A Polyomavirus-Positive Merkel Cell Carcinoma Mouse Model Supports a Unified Origin for Somatic and Germ Cell Cancers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Derivation of MCPyv+ Primeval Stem Cell Lines hPGCLC_A4_L82, hiPSC_A4_L82, and hEGCLC_A4_L82
2.3. MCPyV+ Human Primeval Stem Cell Line-Derived Mouse Xenograft Study
2.4. RT-qPCR
2.5. Immunohistochemistry (IHC) Study
2.6. Flow Cytometry 5mC Analysis for Assessment of Global DNA Methylation
2.7. Statistical Analysis
3. Results
3.1. Confirmation of MST to VP-MCC-like Tumors
3.1.1. Morphology Confirmation of MST to VP-MCC-like Tumors
3.1.2. VP-MCC Like Histopathology of VP-MCC Like Tumors
3.1.3. VP-MCC Like Molecular Profile of VP-MCC Like Tumors
3.2. Global DNA Methylation Reset Before MST
3.2.1. Global DNA Methylation Assessment Using 5mC Flow Cytometry and Validation Using IHC
3.2.2. Requisite Late-hPGC State Before MST to VP-MCC-like Tumors
- VP-MCC-like tumors exhibited unique late-hPGC global DNA methylation signature
- Direct and indirect tumorigenic pathways to VP-MCC-like tumors
3.2.3. Merkel Cell Carcinoma Lines and a Seminoma Line Show Similar Global DNA Methylation
- VP-MCC and TCam2 lines showed similar global DNA methylation
- Variant VN-MCC and TCam2 lines also showed similar global DNA methylation
4. Discussion
4.1. Functional Evidence Against Parthenogenic Intermediates for MST to VMLT
4.1.1. Failure of hEGCLC_A4_L82 to Derive VP-MCC-like Tumor Supports No Pluripotent Intermediate for MST
4.1.2. Decreased Potency of hEGCLC_A4_L82 Suggests No Totipotent Intermediate for MST
4.2. Independent Tumorigenic Pathways for Teratoma vs. VP-MCC-like Tumor
4.3. Potential Tumorigenic Functions by MCPyV
4.4. Early Developmental vs. Carcinogenic Pathways
4.5. Basic Science Evidence for Direct Germline-to-Soma Transitions
4.6. Why Are hPGCs Potentially the Most Promising Candidates as the Cell of Origin for Somatic Cancer Stem Cells
- High developmental plasticity: PGCs occupy a transient, loosely specified state typified by expression of pluripotency-network factors such as OCT4 and NANOG, which lowers barriers to lineage switching and dedifferentiation—key cancer stem cell traits [68].
4.7. Therapeutic Implications from the VP-MCC Mouse Model
Concluding Perspective
4.8. Limitations
4.8.1. Future Additional Functional Studies to Characterize Xenograft VP-MCC-like Tumors
4.8.2. Future Detailed Molecular Studies to Further Validate Tumorigenic Pathways
4.8.3. Future Mouse Study Design to Validate Reproducibility
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
hiPSC | human-induced pluripotent stem cell |
VN-MCC | Virus-negative MCC |
hEGCLC | hEGC-like cells |
EC | embryonal carcinoma |
ECC | embryonic carcinoma cell |
hEGC | human embryonic germ cell |
hEGCLC | hEGC-like cell |
EGGCT | extragonadal germ cell tumor |
hESC | human embryonic stem cell |
HGNEC | high grade neuroendocrine carcinoma |
GCC | germ cell cancer |
GCT | germ cell tumor |
GDM | global DNA methylation |
ICM | inner cell mass |
IHC | immunohistochemical |
iPSC | induced pluripotent stem cells |
hiPSC | human iPSC |
LTC | long-term-culture |
MCC | Merkel cell carcinoma |
MCPyV | Merkel cell polyomavirus |
MST | malignant somatic transformation |
NSGCC | non-seminomatous germ cell cancer |
PGC | primordial germ cell |
hPGC | human primordial germ cell |
hPGCLC | hPGC-like cell |
hPSC | human pluripotent stem cell |
SCF | stem cell factor |
SCNC | small cell neuroendocrine carcinoma |
SDF-1 | stromal cell-derived factor 1 |
VN | virus-negative |
VP-MCC | virus-positive Merkel cell carcinoma |
VMLT | VP-MCC like tumor |
VN-vMCC | virus-negative variant MCC |
WB | Weismann barrier |
References
- Oosterhuis, J.W.; Looijenga, L.H.J. Human germ cell tumours from a developmental perspective. Nat. Rev. Cancer 2019, 19, 522–537. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Sell, S.; Pierce, G.B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Investig. 1994, 70, 6–22. [Google Scholar]
- Tu, S.M.; Pisters, L.L. Curing Cancer: Lessons from a Prototype. Cancers 2021, 13, 660. [Google Scholar] [CrossRef]
- Huang, S.; Soto, A.M.; Sonnenschein, C. The end of the genetic paradigm of cancer. PLoS Biol. 2025, 23, e3003052. [Google Scholar] [CrossRef]
- Jögi, A.; Vaapil, M.; Johansson, M.; Påhlman, S. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups. J. Med. Sci. 2012, 117, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, J.; Shibata, H.; Kabata, M.; Kato, M.; Fukuda, K.; Tanaka, A.; Ohta, S.; Ukai, T.; Mitsunaga, K.; Yamada, Y.; et al. DMRT1-mediated reprogramming drives development of cancer resembling human germ cell tumors with features of totipotency. Nat. Commun. 2021, 12, 5041. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Sun, N.; Hou, L.; Kim, R.; Faith, J.; Aslanyan, M.; Tao, Y.; Zheng, Y.; Fu, J.; Liu, W.; et al. Human Primordial Germ Cells Are Specified from Lineage-Primed Progenitors. Cell Rep. 2019, 29, 4568–4582.e5. [Google Scholar] [CrossRef] [PubMed]
- Kum, J.B.; Ulbright, T.M.; Williamson, S.R.; Wang, M.; Zhang, S.; Foster, R.S.; Grignon, D.J.; Eble, J.N.; Beck, S.D.; Cheng, L. Molecular genetic evidence supporting the origin of somatic-type malignancy and teratoma from the same progenitor cell. Am. J. Surg. Pathol. 2012, 36, 1849–1856. [Google Scholar] [CrossRef]
- Taylor, J.; Donoghue, M.T.; Ho, C.; Petrova-Drus, K.; Al-Ahmadie, H.A.; Funt, S.A.; Zhang, Y.; Aypar, U.; Rao, P.; Chavan, S.S.; et al. Germ cell tumors and associated hematologic malignancies evolve from a common shared precursor. J. Clin. Investig. 2020, 130, 6668–6676. [Google Scholar] [CrossRef]
- Wyvekens, N.; Sholl, L.M.; Yang, Y.; Tran, I.; Vasudevaraja, V.; Dickson, B.C.; Al-Obaidy, K.I.; Baniak, N.; Collins, K.; Gordetsky, J.B.; et al. Molecular correlates of male germ cell tumors with overgrowth of components resembling somatic malignancies. Mod. Pathol. 2022, 35, 1966–1973. [Google Scholar] [CrossRef]
- De Felici, M.; Klinger, F.G.; Campolo, F.; Balistreri, C.R.; Barchi, M.; Dolci, S. To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. Int. J. Mol. Sci. 2021, 22, 5982. [Google Scholar] [CrossRef]
- Nin, D.S.; Deng, L.W. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023, 12, 926. [Google Scholar] [CrossRef]
- Simpson, A.J.; Caballero, O.L.; Jungbluth, A.; Chen, Y.T.; Old, L.J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 2005, 5, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, F.; Liu, A.; Lin, H.; Liu, C. Somatic-to-primordial germ cell-like transformation is critical in tumor initiation of mouse breast tumor 4T1 cells. Am. J. Cancer Res. 2023, 13, 1471–1485. [Google Scholar] [PubMed]
- Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 2009, 1, 239–259. [Google Scholar] [CrossRef]
- Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat. Rev. Cancer 2008, 8, 755–768. [Google Scholar] [CrossRef]
- Damjanov, I.; Andrews, P.W. Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice—A histopathology atlas. Int. J. Dev. Biol. 2016, 60, 337–419. [Google Scholar] [CrossRef] [PubMed]
- Montilla-Rojo, J.; Bialecka, M.; Wever, K.E.; Mummery, C.L.; Looijenga, L.H.J.; Roelen, B.A.J.; Salvatori, D.C.F. Teratoma Assay for Testing Pluripotency and Malignancy of Stem Cells: Insufficient Reporting and Uptake of Animal-Free Methods-A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3879. [Google Scholar] [CrossRef]
- Aleckovic, M.; Simon, C. Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reprod. Biomed. Online 2008, 17, 270–280. [Google Scholar] [CrossRef]
- Feng, H.; Shuda, M.; Chang, Y.; Moore, P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008, 319, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Harms, P.W.; Harms, K.L.; Moore, P.S.; DeCaprio, J.A.; Nghiem, P.; Wong, M.K.K.; Brownell, I. The biology and treatment of Merkel cell carcinoma: Current understanding and research priorities. Nat. Rev. Clin. Oncol. 2018, 15, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E.A.; Verhaegen, M.E.; Joseph, M.K.; Harms, K.L.; Harms, P.W. Merkel cell carcinoma: Updates in tumor biology, emerging therapies, and preclinical models. Front. Oncol. 2024, 14, 1413793. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Fan, P.; Huo, W.; Feng, Y.; Wang, R. Corrigendum to “Genomic profiles and their relationships with clinical characteristics and immune features in cervical cancer” [Translational Oncology 44 (2024) 1–10/101923]. Transl. Oncol. 2024, 47, 102037. [Google Scholar] [CrossRef]
- Kervarrec, T.; Samimi, M.; Guyétant, S.; Sarma, B.; Chéret, J.; Blanchard, E.; Berthon, P.; Schrama, D.; Houben, R.; Touzé, A. Histogenesis of Merkel Cell Carcinoma: A Comprehensive Review. Front. Oncol. 2019, 9, 451. [Google Scholar] [CrossRef]
- Balanis, N.G.; Sheu, K.M.; Esedebe, F.N.; Patel, S.J.; Smith, B.A.; Park, J.W.; Alhani, S.; Gomperts, B.N.; Huang, J.; Witte, O.N.; et al. Pan-cancer Convergence to a Small-Cell Neuroendocrine Phenotype that Shares Susceptibilities with Hematological Malignancies. Cancer Cell 2019, 36, 17–34.e7. [Google Scholar] [CrossRef]
- Ogawa, T.; Donizy, P.; Wu, C.L.; Cornejo, K.M.; Rys, J.; Hoang, M.P. Morphologic Diversity of Merkel Cell Carcinoma. Am. J. Dermatopathol. 2020, 42, 629–640. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Qian, H.; Shao, G.; Lu, X.; Chen, Q.; Sun, X.; Chen, D.; Yin, R.; Zhu, H.; et al. Stemness and inducing differentiation of small cell lung cancer NCI-H446 cells. Cell Death Dis. 2013, 4, e633. [Google Scholar] [CrossRef]
- Csoboz, B.; Rasheed, K.; Sveinbjornsson, B.; Moens, U. Merkel cell polyomavirus and non-Merkel cell carcinomas: Guilty or circumstantial evidence? APMIS 2020, 128, 104–120. [Google Scholar] [CrossRef]
- Foster, B.M.; Langsten, K.L.; Mansour, A.; Shi, L.; Kerr, B.A. Tissue distribution of stem cell factor in adults. Exp. Mol. Pathol. 2021, 122, 104678. [Google Scholar] [CrossRef]
- Quan, C.; Cho, M.K.; Shao, Y.; Mianecki, L.E.; Liao, E.; Perry, D.; Quan, T. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein Cell 2015, 6, 890–903. [Google Scholar] [CrossRef]
- Leitch, H.G.; Smith, A. The mammalian germline as a pluripotency cycle. Development 2013, 140, 2495–2501. [Google Scholar] [CrossRef]
- Guo, F.; Yan, L.; Guo, H.; Li, L.; Hu, B.; Zhao, Y.; Yong, J.; Hu, Y.; Wang, X.; Wei, Y.; et al. The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells. Cell 2015, 161, 1437–1452. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Tang, F. Human Germline Cell Development: From the Perspective of Single-Cell Sequencing. Mol. Cell 2019, 76, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Kobayashi, M.; Odajima, J.; Shioda, K.; Hwang, Y.S.; Sasaki, K.; Chatterjee, P.; Kramme, C.; Kohman, R.E.; Church, G.M.; et al. Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers. Stem Cell Rep. 2022, 17, 507–521. [Google Scholar] [CrossRef]
- Guastafierro, A.; Feng, H.; Thant, M.; Kirkwood, J.M.; Chang, Y.; Moore, P.S.; Shuda, M. Characterization of an early passage Merkel cell polyomavirus-positive Merkel cell carcinoma cell line, MS-1, and its growth in NOD scid gamma mice. J. Virol. Methods 2013, 187, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Houben, R.; Dreher, C.; Angermeyer, S.; Borst, A.; Utikal, J.; Haferkamp, S.; Peitsch, W.K.; Schrama, D.; Hesbacher, S. Mechanisms of p53 restriction in Merkel cell carcinoma cells are independent of the Merkel cell polyoma virus T antigens. J. Investig. Dermatol. 2013, 133, 2453–2460. [Google Scholar] [CrossRef]
- Houben, R.; Shuda, M.; Weinkam, R.; Schrama, D.; Feng, H.; Chang, Y.; Moore, P.S.; Becker, J.C. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J. Virol. 2010, 84, 7064–7072. [Google Scholar] [CrossRef]
- Martin, E.M.; Gould, V.E.; Hoog, A.; Rosen, S.T.; Radosevich, J.A.; Deftos, L.J. Parathyroid hormone-related protein, chromogranin A, and calcitonin gene products in the neuroendocrine skin carcinoma cell lines MKL1 and MKL2. Bone Miner. 1991, 14, 113–120. [Google Scholar] [CrossRef]
- Rosen, S.T.; Gould, V.E.; Salwen, H.R.; Herst, C.V.; Le Beau, M.M.; Lee, I.; Bauer, K.; Marder, R.J.; Andersen, R.; Kies, M.S.; et al. Establishment and characterization of a neuroendocrine skin carcinoma cell line. Lab. Investig. 1987, 56, 302–312. [Google Scholar]
- Shuda, M.; Feng, H.; Kwun, H.J.; Rosen, S.T.; Gjoerup, O.; Moore, P.S.; Chang, Y. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc. Natl. Acad. Sci. USA 2008, 105, 16272–16277. [Google Scholar] [CrossRef]
- Velásquez, C.; Amako, Y.; Harold, A.; Toptan, T.; Chang, Y.; Shuda, M. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1. Front. Microbiol. 2018, 9, 713. [Google Scholar] [CrossRef]
- Ronan, S.G.; Green, A.D.; Shilkaitis, A.; Huang, T.S.; Das Gupta, T.K. Merkel cell carcinoma: In vitro and in vivo characteristics of a new cell line. J. Am. Acad. Dermatol. 1993, 29, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Leonard, J.H.; McGregor, K.; Sturm, R.A.; Parsons, P.G. A nonconsensus octamer-recognition sequence (TAATGARAT-motif) identifies a novel DNA binding protein in human Merkel cell carcinoma cell lines. Int. J. Cancer 1994, 58, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Gotoh, A.; Kamidono, S.; Kitazawa, S. Establishment and characterization of a new human testicular germ cell tumor cell line (TCam-2). Nihon Hinyokika Gakkai Zasshi 1993, 84, 1211–1218. [Google Scholar] [CrossRef]
- Prokhorova, T.A.; Harkness, L.M.; Frandsen, U.; Ditzel, N.; Schroder, H.D.; Burns, J.S.; Kassem, M. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev. 2009, 18, 47–54. [Google Scholar] [CrossRef]
- Irie, N.; Weinberger, L.; Tang, W.W.; Kobayashi, T.; Viukov, S.; Manor, Y.S.; Dietmann, S.; Hanna, J.H.; Surani, M.A. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015, 160, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Yokobayashi, S.; Nakamura, T.; Okamoto, I.; Yabuta, Y.; Kurimoto, K.; Ohta, H.; Moritoki, Y.; Iwatani, C.; Tsuchiya, H.; et al. Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell 2015, 17, 178–194. [Google Scholar] [CrossRef]
- Sugawa, F.; Arauzo-Bravo, M.J.; Yoon, J.; Kim, K.P.; Aramaki, S.; Wu, G.; Stehling, M.; Psathaki, O.E.; Hubner, K.; Scholer, H.R. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J. 2015, 34, 1009–1024. [Google Scholar] [CrossRef]
- Shamblott, M.J.; Axelman, J.; Wang, S.; Bugg, E.M.; Littlefield, J.W.; Donovan, P.J.; Blumenthal, P.D.; Huggins, G.R.; Gearhart, J.D. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 1998, 95, 13726–13731. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Cinkornpumin, J.K.; Kwon, S.Y.; Guo, Y.; Hossain, I.; Sirois, J.; Russett, C.S.; Tseng, H.W.; Okae, H.; Arima, T.; Duchaine, T.F.; et al. Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Stem Cell Rep. 2020, 15, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Messmer, T.; von Meyenn, F.; Savino, A.; Santos, F.; Mohammed, H.; Lun, A.T.L.; Marioni, J.C.; Reik, W. Transcriptional Heterogeneity in Naive and Primed Human Pluripotent Stem Cells at Single-Cell Resolution. Cell Rep. 2019, 26, 815–824.e4. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989; p. 503. [Google Scholar]
- Dresang, L.R.; Guastafierro, A.; Arora, R.; Normolle, D.; Chang, Y.; Moore, P.S. Response of Merkel cell polyomavirus-positive merkel cell carcinoma xenografts to a survivin inhibitor. PLoS ONE 2013, 8, e80543. [Google Scholar] [CrossRef]
- Ulbright, T.M. Germ cell tumors of the gonads: A selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod. Pathol. 2005, 18 (Suppl. S2), S61–S79. [Google Scholar] [CrossRef]
- Berney, D.M.; Cree, I.; Rao, V.; Moch, H.; Srigley, J.R.; Tsuzuki, T.; Amin, M.B.; Comperat, E.M.; Hartmann, A.; Menon, S.; et al. An introduction to the WHO 5th edition 2022 classification of testicular tumours. Histopathology 2022, 81, 459–466. [Google Scholar] [CrossRef]
- Gambichler, T.; Mohtezebsade, S.; Wieland, U.; Silling, S.; Hoh, A.K.; Dreissigacker, M.; Schaller, J.; Schulze, H.J.; Oellig, F.; Kreuter, A.; et al. Prognostic relevance of high atonal homolog-1 expression in Merkel cell carcinoma. J. Cancer Res. Clin. Oncol. 2017, 143, 43–49. [Google Scholar] [CrossRef]
- Gravemeyer, J.; Spassova, I.; Verhaegen, M.E.; Dlugosz, A.A.; Hoffmann, D.; Lange, A.; Becker, J.C. DNA-methylation patterns imply a common cellular origin of virus- and UV-associated Merkel cell carcinoma. Oncogene 2022, 41, 37–45. [Google Scholar] [CrossRef]
- Harms, P.W.; Verhaegen, M.E.; Vo, J.N.; Tien, J.C.; Pratt, D.; Su, F.; Dhanasekaran, S.M.; Cao, X.; Mangelberger, D.; VanGoor, J.; et al. Viral Status Predicts the Patterns of Genome Methylation and Decitabine Response in Merkel Cell Carcinoma. J. Investig. Dermatol. 2022, 142, 641–652. [Google Scholar] [CrossRef]
- Smiraglia, D.J.; Rush, L.J.; Fruhwald, M.C.; Dai, Z.; Held, W.A.; Costello, J.F.; Lang, J.C.; Eng, C.; Li, B.; Wright, F.A.; et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum. Mol. Genet. 2001, 10, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Nettersheim, D.; Heukamp, L.C.; Fronhoffs, F.; Grewe, M.J.; Haas, N.; Waha, A.; Honecker, F.; Waha, A.; Kristiansen, G.; Schorle, H. Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PLoS ONE 2013, 8, e82881. [Google Scholar] [CrossRef] [PubMed]
- Sreedharanunni, S.; Kaur, P.; Raina, S.; Bose, P.; Kumar, A.; Sharma, P.; Naseem, S.; Jain, A.; Khadwal, A.; Sachdeva, M.U.S. Flow Cytometric Intracellular 5-Methyl Cytosine Expression and Its Correlation With Cytogenetics and Measurable Residual Disease in Adult B-Lineage Acute Lymphoblastic Leukemia. Int. J. Lab. Hematol. 2025, 47, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Fraga, M.F.; Esteller, M. DNA methylation: A profile of methods and applications. Biotechniques 2002, 33, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, K.P.; Anheuser, P.; Gehrckens, R.; Wilczak, W.; Sauter, G.; Hoflmayer, D. Pure Testicular Seminoma Relapsing Late with Somatic Type Malignancy. Case Rep. Oncol. Med. 2017, 2017, 2457023. [Google Scholar] [CrossRef]
- Kumaki, N.; Umemura, S.; Kajiwara, H.; Itoh, J.; Itoh, Y.; Osamura, R.Y. Immunohistochemical analysis of neuroendocrine (NE) differentiation in testicular germ cell tumors (GCTs): Use of confocal laser scanning microscopy (CLSM) to demonstrate direct NE differentiation from GCTs. Acta Histochem. Cytochem. 2007, 40, 143–151. [Google Scholar] [CrossRef]
- Ul Fatima, N.; Tursun, B. Conversion of Germ Cells to Somatic Cell Types in C. elegans. J. Dev. Biol. 2020, 8, 24. [Google Scholar] [CrossRef]
- Feinberg, A.P.; Koldobskiy, M.A.; Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 2016, 17, 284–299. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, A.; Gosálvez, J.; Agarwal, A.; Roy, R.; Johnston, S. DNA Damage and Repair in Human Reproductive Cells. Int. J. Mol. Sci. 2018, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef]
- Anwar, S.L.; Wulaningsih, W.; Lehmann, U. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int. J. Mol. Sci. 2017, 18, 974. [Google Scholar] [CrossRef] [PubMed]
- Siomi, M.C.; Sato, K.; Pezic, D.; Aravin, A.A. PIWI-interacting small RNAs: The vanguard of genome defense. Nat. Rev. Mol. Cell Biol. 2011, 12, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, Q.; Jiang, W.; Bian, Y.; Zhou, Y.; Gou, A.; Zhang, W.; Fu, K.; Shi, W. Emerging roles of piRNAs in cancer: Challenges and prospects. Aging 2019, 11, 9932–9946. [Google Scholar] [CrossRef]
- Runyan, C.; Schaible, K.; Molyneaux, K.; Wang, Z.; Levin, L.; Wylie, C. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 2006, 133, 4861–4869. [Google Scholar] [CrossRef]
- Ara, T.; Nakamura, Y.; Egawa, T.; Sugiyama, T.; Abe, K.; Kishimoto, T.; Matsui, Y.; Nagasawa, T. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell–derived factor-1 (SDF-1). Proc. Natl. Acad. Sci. USA 2003, 100, 5319–5323. [Google Scholar] [CrossRef]
- Guillaudeux, T.; Gomez, E.; Onno, M.; Drénou, B.; Segretain, D.; Alberti, S.; Lejeune, H.; Fauchet, R.; Jégou, B.; Le Bouteiller, P. Expression of HLA class I genes in meiotic and post-meiotic human spermatogenic cells. Biol. Reprod. 1996, 55, 99–110. [Google Scholar] [CrossRef]
- Galassi, C.; Musella, M.; Manduca, N.; Maccafeo, E.; Sistigu, A. The Immune Privilege of Cancer Stem Cells: A Key to Understanding Tumor Immune Escape and Therapy Failure. Cells. 2021, 10, 2361. [Google Scholar] [CrossRef]
- Li, M.; Bao, L.; Lu, B.; Ge, W.; Ren, L. Uterine choriocarcinoma arising from serous carcinoma in a postmenopausal woman: An analysis of next-generation sequencing and PD-L1 immunochemistry. Diagn. Pathol. 2022, 17, 79. [Google Scholar] [CrossRef] [PubMed]
- Chteinberg, E.; Vogt, J.; Kolarova, J.; Bormann, F.; van den Oord, J.; Speel, E.J.; Winnepenninckx, V.; Kurz, A.K.; Zenke, M.; Siebert, R.; et al. The curious case of Merkel cell carcinoma: Epigenetic youth and lack of pluripotency. Epigenetics 2020, 15, 1319–1324. [Google Scholar] [CrossRef]
- Davies, A.; Zoubeidi, A.; Beltran, H.; Selth, L.A. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov. 2023, 13, 1771–1788. [Google Scholar] [CrossRef]
- Tirosh, I.; Suva, M.L. Cancer cell states: Lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell 2024, 42, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Castelli, G.; Pelosi, E. Recent Developments in Differentiation Therapy of Acute Myeloid Leukemia. Cancers 2025, 17, 1141. [Google Scholar] [CrossRef] [PubMed]
Primeval stem cell type | hPGCLC | hiPSC | hEGCLC | |||
Cell line | hPGCLC_A4 | hPGCLC_A4_L82 | hiPSC_A4_L82 | hEGCLC_A4_L82 | ||
Group (cell number/injection) | Group#1 (3 × 105/injection) | Group#2 (3 × 105/injection) | Group#3 (1 × 106/injection) | Group#4 (2 × 107/injection) | Group#5 (1 × 106/injection) | Group#6 (2 × 107/injection) |
# of Mice | 3 | 3 | 3 | 3 | 3 | 3 |
Injected flank side | right only | right only | right and left | right and left | right and left | right and left |
n (# of injections/group) | n = 3 | n = 3 | n = 6 | n = 6 | n = 6 | n = 6 |
Primeval stem cell type | hPGCLC | hiPSC | hEGCLC | ||||
Cell line | hPGCLC_A4 | hPGCLC_A4_L82 | hiPSC_A4_L82 | hEGCLC_A4_L82 | |||
Group (cell number/injection) | Group #1 (3 × 105/injection) | Group #2 (3 × 105/injection) | Group #3 (1 × 106/injection) | Group #4 (2 × 107/injection) | Group #5 (1 × 106/injection) | Group #6 (2 × 107 /injection) | |
# of Mice | 3 | 3 | 3 | 3 | 3 | 3 | |
Injected flank side | right only | right only | right and left | right and left | right and left | right and left | |
n (total # of injections/group) | n = 3 | n = 3 | n = 6 | n = 6 | n = 6 | n = 6 | |
VMLT (+) Tumor | # of mice | 0 | 2 | 0 | 3 | 0 | 0 |
# of injections | n = 0 | n = 2 | n = 0 | n = 6 | n = 0 | n = 0 | |
VMLT (−) Tumor | # of mice | 0 | 0 | 3 | 0 | 3 | 3 |
# of injections | n = 0 | n = 0 | n = 6 | n = 0 | n = 6 | n = 6 | |
NO Tumor | # of mice | 3 | 1 | 0 | 0 | 0 | 0 |
# of injections | n = 3 | n = 1 | n = 0 | n = 0 | n = 0 | n = 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Contente, S.; Rahman, S. A Polyomavirus-Positive Merkel Cell Carcinoma Mouse Model Supports a Unified Origin for Somatic and Germ Cell Cancers. Cancers 2025, 17, 2800. https://doi.org/10.3390/cancers17172800
Yang W, Contente S, Rahman S. A Polyomavirus-Positive Merkel Cell Carcinoma Mouse Model Supports a Unified Origin for Somatic and Germ Cell Cancers. Cancers. 2025; 17(17):2800. https://doi.org/10.3390/cancers17172800
Chicago/Turabian StyleYang, Wendy, Sara Contente, and Sarah Rahman. 2025. "A Polyomavirus-Positive Merkel Cell Carcinoma Mouse Model Supports a Unified Origin for Somatic and Germ Cell Cancers" Cancers 17, no. 17: 2800. https://doi.org/10.3390/cancers17172800
APA StyleYang, W., Contente, S., & Rahman, S. (2025). A Polyomavirus-Positive Merkel Cell Carcinoma Mouse Model Supports a Unified Origin for Somatic and Germ Cell Cancers. Cancers, 17(17), 2800. https://doi.org/10.3390/cancers17172800