.; de Wilt, J.H.W. Total pelvic exenteration for primary and recurrent malignancies. World J. Surg. 2009, 33, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- PelvEx Collaborative. Contemporary results from the PelvEx collaborative: Improvements in surgical outcomes for locally advanced and recurrent rectal cancer. Color. Dis. 2024, 26, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.G.; Solomon, M.J.; Koh, C.E.; Sutton, P.A.; Aguiar, S.; Bezerra, T.S.; Clouston, H.W.; Desouza, A.; Dozois, E.J.; Ersryd, A.L.; et al. Defining Benchmarks for Pelvic Exenteration Surgery: A Multicentre Analysis of Patients with Locally Advanced and Recurrent Rectal Cancer. Ann. Surg. 2024, 10–1097. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.X.; Morris, D.L.; Chua, T.C. Pelvic Exenteration for Rectal Cancer: A Systematic Review. Dis. Colon Rectum 2013, 56, 519–531. [Google Scholar] [CrossRef]
- Shine, R.J.; Glyn, T.; Frizelle, F. Pelvic exenteration: A review of current issues/controversies. ANZ J. Surg. 2022, 92, 2822–2828. [Google Scholar] [CrossRef]
- Brown, K.G.; Morkaya, J.; Solomon, M.J.; Ng, K.-S.; White, K.; Sutton, P.; Winter, D.C.; Ansari, N.; Steffens, D. Priority outcomes of pelvic exenteration for rectal cancer: A patient, carer, and clinician consensus. Br. J. Surg. 2024, 111, znae298. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Parekh, V.; Jacobs, M.A. Radiomics: A new application from established techniques. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 207–226. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Li, H.; Chai, L.; Pu, H.; Yin, L.-L.; Li, M.; Zhang, X.; Liu, Y.-S.; Pang, M.-H.; Lu, T. T2WI-based MRI radiomics for the prediction of preoperative extranodal extension and prognosis in resectable rectal cancer. Insights Imaging 2024, 15, 57. [Google Scholar] [CrossRef]
- Meng, Y.; Ai, Q.; Hu, Y.; Han, H.; Song, C.; Yuan, G.; Hou, X.; Weng, W. Clinical development of MRI-based multi-sequence multi-regional radiomics model to predict lymph node metastasis in rectal cancer. Abdom. Radiol. 2024, 49, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Shen, F.; Jia, Y.; Xia, Y.; Li, Q.; Lu, J. MRI-based radiomics of rectal cancer: Preoperative assessment of the pathological features. BMC Med. Imaging 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- PelvEx Collaborative. 2024. Available online: https://www.pelvex.org/ (accessed on 19 December 2024).
- Horvat, N.; Carlos Tavares Rocha, C.; Clemente Oliveira, B.; Petkovska, I.; Gollub, M.J. MRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and Management. Radiographics 2019, 39, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Z.; Yan, M.; Yu, J.; Dekker, A.; Zhao, L.; Wee, L. Radiomics and dosiomics signature from whole lung predicts radiation pneumonitis: A model development study with prospective external validation and decision-curve analysis. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 746–758. [Google Scholar] [CrossRef]
- Compter, I.; Verduin, M.; Shi, Z.; Woodruff, H.C.; Smeenk, R.J.; Rozema, T.; Leijenaar, R.T.; Monshouwer, R.; Eekers, D.B.; Hoeben, A.; et al. Deciphering the glioblastoma phenotype by computed tomography radiomics. Radiother. Oncol. 2021, 160, 132–139. [Google Scholar] [CrossRef]
- O’Sullivan, N.J.; Tohidinezhad, F.; Temperley, H.C.; Ajredini, M.; Sokmen, B.K.; Atabey, R.; Ozer, L.; Aytac, E.; Corr, A.; Traverso, A.; et al. Multi-Institutional MR-Derived Radiomics to Predict Post-Exenteration Disease Recurrence in Patients With T4 Rectal Cancer. Cancer Med. 2025, 14, e70699. [Google Scholar] [CrossRef]
- Onakpojeruo, E.P.; Sancar, N. A Two-Stage Feature Selection Approach Based on Artificial Bee Colony and Adaptive LASSO in High-Dimensional Data. AppliedMath 2024, 4, 1522–1538. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Leger, S.; Vallières, M.; Löck, S. Image biomarker standardisation initiative. arXiv 2016, arXiv:161207003. [Google Scholar]
- Huynh, L.M.; Bonebrake, B.; Tran, J.; Marasco, J.T.; Ahlering, T.E.; Wang, S.; Baine, M.J. Multi-Institutional Development and Validation of a Radiomic Model to Predict Prostate Cancer Recurrence Following Radical Prostatectomy. J. Clin. Med. 2023, 12, 7322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, X.; Tian, Q.; Li, B.; Wu, Y.; Yang, Z.; Liang, Z.; Liu, Y.; Cui, G.; Lu, H. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J. Magn. Reson. Imaging 2017, 46, 1281–1288. [Google Scholar] [CrossRef]
- Chen, K.; Collins, G.; Wang, H.; Toh, J.W.T. Pathological features and prognostication in colorectal cancer. Curr. Oncol. 2021, 28, 5356–5383. [Google Scholar] [CrossRef]
- Kos, F.T.; Cecen Kaynak, S.; Akturk Esen, S.; Arslan, H.; Uncu, D. Comparison of Different Machine Learning Models for Predicting Long-Term Overall Survival in Non-metastatic Colorectal Cancers. Cureus 2024, 16, e75713. [Google Scholar] [CrossRef]
- Santini, D.; Danti, G.; Bicci, E.; Galluzzo, A.; Bettarini, S.; Busoni, S.; Innocenti, T.; Galli, A.; Miele, V. Radiomic features are predictive of response in rectal cancer undergoing therapy. Diagnostics 2023, 13, 2573. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Inchingolo, R.; Maino, C.; Cannella, R.; Vernuccio, F.; Cortese, F.; Dezio, M.; Pisani, A.R.; Giandola, T.; Gatti, M.; Giannini, V.; et al. Radiomics in colorectal cancer patients. World J. Gastroenterol. 2023, 29, 2888. [Google Scholar] [CrossRef]
- Sanduleanu, S.; Woodruff, H.C.; De Jong, E.E.; van Timmeren, J.E.; Jochems, A.; Dubois, L.; Lambin, P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother. Oncol. 2018, 127, 349–360. [Google Scholar] [CrossRef]
- Sala, E.; Mema, E.; Himoto, Y.; Veeraraghavan, H.; Brenton, J.; Snyder, A.; Weigelt, B.; Vargas, H. Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 2017, 72, 3–10. [Google Scholar] [CrossRef]
- Alvarez-Jimenez, C.; Antunes, J.T.; Talasila, N.; Bera, K.; Brady, J.T.; Gollamudi, J.; Marderstein, E.; Kalady, M.F.; Purysko, A.; Willis, J.E.; et al. Radiomic texture and shape descriptors of the rectal environment on post-chemoradiation T2-weighted MRI are associated with pathologic tumor stage regression in rectal cancers: A retrospective, multi-institution study. Cancers 2020, 12, 2027. [Google Scholar] [CrossRef]
- McQuerry, J.A.; Chang, J.T.; Bowtell, D.D.; Cohen, A.; Bild, A.H. Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J. Mol. Med. 2017, 95, 1167–1178. [Google Scholar] [CrossRef]
- Brancato, V.; Garbino, N.; Aiello, M.; Salvatore, M.; Cavaliere, C. Exploratory Analysis of Radiomics and Pathomics in Uterine Corpus Endometrial Carcinoma. Sci. Rep. 2024, 14, 30727. [Google Scholar] [CrossRef]
- García-Figueiras, R.; Baleato-González, S.; Padhani, A.R.; Luna-Alcalá, A.; Vallejo-Casas, J.A.; Sala, E.; Vilanova, J.C.; Koh, D.-M.; Herranz-Carnero, M.; Vargas, H.A. How clinical imaging can assess cancer biology. Insights Imaging 2019, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Iasonos, A.; Schrag, D.; Raj, G.V.; Panageas, K.S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 2008, 26, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [PubMed]
- Rudloff, U.; Jacks, L.M.; Goldberg, J.I.; Wynveen, C.A.; Brogi, E.; Patil, S.; Van Zee, K.J. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J. Clin. Oncol. 2010, 28, 3762–3769. [Google Scholar] [CrossRef]
- Venclovas, Z.; Muilwijk, T.; Matjosaitis, A.J.; Jievaltas, M.; Joniau, S.; Milonas, D. Head-to-head comparison of two nomograms predicting probability of lymph node invasion in prostate cancer and the therapeutic impact of higher nomogram threshold. J. Clin. Med. 2021, 10, 999. [Google Scholar] [CrossRef]


| Characteristic | Total (N = 191) |
|---|---|
| Age | 61 (53, 71) |
| ≤60 | 92 (48%) |
| >60 | 99 (52%) |
| Gender | |
| Female | 77 (40%) |
| Male | 114 (60%) |
| BMI (kg/m2) | 25.9 (22.3, 29.0) |
| ASA classification (N = 135) | |
| I | 32 (17%) |
| II | 94 (49%) |
| III | 32 (17%) |
| IV | 1 (0.5%) |
| CEA (ng/mL) (N = 134) | 4.7 (2.0, 15.1) |
| CEA ≥ 5 ng/mL | 62 (46%) |
| Differentiation grade | |
| Poor | 32 (17%) |
| Moderate | 118 (62%) |
| Well | 41 (21%) |
| cN stage | |
| 0 | 55 (29%) |
| 1 | 76 (40%) |
| 2–3 | 60 (31%) |
| Distance from anal verge (cm) | 6 (4, 10) |
| ≤6 cm | 95 (50%) |
| >6 cm | 96 (50%) |
| Tumour location | |
| Lower rectum | 70 (37%) |
| Middle rectum | 50 (26%) |
| Upper rectum | 29 (15%) |
| Unspecified | 6 (3%) |
| Postoperative recurrence | 98 (51%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collaborative, P. The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative. Cancers 2025, 17, 3061. https://doi.org/10.3390/cancers17183061
Collaborative P. The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative. Cancers. 2025; 17(18):3061. https://doi.org/10.3390/cancers17183061
Chicago/Turabian StyleCollaborative, PelvEx. 2025. "The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative" Cancers 17, no. 18: 3061. https://doi.org/10.3390/cancers17183061
APA StyleCollaborative, P. (2025). The Utility of T2-Weighted MRI Radiomics in the Prediction of Post-Exenteration Disease Recurrence: A Multi-Centre Externally Validated Study via the PelvEx Collaborative. Cancers, 17(18), 3061. https://doi.org/10.3390/cancers17183061
