Machine Learning Models for Predicting Gynecological Cancers: Advances, Challenges, and Future Directions
Simple Summary
Abstract
1. Introduction
Search Strategy and Scope
2. Overview of Gynecological Cancers
2.1. Breast Cancer (BC)
2.2. Ovarian Cancer (OC)
2.3. Cervical Cancer
3. ML Methods in the Prediction of Cancers in Gynecology
3.1. Supervised Learning: Example-Based Learning
3.1.1. Decision Trees: Clear and Easy Tools for Gynecological Cancer Prediction
3.1.2. Support Vector Machines (SVMs): Drawing Smart Boundaries for Cancer Prediction
3.1.3. Random Forests: Collective Intelligence for the Prediction of Cancer
3.2. Unsupervised Learning: Bringing to Light the Hidden Structure of Cancer Data
3.3. Deep Learning (DL): Emulate the Brain to Crack the Code of Cancer Complexity
4. The Practice of ML in Prediction of Gynecological Cancers
4.1. BC: Early Diagnosis and Personalization
4.1.1. ML-Based Imaging-Based Diagnosis
4.1.2. Profiling by Genomic and Transcriptomic Data
4.1.3. Risk Predictive Assessment
4.2. Cervical Cancer: ML Efficacy to Improve Prevention and Detection
4.2.1. HPV and Screening Statistical Analysis
4.2.2. Pap Smear Image Interpretation
4.2.3. Risk Stratification via Clinical and Behavioral Data
4.3. OC: Early Detection and Prognosis
4.3.1. Exploring Biomarkers for Early Recognition
4.3.2. Sophisticated Imaging and Radiomics Usages
4.3.3. Prognostic Modeling and Survival Prediction
5. Key Challenges and Limitations in ML Adoption in Oncology
5.1. Data-Related Challenges
5.2. Model-Related Challenges
5.3. Clinical Integration and Infrastructure Barriers
5.4. Ethical, Legal and Social Considerations
5.5. Resource Constraints and Education Gaps
5.6. Responsible and Equitable Integration
5.7. Benchmarking and Validation Limitations
6. Gynecological Cancer Care: Future Directions and Opportunities in ML
6.1. On the Way to Explainable and Trustworthy AI
6.2. Learning Federated and Safe Data Sharing
6.3. Multi-Omics and Real-World Data Integration
6.4. Personalized and Precision Oncology
6.5. The Clinical Decision Support Systems (CDSS)
6.6. Point of Care and Resource-Limited Uses
6.7. Ethical AI and Biases Reduction
6.8. Policy Development and Regulation Frameworks
6.9. Cross-Disciplinary Collaboration and Education
6.10. On the Way to Learning Healthcare System
6.11. Emerging Advanced AI Architectures
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, Y.; Song, W.; Gao, P.; Guan, X.; Wang, B.; Zhang, L.; Yao, Y.; Guo, Y.; Wang, Y.; Jiang, S.; et al. Global, regional, and national burden of breast, cervical, uterine, and ovarian cancer and their risk factors among women from 1990 to 2021, and projections to 2050: Findings from the global burden of disease study 2021. BMC Cancer 2025, 25, 330. [Google Scholar] [CrossRef] [PubMed]
- Dare, A.J.; Knapp, G.C.; Romanoff, A.; Olasehinde, O.; Famurewa, O.C.; Komolafe, A.O.; Olatoke, S.; Katung, A.; Alatise, O.I.; Kingham, T.P. High-burden Cancers in Middle-income Countries: A Review of Prevention and Early Detection Strategies Targeting At-risk Populations. Cancer Prev. Res. 2021, 14, 1061–1074. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, H.; Wang, H. Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach. J. Multidiscip. Healthc. 2023, 16, 1779–1791. [Google Scholar] [CrossRef]
- Barragán-Montero, A.; Javaid, U.; Valdés, G.; Nguyen, D.; Desbordes, P.; Macq, B.; Willems, S.; Vandewinckele, L.; Holmström, M.; Löfman, F.; et al. Artificial intelligence and machine learning for medical imaging: A technology review. Phys. Medica 2021, 83, 242–256. [Google Scholar] [CrossRef]
- Mgbole, T.J. Machine learning integration for early-stage cancer detection using multi-modal imaging analysis. World J. Adv. Res. Rev. 2025, 25, 385–413. [Google Scholar] [CrossRef]
- Tsai, T.-J.; Lee, K.-H.; Chou, C.-K.; Karmakar, R.; Mukundan, A.; Chen, T.-H.; Gupta, D.; Ghosh, G.; Liu, T.-Y.; Wang, H.-C. Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning. Bioengineering 2025, 12, 828. [Google Scholar] [CrossRef]
- Huang, C.W.; Su, C.C.; Chou, C.K.; Mukundan, A.; Karmakar, R.; Chen, T.H.; Shukla, P.; Gupta, D.; Wang, H.C. Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection. Diagnostics 2025, 15, 1664. [Google Scholar] [CrossRef]
- Öznacar, T.; Güler, T. Prediction of Early Diagnosis in Ovarian Cancer Patients Using Machine Learning Approaches with Boruta and Advanced Feature Selection. Life 2025, 15, 594. [Google Scholar] [CrossRef] [PubMed]
- Emin, E.I.; Emin, E.; Papalois, A.; Willmott, F.; Clarke, S.; Sideris, M. Artificial Intelligence in Obstetrics and Gynaecology: Is This the Way Forward? In Vivo 2019, 33, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; et al. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126 (Suppl. 10), 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, C.R.; Collins, C.; Stokes-Lampard, H.; Rose, P.; Wilson, S.; Clements, A.; Mant, D.; Kehoe, S.T.; Austoker, J. Identifying symptoms of ovarian cancer: A qualitative and quantitative study. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Makhnoon, S.; Arun, B.; Bedrosian, I. Helping Patients Understand and Cope with BRCA Mutations. Curr. Oncol. Rep. 2022, 24, 733–740. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020, 32, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Ng, M.T.A.; Qiao, Y. The challenges of colposcopy for cervical cancer screening in LMICs and solutions by artificial intelligence. BMC Med. 2020, 18, 169. [Google Scholar] [CrossRef]
- Rahman, A.; Debnath, T.; Kundu, D.; Khan, M.S.I.; Aishi, A.A.; Sazzad, S.; Sayduzzaman, M.; Band, S.S. Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities. AIMS Public Health 2024, 11, 58–109. [Google Scholar] [CrossRef]
- Jovel, J.; Greiner, R. An Introduction to Machine Learning Approaches for Biomedical Research. Front. Med. 2021, 8, 771607. [Google Scholar] [CrossRef]
- Radhoush, S.; Whitaker, B.M.; Nehrir, H. An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks. Energies 2023, 16, 5972. [Google Scholar] [CrossRef]
- Habehh, H.; Gohel, S. Machine Learning in Healthcare. Curr. Genom. 2021, 22, 291–300. [Google Scholar] [CrossRef]
- Matzavela, V.; Alepis, E. Decision tree learning through a Predictive Model for Student Academic Performance in Intelligent M-Learning environments. Comput. Educ. Artif. Intell. 2021, 2, 100035. [Google Scholar] [CrossRef]
- Dudeja, D.; Noonia, A.; Lavanya, S.; Sharma, V.; Kumar, V.; Rehan, S.; Ramkumar, R. Breast Cancer Diagnosis Using Bagging Decision Trees with Improved Feature Selection. Eng. Proc. 2023, 59, 17. [Google Scholar] [CrossRef]
- Al Mudawi, N.; Alazeb, A. A Model for Predicting Cervical Cancer Using Machine Learning Algorithms. Sensors 2022, 22, 4132. [Google Scholar] [CrossRef]
- Varkiani, S.M.; Pattarin, F.; Fabbri, T.; Gualtiero Fantoni, G. Predicting employee attrition and explaining its determinants. Expert Syst. Appl. 2025, 272, 126575. [Google Scholar] [CrossRef]
- Guido, R.; Ferrisi, S.; Lofaro, D.; Conforti, D. An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. Information 2024, 15, 235. [Google Scholar] [CrossRef]
- Bilal, A.; Imran, A.; Baig, T.I.; Liu, X.; Abouel Nasr, E.; Long, H. Breast cancer diagnosis using support vector machine optimized by improved quantum inspired grey wolf optimization. Sci. Rep. 2024, 14, 10714. [Google Scholar] [CrossRef]
- Gardezi, S.J.S.; Elazab, A.; Lei, B.; Wang, T. Breast Cancer Detection and Diagnosis Using Mammographic Data: Systematic Review. J. Med. Internet Res. 2019, 21, e14464. [Google Scholar] [CrossRef]
- Bengtsson, E.; Malm, P. Screening for cervical cancer using automated analysis of PAP-smears. Comput. Math. Methods Med. 2014, 2014, 842037. [Google Scholar] [CrossRef]
- Partheen, K.; Kristjansdottir, B.; Sundfeldt, K. Evaluation of ovarian cancer biomarkers HE4 and CA-125 in women presenting with a suspicious cystic ovarian mass. J. Gynecol. Oncol. 2011, 22, 244–252. [Google Scholar] [CrossRef]
- Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–51. [Google Scholar] [CrossRef]
- Xu, H.L.; Li, X.Y.; Jia, M.Q.; Ma, Q.P.; Zhang, Y.H.; Liu, F.H.; Qin, Y.; Chen, Y.H.; Li, Y.; Chen, X.Y.; et al. AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2025, 27, e67922. [Google Scholar] [CrossRef] [PubMed]
- Imani, M.; Beikmohammadi, A.; Arabnia, H.R. Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Under Varying Imbalance Levels. Technologies 2025, 13, 88. [Google Scholar] [CrossRef]
- Minoor, M.; Baths, V. Diagnosis of Breast Cancer Using Random Forests. Procedia Comput. Sci. 2023, 218, 429–437. [Google Scholar] [CrossRef]
- Hou, X.; Shen, G.; Zhou, L.; Li, Y.; Wang, T.; Ma, X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front. Oncol. 2022, 12, 851367. [Google Scholar] [CrossRef]
- He, X.; Bai, X.H.; Chen, H.; Feng, W.W. Machine learning models in evaluating the malignancy risk of ovarian tumors: A comparative study. J. Ovarian Res. 2024, 17, 219. [Google Scholar] [CrossRef]
- Kallah-Dagadu, G.; Mohammed, M.; Nasejje, J.B.; Mchunu, N.N.; Twabi, H.S.; Batidzirai, J.M.; Singini, G.C.; Nevhungoni, P.; Maposa, I. Breast cancer prediction based on gene expression data using interpretable machine learning techniques. Sci. Rep. 2025, 15, 7594. [Google Scholar] [CrossRef] [PubMed]
- Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Naeem, S.; Ali, A.; Anam, S.; Ahmed, M. An Unsupervised Machine Learning Algorithms: Comprehensive Review. Int. J. Comput. Digit. Syst. 2023, 13, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Galant, M.; Krawczyk, P.; Obara, A.; Grenda, A.; Kalinka, E.; Milanowski, J. Molecular classification of endometrial cancer and its impact on therapy selection. Int. J. Mol. Sci. 2024, 25, 5893. [Google Scholar] [CrossRef]
- Nies, H.W.; Zakaria, Z.; Mohamad, M.S.; Chan, W.S.; Zaki, N.; Sinnott, R.O.; Napis, S.; Chamoso, P.; Omatu, S.; Corchado, J.M. A review of computational methods of clustering genes with similar biological functions. Processes 2019, 7, 550. [Google Scholar] [CrossRef]
- Cadima, J.; Jolliffe, I.T. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 13, 2065. [Google Scholar] [CrossRef]
- Lien, J.Y.; Hii, L.A.; Su, P.H.; Chen, L.Y.; Wen, K.C.; Lai, H.C.; Wang, Y.C. Exploring potential methylation markers for ovarian cancer from cervical scraping samples. Hum. Genom. 2025, 19, 56. [Google Scholar] [CrossRef]
- Sarkar, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Sarhangi, H.A.; Beigifard, D.; Farmani, E.; Bolhasani, H. Deep learning techniques for cervical cancer diagnosis based on pathology and colposcopy images. arXiv 2024, arXiv:2310.16662. [Google Scholar] [CrossRef]
- Babichev, S.; Liakh, I.; Kalinina, I. Applying a recurrent neural network based deep learning model for gene expression data classification. Appl. Sci. 2023, 13, 11823. [Google Scholar] [CrossRef]
- Chen, J.; Pan, T.; Zhu, Z.; Liu, L.; Zhao, N.; Feng, X.; Zhang, W.; Wu, Y.; Cai, C.; Luo, X.; et al. A deep learning-based multimodal medical imaging model for breast cancer screening. Sci. Rep. 2025, 15, 14696. [Google Scholar] [CrossRef]
- Wang, L. Mammography with deep learning for breast cancer detection. Front. Oncol. 2024, 14, 1281922. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafiz, D.; Yang, C.; Ammar, R.; Nabavi, S. Deep convolutional neural networks for mammography: Advances, challenges and applications. BMC Bioinform. 2019, 20 (Suppl. 11), 281. [Google Scholar] [CrossRef]
- Kurita, Y.; Meguro, S.; Kosugi, I.; Enomoto, Y.; Kawasaki, H.; Kano, T.; Saitoh, T.; Shinmura, K.; Iwashita, T. Enhancing cervical cancer cytology screening via artificial intelligence innovation. Sci. Rep. 2024, 14, 19535. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2014, 13, 8–17. [Google Scholar] [CrossRef]
- Picard, M.; Scott-Boyer, M.P.; Bodein, A.; Périn, O.; Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3735–3746. [Google Scholar] [CrossRef]
- Talaat, A.; Helmy, M.A.; Saadawy, S.F. Evaluation of miRNA-21 and CA-125 as a promising diagnostic biomarker in patients with ovarian cancer. Egypt. J. Med. Hum. Genet. 2022, 23, 123. [Google Scholar] [CrossRef]
- Xu, H.L.; Gong, T.T.; Liu, F.H.; Chen, H.Y.; Xiao, Q.; Hou, Y.; Huang, Y.; Sun, H.Z.; Shi, Y.; Gao, S.; et al. Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. EClin. Med. 2022, 53, 101662. [Google Scholar] [CrossRef]
- Piedimonte, S.; Mohamed, M.; Rosa, G.; Gerstl, B.; Vicus, D. Predicting Response to Treatment and Survival in Advanced Ovarian Cancer Using Machine Learning and Radiomics: A Systematic Review. Cancers 2025, 17, 336. [Google Scholar] [CrossRef]
- Yang, J.; Soltan, A.A.S.; Eyre, D.W.; Clifton, D.A. Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning. Nat. Mach. Intell. 2023, 5, 884–894. [Google Scholar] [CrossRef]
- Ahishakiye, E.; Mwangi, W.; Muthoni, P.; Nderu, L.; Wario, R. Comparative Performance of Machine Leaning Algorithms in Prediction of Cervical Cancer. In Proceedings of the 2021 IST-Africa Conference (IST-Africa), Virtual, 10–14 May 2021; pp. 1–13. [Google Scholar]
- Fiste, O.; Liontos, M.; Zagouri, F.; Stamatakos, G.; Dimopoulos, M.A. Machine learning applications in gynecological cancer: A critical review. Crit. Rev. Oncol. Hematol. 2022, 179, 103808. [Google Scholar] [CrossRef] [PubMed]
- Fatunmbi, T.O.; Piastri, A.R.; Adrah, F. Deep learning, Artificial Intelligence and machine learning in cancer: Prognosis, diagnosis and treatment. World J. Adv. Res. Rev. 2022, 15, 725–739. [Google Scholar] [CrossRef]
- Ahn, J.S.; Shin, S.; Yang, S.A.; Park, E.K.; Kim, K.H.; Cho, S.I.; Ock, C.Y.; Kim, S. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. J. Breast Cancer 2023, 26, 405–435. [Google Scholar] [CrossRef] [PubMed]
- Blahová, L.; Kostolný, J.; Cimrák, I. Neural Network-Based Mammography Analysis: Augmentation Techniques for Enhanced Cancer Diagnosis—A Review. Bioengineering 2025, 12, 232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Decoding breast cancer heterogeneity: A novel three-gene signature links intratumoral heterogeneity with tumor microenvironment and patient outcomes. Discov. Oncol. 2025, 16, 1218. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, T.; Iwase, H.; Wu, R.; Ziazadeh, D.; Yan, L.; Takabe, K. Development of a Machine Learning-Based Prognostic Model for Hormone Receptor-Positive Breast Cancer Using Nine-Gene Expression Signature. World J. Oncol. 2023, 14, 406–422. [Google Scholar] [CrossRef]
- Zuo, D.; Yang, L.; Jin, Y.; Qi, H.; Liu, Y.; Ren, L. Machine learning-based models for the prediction of breast cancer recurrence risk. BMC Med. Inform. Decis. Mak. 2023, 23, 276. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Ali, M.; Naseem, U.; Nezhadmoghadam, F.; Jatoi, M.A.; Gulliver, T.A.; Tamez-Peña, J.G. Breast cancer risk prediction using machine learning: A systematic review. Front. Oncol. 2024, 14, 1343627. [Google Scholar] [CrossRef]
- Choudhury, P.; Brook, M.N.; Hurson, A.N.; Lee, A.; Mulder, C.V.; Coulson, P.; Schoemaker, M.J.; Jones, M.E.; Swerdlow, A.J.; Chatterjee, N.; et al. Comparative validation of the BOADICEA and Tyrer-Cuzick breast cancer risk models incorporating classical risk factors and polygenic risk in a population-based prospective cohort of women of European ancestry. Breast Cancer Res. BCR 2021, 23, 22. [Google Scholar] [CrossRef]
- Su, J.; Lu, H.; Zhang, R.; Cui, N.; Chen, C.; Si, Q.; Song, B. Cervical cancer prediction using machine learning models based on routine blood analysis. Sci. Rep. 2025, 15, 22655. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, X. A comprehensive review for machine learning based human papillomavirus detection in forensic identification with multiple medical samples. Front. Microbiol. 2023, 14, 1232295. [Google Scholar] [CrossRef] [PubMed]
- Mohi Uddin, K.M.; Sikder, I.A.; Hasan, M.N. A Comparative Study on Machine Learning Classifiers for Cervical Cancer Prediction: A Predictive Analytic Approach. EAI Endorsed Trans. Internet Things 2025, 11, 1–12. [Google Scholar] [CrossRef]
- Palanisamy, V.S.; Athiappan, R.K.; Nagalingam, T. Pap smear based cervical cancer detection using residual neural networks deep learning architecture. Concurr. Comput. Pract. Exp. 2021, 34, e6608. [Google Scholar] [CrossRef]
- Ghoneim, A.; Muhammad, G.; Hossain, M.S. Cervical cancer classification using convolutional neural networks and extreme learning machines. Future Gener. Comput. Syst. 2020, 102, 643–649. [Google Scholar] [CrossRef]
- Abrar, S.S.; Isa, S.A.M.; Hairon, S.M.; Ismail, M.P.; Kadir, M.N.B.N.A. Recent Advances in Applications of Machine Learning in Cervical Cancer Research: A Focus on Prediction Models. Obstet. Gynecol. Sci. 2025, 68, 247. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Li, Z.; Dai, L.; Li, J.; Liao, L.; Chen, W. Machine learning in ovarian cancer: A bibliometric and visual analysis from 2004 to 2024. Discov. Oncol. 2025, 16, 755. [Google Scholar] [CrossRef]
- Adusumilli, P.; Ravikumar, N.; Hall, G.; Swift, S.; Orsi, N.; Scarsbrook, A. Radiomics in the evaluation of ovarian masses—A systematic review. Insights Imaging 2023, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Jan, Y.T.; Tsai, P.S.; Huang, W.H.; Chou, L.Y.; Huang, S.C.; Wang, J.Z.; Lu, P.H.; Lin, D.C.; Yen, C.S.; Teng, J.P.; et al. Machine learning combined with radiomics and deep learning features extracted from CT images: A novel AI model to distinguish benign from malignant ovarian tumors. Insights Into Imaging 2023, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Sorayaie Azar, A.; Babaei Rikan, S.; Naemi, A.; Bagherzadeh Mohasefi, J.; Pirnejad, H.; Bagherzadeh Mohasefi, M.; Wiil, U.K. Application of machine learning techniques for predicting survival in ovarian cancer. BMC Med. Inform. Decis. Mak. 2022, 22, 345. [Google Scholar] [CrossRef]
- Antoniadi, A.M.; Du, Y.; Guendouz, Y.; Wei, L.; Mazo, C.; Becker, B.A.; Mooney, C. Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. Appl. Sci. 2021, 11, 5088. [Google Scholar] [CrossRef]
- Barbierato, E.; Gatti, A. The Challenges of Machine Learning: A Critical Review. Electronics 2024, 13, 416. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Zhou, S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. Semin. Cancer Biol. 2023, 96, 82–99. [Google Scholar] [CrossRef]
- Rasheed, A.; Shirazi, S.H.; Khan, P.; Aseere, A.M.; Shahzad, M. Techniques and challenges for nuclei segmentation in cervical smear images: A review. Artif. Intell. Rev. 2025, 58, 295. [Google Scholar] [CrossRef]
- Smiley, A.; Reategui-Rivera, C.M.; Villarreal-Zegarra, D.; Escobar-Agreda, S.; Finkelstein, J. Exploring Artificial Intelligence Biases in Predictive Models for Cancer Diagnosis. Cancers 2025, 17, 407. [Google Scholar] [CrossRef]
- Scorzato, L. Reliability and Interpretability in Science and Deep Learning. Minds Mach. 2024, 34, 27. [Google Scholar] [CrossRef]
- Kaur, H.; Sharma, R.; Kaur, J. Comparison of deep transfer learning models for classification of cervical cancer from pap smear images. Sci. Rep. 2025, 15, 3945. [Google Scholar] [CrossRef]
- Sandhu, S.; Lin, A.L.; Brajer, N.; Sperling, J.; Ratliff, W.; Bedoya, A.D.; Balu, S.; O’Brien, C.; Sendak, M.P. Integrating a Machine Learning System into Clinical Workflows: Qualitative Study. J. Med. Internet Res. 2020, 22, e22421. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef]
- Basu, T.; Engel-Wolf, S.; Menzer, O. The Ethics of Machine Learning in Medical Sciences: Where Do We Stand Today? Indian J. Dermatol. 2020, 65, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Kerketta, A.; Balasundaram, S. Leveraging AI Tools to Bridge the Healthcare Gap in Rural Areas in India. medRxiv 2024. [Google Scholar] [CrossRef]
- Kimiafar, K.; Sarbaz, M.; Tabatabaei, S.M.; Ghaddaripouri, K.; Mousavi, A.S.; Raei Mehneh, M.; Mousavi Baigi, S.F. Artificial intelligence literacy among healthcare professionals and students: A systematic review. Front. Health Inform. 2023, 12, 168. [Google Scholar] [CrossRef]
- Idlahcen, F.; Idri, A.; Goceri, E. Exploring data mining and machine learning in gynecologic oncology. Artif. Intell. Rev. 2024, 57, 20. [Google Scholar] [CrossRef]
- Lomis, K.; Jeffries, P.; Palatta, A.; Sage, M.; Sheikh, J.; Sheperis, C.; Whelan, A. Artificial Intelligence for Health Professions Educators. NAM Perspect. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, E.; Pearce, T.; Baysal, M.A.; Chakraborty, A.; Tsimberidou, A.M. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit. Med. 2025, 8, 75. [Google Scholar] [CrossRef]
- Junaid, S.B.; Imam, A.A.; Balogun, A.O.; De Silva, L.C.; Surakat, Y.A.; Kumar, G.; Abdulkarim, M.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; et al. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare 2022, 10, 1940. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Comput. Biol. Med. 2022, 149, 106043. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Qayyum, A.; Bilal, M.; Al-Fuqaha, A.; Qadir, J. Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Comput. Biol. Med. 2023, 158, 106848. [Google Scholar] [CrossRef]
- Lazaros, K.; Koumadorakis, D.E.; Vrahatis, A.G.; Kotsiantis, S. Federated Learning: Navigating the Landscape of Collaborative Intelligence. Electronics 2024, 13, 4744. [Google Scholar] [CrossRef]
- Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine learning for multi-omics data integration in cancer. Iscience 2022, 25, 103798. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Kumar, S.; Varma, A.; Edwards, B.; Lu, C.; Qu, L.; Wang, J.J.; Lakshminarayanan, A.; Wang, S.H.; Sheller, M.J.; et al. Privacy preservation for federated learning in health care. Patterns 2024, 5, 100974. [Google Scholar] [CrossRef]
- Hashem, H.; Sultan, I. Revolutionizing precision oncology: The role of artificial intelligence in personalized pediatric cancer care. Front. Med. 2025, 12, 1555893. [Google Scholar] [CrossRef]
- Mishra, K.N.; Mishra, A.; Ray, S.; Kumari, A.; Waris, S.M. Enhancing Cancer Detection and Prevention Mechanisms Using Advanced Machine Learning Approaches. Inform. Med. Unlocked 2024, 50, 101579. [Google Scholar] [CrossRef]
- Bozyel, S.; Şimşek, E.; Koçyiğit Burunkaya, D.; Güler, A.; Korkmaz, Y.; Şeker, M.; Ertürk, M.; Keser, N. Artificial Intelligence-Based Clinical Decision Support Systems in Cardiovascular Diseases. Anatol. J. Cardiol. 2024, 28, 74–86. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, U.M.; Pilloton, R.; Farooqi, H.; Narang, J. Revolutionizing cervical cancer diagnostics: A shift from traditional techniques to biosensors. Biosens. Bioelectron. X 2025, 23, 100587. [Google Scholar] [CrossRef]
- Viñals, R.; Jonnalagedda, M.; Petignat, P.; Thiran, J.-P.; Vassilakos, P. Artificial Intelligence-Based Cervical Cancer Screening on Images Taken during Visual Inspection with Acetic Acid: A Systematic Review. Diagnostics 2023, 13, 836. [Google Scholar] [CrossRef]
- Hasanzadeh, F.; Josephson, C.B.; Waters, G.; Adedinsewo, D.; Azizi, Z.; White, J.A. Bias recognition and mitigation strategies in artificial intelligence healthcare applications. NPJ Digit. Med. 2025, 8, 154. [Google Scholar] [CrossRef]
- Pagano, T.P.; Loureiro, R.B.; Lisboa, F.V.N.; Peixoto, R.M.; Guimarães, G.A.S.; Cruz, G.O.R.; Araujo, M.M.; Santos, L.L.; Cruz, M.A.S.; Oliveira, E.L.S.; et al. Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big Data Cogn. Comput. 2023, 7, 15. [Google Scholar] [CrossRef]
- Mohammed, S.; Malhotra, N. Ethical and regulatory challenges in machine learning-based healthcare systems: A review of implementation barriers and future directions. BenchCouncil Trans. Benchmarks Stand. Eval. 2025, 5, 100215. [Google Scholar] [CrossRef]
- Amjad, A.; Kordel, P.; Fernandes, G. A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence. Sustainability 2023, 15, 6655. [Google Scholar] [CrossRef]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef]
- Jabbar, M.A.; Samreen, S.; Aluvalu, R. The Future of Health care: Machine Learning. Int. J. Eng. Technol. 2018, 7, 23–25. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.; Guan, X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Iyoke, C.A.; Ugwu, G.O. Burden of gynaecological cancers in developing countries. World J. Obstet. Gynecol. 2013, 2, 1–7. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Vidanagamachchi, S.M.; Waidyarathna, K.M. Opportunities, challenges and future perspectives of using bioinformatics and artificial intelligence techniques on tropical disease identification using omics data. Front. Digit. Health 2024, 6, 1471200. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.G.; Pantanowitz, L.; Dash, R.; Harrison, J.H.; Deebajah, M.; Pantanowitz, J.; Rashidi, H.H. Future of Artificial Intelligence-Machine Learning Trends in Pathology and Medicine. Mod. Pathol. 2025, 38, 100705. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Mohanty, A.; Ramisetty, S.; Kulkarni, P.; Horne, D.; Pisick, E.; Salgia, R.; Singhal, S.S. Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers. Biochim. Biophys. Rev. Cancer 2023, 1878, 189026. [Google Scholar] [CrossRef] [PubMed]
ML Approach | Key Algorithms/Models | Core Features | Applications in Gynecologic Oncology |
---|---|---|---|
Supervised Learning | Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN) | Trains on labeled datasets (input → known output) |
|
Unsupervised Learning | k-Means Clustering, Hierarchical Clustering, Principal Component Analysis (PCA) | Finds hidden patterns in unlabeled data |
|
Deep Learning (DL) | Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Autoencoders | Multi-layer neural networks that learn features automatically |
|
Hybrid/Ensemble Models | Gradient Boosting Machines (XGBoost, Light GBM), Ensemble DL models | Combine multiple algorithms to improve accuracy and reduce bias |
|
ML Algorithm | Application Area | Gynecologic Cancer Type | Data Source | Clinical Impact | References |
---|---|---|---|---|---|
Decision Trees | Risk classification, interpretability | Cervical, Endometrial | Clinical records, HPV data | Transparent decision rules for triage and histological subtyping | [20,21,46] |
Random Forest | Survival prediction, subtype classification | Breast, Ovarian | Genomic and histopathology data | Robust ensemble learning; improved prognostic modelling | [31,32,36,46] |
Support Vector Machine (SVM) | Lesion detection, subtype prediction | Breast, Cervical, Ovarian | Imaging, gene expression, biomarkers | High accuracy in high-dimensional, small-sample data | [24,25,29] |
Convolutional Neural Networks (CNN) | Image-based diagnostics | Cervical, Breast, Endometrial | Mammograms, Pap smears, MRIs | Automated, accurate image classification for early diagnosis | [47,48,49] |
LASSO Regression | Ovarian | Proteomics, miRNAs | Reduces overfitting while enhancing marker-based prediction | [50,51,52] | |
Recurrent Neural Networks (RNN) | Sequence-based analysis | Ovarian | Gene expression time series | Models longitudinal or time-varying clinical data | [45,53,54] |
PCA/K-Means (Unsupervised) | Tumor subtyping, pattern discovery | Endometrial, Ovarian | Multi-omics, expression clustering | Discovers hidden patterns and new cancer subgroups | [38,39,55] |
XGBoost | Risk stratification, biomarker evaluation | Cervical, Ovarian | Combined omics and clinical data | High performance with imbalanced datasets | [31,56] |
Cancer Type | Application | Data Type | ML Techniques | Clinical Impact | References |
---|---|---|---|---|---|
Breast | Tumor detection | Mammography, MRI | CNN, SVM | Early, accurate diagnosis | [18,45,62] |
Recurrence prediction | Gene expression | Random Forest, ANN | Personalized treatment planning | [32,61,72] | |
Cervical | HPV-based risk prediction | HPV genotyping, clinical records | Logistic Regression, SVM | CIN progression risk stratification | [22,33,56] |
Pap smear analysis | Cytology images | CNN, U-Net | Automated screening, consistency | [27,71] | |
Ovarian | Prognosis, biomarkers | Proteomics, miRNA | SVM, XGBoost | Improved early-stage detection | [28,30,41] |
Tumor classification, prognosis | MRI, CT, genomics | Radio-genomics, Random Survival Forests | Treatment response prediction | [52,54] | |
Endometrial | Subtype classification, survival | Histopathology, gene expression | CNN, PCA | Accurate risk group identification | [38,41] |
Tumor heterogeneity and biomarker discovery | Multi-omics and clustering | K-Means, Hierarchical Clustering | Insights into novel molecular subgroups | [39,76] |
ML Approach | Research Setting Use Case | Clinical Setting Example | Validation Status | Advantages | Limitations/Barriers |
---|---|---|---|---|---|
CNN (Deep Learning) | Automated Pap smear classification | Cervical image analysis in low-resource clinics | Retrospective + pilot clinical | High accuracy in image tasks | Requires large labeled datasets |
Random Forest | Ovarian cancer risk prediction from omics data | Predicting recurrence from histology | Retrospective validation | Robust to noise, handles missing data | Interpretability lower than decision trees |
XGBoost | CA-125 + miRNA-based early detection | Decision support for screening protocols | Research-phase | Handles imbalanced data well | Needs careful tuning; overfitting risk |
SVM | Gene expression-based subtype classification | MRI-based tumor segmentation | Preclinical | Good in high-dimensional settings | Not scalable to very large datasets |
LASSO Regression | miRNA signature selection | Prognostic modeling in ovarian cancer | Retrospective cohort studies | Simplicity; feature reduction | May underperform in nonlinear problems |
Radiomics + ML Fusion | Texture-based lesion characterization from imaging | BRCA status prediction from MRI/CT | Early-phase clinical trials | Links imaging to genomics (radio genomics) | Data harmonization between centers is challenging |
Unsupervised Learning | Identifying novel subtypes from multi-omics datasets | Tumor classification beyond histology | Research exploration | Discovers hidden patterns without prior labels | Interpretation and reproducibility |
Model Type | Application | Metrics Reported | External Validation |
---|---|---|---|
Decision Trees | BC risk stratification | Accuracy, Sensitivity | No |
SVM | Cervical cytology classification | AUC, Specificity | Single-center only |
Random Forests | OC biomarker prediction | F1-score, Calibration | No |
CNN (DL) | Pap smear image analysis | AUC, Sensitivity, Specificity | Rarely multi-center |
Transformer (DL) | Histopathology subtype classification | AUC, Precision | Early pilot only |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garg, P.; Krishna, M.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Machine Learning Models for Predicting Gynecological Cancers: Advances, Challenges, and Future Directions. Cancers 2025, 17, 2799. https://doi.org/10.3390/cancers17172799
Garg P, Krishna M, Kulkarni P, Horne D, Salgia R, Singhal SS. Machine Learning Models for Predicting Gynecological Cancers: Advances, Challenges, and Future Directions. Cancers. 2025; 17(17):2799. https://doi.org/10.3390/cancers17172799
Chicago/Turabian StyleGarg, Pankaj, Madhu Krishna, Prakash Kulkarni, David Horne, Ravi Salgia, and Sharad S. Singhal. 2025. "Machine Learning Models for Predicting Gynecological Cancers: Advances, Challenges, and Future Directions" Cancers 17, no. 17: 2799. https://doi.org/10.3390/cancers17172799
APA StyleGarg, P., Krishna, M., Kulkarni, P., Horne, D., Salgia, R., & Singhal, S. S. (2025). Machine Learning Models for Predicting Gynecological Cancers: Advances, Challenges, and Future Directions. Cancers, 17(17), 2799. https://doi.org/10.3390/cancers17172799