Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. TAM Diversity in GBM: Origins, Markers, and Dynamics
3.2. Strategies for Inhibition of TAM Recruitment in GBM
3.3. Enhancement of TAM-Mediated Phagocytic Activity
3.4. Modulation of the TAMs Equilibrium Within the TME
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
4-MU | 4-Methylumbelliferone |
AQ4N | Banoxantrone (prodrug of AQ4) |
BBB | Blood–Brain Barrier |
BACE1 | β-site Amyloid Precursor Protein-Cleaving Enzyme 1 |
BMDM | Bone Marrow-Derived Macrophage |
BTB | Blood–Tumor Barrier |
CAR | Chimeric Antigen Receptor |
CD | Cluster of Differentiation |
CDN | Cyclic Dinucleotide |
Ce6 | Chlorin e6 |
CeNP | Cerium Oxide Nanoparticle |
CCR2 | C-C Chemokine Receptor Type 2 |
CCL2 | C-C Motif Chemokine Ligand 2 |
CCL5 | C-C Motif Chemokine Ligand 5 |
CNS | Central Nervous System |
CPPO | Bis(2,4,6-trichlorophenyl) oxalate |
CSF1 | Colony-Stimulating Factor 1 |
CSF1R | Colony-Stimulating Factor 1 Receptor |
CTLA-4 | Cytotoxic T-Lymphocyte–Associated Antigen 4 |
CXCR4 | C-X-C chemokine receptor type 4 |
CXCL12 | C-X-C motif chemokine ligand 12 (also known as stromal cell-derived factor 1, SDF-1) |
Dox | Doxorubicin |
EGFR | Epidermal Growth Factor Receptor |
FDA | Food and Drug Administration |
GAG | Glycosaminoglycan |
GBM | Glioblastoma |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
H-1PV | H-1 Protoparvovirus |
HIF-1α | Hypoxia-Inducible Factor 1-alpha |
HSV | Herpes Simplex Virus |
ICI | Immune Checkpoint Inhibitor |
IFN-γ | Interferon-gamma |
IL | Interleukin |
iNOS | Inducible Nitric Oxide Synthase |
M1 | Classically Activated Macrophage (Pro-inflammatory) |
M2 | Alternatively Activated Macrophage (Immunosuppressive) |
MDSC | Myeloid-Derived Suppressor Cell |
mNOX-E36 | Modified NOX-E36 (CCL2 inhibitor) |
mTOR | Mechanistic Target of Rapamycin |
NK | Natural Killer (Cell) |
OLA-PEG | Olaptesed Pegol |
oHSV | Oncolytic Herpes Simplex Virus |
P2RY12 | Purinergic Receptor P2Y12 |
PA1094T | Near-Infrared Dye and Acoustic Agent |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death-Ligand 1 |
PDM | Patient-Derived Microtumor |
PI3K | Phosphoinositide 3-Kinase |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PTX | Paclitaxel |
RGDfK | Arginine-Glycine-Aspartic Acid Peptide (cyclic form) |
ROS | Reactive Oxygen Species |
SALL1 | Sal-Like Protein 1 |
SDF-1α | Stromal Cell-Derived Factor 1-alpha |
SIRPα | Signal Regulatory Protein Alpha |
STING | Stimulator of Interferon Genes |
TAM | Tumor-Associated Macrophage |
TF | Tissue Factor |
TIL | Tumor-Infiltrating Lymphocyte |
TMZ | Temozolomide |
TME | Tumor Microenvironment |
UDP | Uridine Diphosphate |
UGDH | UDP-Glucose 6-Dehydrogenase |
ZOL | Zoledronate |
References
- Marino, S.; Menna, G.; Di Bonaventura, R.; Lisi, L.; Mattogno, P.; Figà, F.; Bilgin, L.; D’Alessandris, Q.G.; Olivi, A.; Della Pepa, G.M. The Extracellular Matrix in Glioblastomas: A Glance at Its Structural Modifications in Shaping the Tumoral Microenvironment—A Systematic Review. Cancers 2023, 15, 1879. [Google Scholar] [CrossRef]
- Pennisi, G.; Bruzzaniti, P.; Burattini, B.; Piaser Guerrato, G.; Della Pepa, G.M.; Sturiale, C.L.; Lapolla, P.; Familiari, P.; La Pira, B.; D’Andrea, G.; et al. Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review. IJMS 2024, 25, 8700. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Khan, F.; Pang, L.; Dunterman, M.; Lesniak, M.S.; Heimberger, A.B.; Chen, P. Macrophages and Microglia in Glioblastoma: Heterogeneity, Plasticity, and Therapy. J. Clin. Investig. 2023, 133, e163446. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Zhang, G.; Wei, S. The Diversity and Dynamics of Tumor-Associated Macrophages in Recurrent Glioblastoma. Front. Immunol. 2023, 14, 1238233. [Google Scholar] [CrossRef] [PubMed]
- Lisi, L.; Olivi, A.; Ciotti, G.M.P.; Marino, S.; Ferraro, C.; Menna, G.; Martire, M.; Pennisi, G.; Navarra, P.; Della Pepa, G.M. A Topographic Approach to the Markers of Macrophage/Microglia and Other Cell Types in High Grade Glioma. Neurochem. Int. 2025, 183, 105922. [Google Scholar] [CrossRef]
- Menna, G.; Mattogno, P.P.; Donzelli, C.M.; Lisi, L.; Olivi, A.; Della Pepa, G.M. Glioma-Associated Microglia Characterization in the Glioblastoma Microenvironment through a “Seed-and Soil” Approach: A Systematic Review. Brain Sci. 2022, 12, 718. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ross, J.L.; Hambardzumyan, D. Intravital 2-Photon Imaging Reveals Distinct Morphology and Infiltrative Properties of Glioblastoma-Associated Macrophages. Proc. Natl. Acad. Sci. USA 2019, 116, 14254–14259. [Google Scholar] [CrossRef]
- Takenaka, M.C.; Gabriely, G.; Rothhammer, V.; Mascanfroni, I.D.; Wheeler, M.A.; Chao, C.-C.; Gutiérrez-Vázquez, C.; Kenison, J.; Tjon, E.C.; Barroso, A.; et al. Control of Tumor-Associated Macrophages and T Cells in Glioblastoma via AHR and CD39. Nat. Neurosci. 2019, 22, 729–740. [Google Scholar] [CrossRef]
- Flores-Toro, J.A.; Luo, D.; Gopinath, A.; Sarkisian, M.R.; Campbell, J.J.; Charo, I.F.; Singh, R.; Schall, T.J.; Datta, M.; Jain, R.K.; et al. CCR2 Inhibition Reduces Tumor Myeloid Cells and Unmasks a Checkpoint Inhibitor Effect to Slow Progression of Resistant Murine Gliomas. Proc. Natl. Acad. Sci. USA 2020, 117, 1129–1138. [Google Scholar] [CrossRef]
- Cho, H.R.; Kumari, N.; Thi Vu, H.; Kim, H.; Park, C.-K.; Choi, S.H. Increased Antiangiogenic Effect by Blocking CCL2-Dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI. Sci. Rep. 2019, 9, 11085. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, J.; Zhao, X.; Zheng, B.; Han, Y.; Luo, G.; Dou, D. Ginsenoside RK3 Inhibits Glioblastoma by Modulating Macrophage M2 Polarization via the PPARG/CCL2 Axis. Phytomedicine 2025, 136, 156271. [Google Scholar] [CrossRef]
- Tian, L.; Xu, B.; Chen, Y.; Li, Z.; Wang, J.; Zhang, J.; Ma, R.; Cao, S.; Hu, W.; Chiocca, E.A.; et al. Specific Targeting of Glioblastoma with an Oncolytic Virus Expressing a Cetuximab-CCL5 Fusion Protein via Innate and Adaptive Immunity. Nat. Cancer 2022, 3, 1318–1335. [Google Scholar] [CrossRef]
- Miyazaki, T.; Ishikawa, E.; Matsuda, M.; Sugii, N.; Kohzuki, H.; Akutsu, H.; Sakamoto, N.; Takano, S.; Matsumura, A. Infiltration of CD163-Positive Macrophages in Glioma Tissues after Treatment with Anti-PD-L1 Antibody and Role of PI3Kγ Inhibitor as a Combination Therapy with Anti-PD-L1 Antibody in in Vivo Model Using Temozolomide-Resistant Murine Glioma-Initiating Cells. Brain Tumor Pathol. 2020, 37, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Martuza, R.L.; Rabkin, S.D. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 2017, 32, 253–267.e5. [Google Scholar] [CrossRef]
- Deng, L.; Stafford, J.H.; Liu, S.-C.; Chernikova, S.B.; Merchant, M.; Recht, L.; Martin Brown, J. SDF-1 Blockade Enhances Anti-VEGF Therapy of Glioblastoma and Can Be Monitored by MRI. Neoplasia 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Qiao, S.; Cheng, Y.; Liu, M.; Ji, Q.; Zhang, B.; Mei, Q.; Liu, D.; Zhou, S. Chemoattractants Driven and Microglia Based Biomimetic Nanoparticle Treating TMZ-Resistant Glioblastoma Multiforme. J. Control. Release 2021, 336, 54–70. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Wakimoto, H.; Peters, C.W.; Antoszczyk, S.J.; Rabkin, S.D.; Martuza, R.L. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clin. Cancer Res. 2018, 24, 3409–3422. [Google Scholar] [CrossRef] [PubMed]
- Koula, G.; Yakati, V.; Rachamalla, H.K.; Bhamidipati, K.; Kathirvel, M.; Banerjee, R.; Puvvada, N. Integrin Receptor-Targeted, Doxorubicin-Loaded Cerium Oxide Nanoparticles Delivery to Combat Glioblastoma. Nanomedicine 2024, 19, 1389–1406. [Google Scholar] [CrossRef]
- Rubin, J.B.; Kung, A.L.; Klein, R.S.; Chan, J.A.; Sun, Y.; Schmidt, K.; Kieran, M.W.; Luster, A.D.; Segal, R.A. A Small-Molecule Antagonist of CXCR4 Inhibits Intracranial Growth of Primary Brain Tumors. Proc. Natl. Acad. Sci. USA 2003, 100, 13513–13518. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
- Maghrouni, A.; Givari, M.; Jalili-Nik, M.; Mollazadeh, H.; Bibak, B.; Sadeghi, M.M.; Afshari, A.R.; Johnston, T.P.; Sahebkar, A. Targeting the PD-1/PD-L1 Pathway in Glioblastoma Multiforme: Preclinical Evidence and Clinical Interventions. Int. Immunopharmacol. 2021, 93, 107403. [Google Scholar] [CrossRef] [PubMed]
- Kioi, M.; Vogel, H.; Schultz, G.; Hoffman, R.M.; Harsh, G.R.; Brown, J.M. Inhibition of Vasculogenesis, but Not Angiogenesis, Prevents the Recurrence of Glioblastoma after Irradiation in Mice. J. Clin. Investig. 2010, 120, 694–705. [Google Scholar] [CrossRef] [PubMed]
- De Palma, M.; Lewis, C.E. Macrophage Regulation of Tumor Responses to Anticancer Therapies. Cancer Cell 2013, 23, 277–286. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, H.; Liang, X.; Ni, S. Targeting Tumor-Associated Macrophages for the Immunotherapy of Glioblastoma: Navigating the Clinical and Translational Landscape. Front. Immunol. 2022, 13, 1024921. [Google Scholar] [CrossRef]
- Waked, A.; Crabbé, M.; Neirinckx, V.; Pérez, S.R.; Wellens, J.; Rogister, B.; Benotmane, M.A.; Vermeulen, K. Preclinical Evaluation of CXCR4 Peptides for Targeted Radionuclide Therapy in Glioblastoma. EJNMMI Radiopharm. Chem. 2024, 9, 52. [Google Scholar] [CrossRef]
- Brown, E.J.; Frazier, W.A. Integrin-Associated Protein (CD47) and Its Ligands. Trends Cell Biol. 2001, 11, 130–135. [Google Scholar] [CrossRef]
- Gholamin, S.; Mitra, S.S.; Feroze, A.H.; Liu, J.; Kahn, S.A.; Zhang, M.; Esparza, R.; Richard, C.; Ramaswamy, V.; Remke, M.; et al. Disrupting the CD47-SIRPα Anti-Phagocytic Axis by a Humanized Anti-CD47 Antibody Is an Efficacious Treatment for Malignant Pediatric Brain Tumors. Sci. Transl. Med. 2017, 9, eaaf2968. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, H.; Yu, J.; Tian, W.; Song, Y. Targeting CD47 for Cancer Immunotherapy. J. Hematol. Oncol. 2021, 14, 180. [Google Scholar] [CrossRef]
- Hao, Y.; Zhou, X.; Li, Y.; Li, B.; Cheng, L. The CD47-SIRPα Axis Is a Promising Target for Cancer Immunotherapies. Int. Immunopharmacol. 2023, 120, 110255. [Google Scholar] [CrossRef]
- Von Roemeling, C.A.; Wang, Y.; Qie, Y.; Yuan, H.; Zhao, H.; Liu, X.; Yang, Z.; Yang, M.; Deng, W.; Bruno, K.A.; et al. Therapeutic Modulation of Phagocytosis in Glioblastoma Can Activate Both Innate and Adaptive Antitumour Immunity. Nat. Commun. 2020, 11, 1508. [Google Scholar] [CrossRef]
- Gholamin, S.; Youssef, O.A.; Rafat, M.; Esparza, R.; Kahn, S.; Shahin, M.; Giaccia, A.J.; Graves, E.E.; Weissman, I.; Mitra, S.; et al. Irradiation or Temozolomide Chemotherapy Enhances Anti-CD47 Treatment of Glioblastoma. Innate Immun. 2020, 26, 130–137. [Google Scholar] [CrossRef]
- Li, F.; Lv, B.; Liu, Y.; Hua, T.; Han, J.; Sun, C.; Xu, L.; Zhang, Z.; Feng, Z.; Cai, Y.; et al. Blocking the CD47-SIRPα Axis by Delivery of Anti-CD47 Antibody Induces Antitumor Effects in Glioma and Glioma Stem Cells. Oncoimmunology 2018, 7, e1391973. [Google Scholar] [CrossRef]
- Xu, B.; Tian, L.; Chen, J.; Wang, J.; Ma, R.; Dong, W.; Li, A.; Zhang, J.; Antonio Chiocca, E.; Kaur, B.; et al. An Oncolytic Virus Expressing a Full-Length Antibody Enhances Antitumor Innate Immune Response to Glioblastoma. Nat. Commun. 2021, 12, 5908. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Q.; Su, H.; Sun, M.; Wang, Z.; Chen, Z.; Zheng, M.; Chakroun, R.W.; Monroe, M.K.; Chen, D.; et al. Self-Assembling Paclitaxel-Mediated Stimulation of Tumor-Associated Macrophages for Postoperative Treatment of Glioblastoma. Proc. Natl. Acad. Sci. USA 2023, 120, e2204621120. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Huang, Z.; Huang, Q.; Tao, W.; Fang, X.; Zhang, A.; Li, X.; Stark, G.R.; Hamilton, T.A.; Bao, S. Pharmacological Inhibition of BACE1 Suppresses Glioblastoma Growth by Stimulating Macrophage Phagocytosis of Tumor Cells. Nat. Cancer 2021, 2, 1136–1151. [Google Scholar] [CrossRef] [PubMed]
- Zhan, D.; Yalcin, F.; Ma, D.; Fu, Y.; Wei, S.; Lal, B.; Li, Y.; Dzaye, O.; Laterra, J.; Ying, M.; et al. Targeting UDP-α-d-Glucose 6-Dehydrogenase Alters the CNS Tumor Immune Microenvironment and Inhibits Glioblastoma Growth. Genes Dis. 2022, 9, 717–730. [Google Scholar] [CrossRef]
- Zhang, M.; Hutter, G.; Kahn, S.A.; Azad, T.D.; Gholamin, S.; Xu, C.Y.; Liu, J.; Achrol, A.S.; Richard, C.; Sommerkamp, P.; et al. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo. PLoS ONE 2016, 11, e0153550. [Google Scholar] [CrossRef]
- Scolaro, T.; Manco, M.; Pecqueux, M.; Amorim, R.; Trotta, R.; Van Acker, H.H.; Van Haele, M.; Shirgaonkar, N.; Naulaerts, S.; Daniluk, J.; et al. Nucleotide Metabolism in Cancer Cells Fuels a UDP-Driven Macrophage Cross-Talk, Promoting Immunosuppression and Immunotherapy Resistance. Nat. Cancer 2024, 5, 1206–1226. [Google Scholar] [CrossRef]
- Clarkin, C.E.; Allen, S.; Wheeler-Jones, C.P.; Bastow, E.R.; Pitsillides, A.A. Reduced Chondrogenic Matrix Accumulation by 4-Methylumbelliferone Reveals the Potential for Selective Targeting of UDP-Glucose Dehydrogenase. Matrix Biol. 2011, 30, 163–168. [Google Scholar] [CrossRef]
- Nagy, N.; Kuipers, H.F.; Frymoyer, A.R.; Ishak, H.D.; Bollyky, J.B.; Wight, T.N.; Bollyky, P.L. 4-Methylumbelliferone Treatment and Hyaluronan Inhibition as a Therapeutic Strategy in Inflammation, Autoimmunity, and Cancer. Front. Immunol. 2015, 6, 123. [Google Scholar] [CrossRef]
- Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; et al. CSF-1R Inhibition Alters Macrophage Polarization and Blocks Glioma Progression. Nat. Med. 2013, 19, 1264–1272. [Google Scholar] [CrossRef]
- Przystal, J.M.; Becker, H.; Canjuga, D.; Tsiami, F.; Anderle, N.; Keller, A.-L.; Pohl, A.; Ries, C.H.; Schmittnaegel, M.; Korinetska, N.; et al. Targeting CSF1R Alone or in Combination with PD1 in Experimental Glioma. Cancers 2021, 13, 2400. [Google Scholar] [CrossRef]
- Van Overmeire, E.; Stijlemans, B.; Heymann, F.; Keirsse, J.; Morias, Y.; Elkrim, Y.; Brys, L.; Abels, C.; Lahmar, Q.; Ergen, C.; et al. M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Res. 2016, 76, 35–42. [Google Scholar] [CrossRef]
- Butowski, N.; Colman, H.; De Groot, J.F.; Omuro, A.M.; Nayak, L.; Wen, P.Y.; Cloughesy, T.F.; Marimuthu, A.; Haidar, S.; Perry, A.; et al. Orally Administered Colony Stimulating Factor 1 Receptor Inhibitor PLX3397 in Recurrent Glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium Phase II Study. Neuro Oncol. 2016, 18, 557–564. [Google Scholar] [CrossRef]
- Wang, X.; Ding, H.; Li, Z.; Peng, Y.; Tan, H.; Wang, C.; Huang, G.; Li, W.; Ma, G.; Wei, W. Exploration and Functionalization of M1-Macrophage Extracellular Vesicles for Effective Accumulation in Glioblastoma and Strong Synergistic Therapeutic Effects. Signal Transduct. Target. Ther. 2022, 7, 74. [Google Scholar] [CrossRef]
- Berger, G.; Knelson, E.H.; Jimenez-Macias, J.L.; Nowicki, M.O.; Han, S.; Panagioti, E.; Lizotte, P.H.; Adu-Berchie, K.; Stafford, A.; Dimitrakakis, N.; et al. STING Activation Promotes Robust Immune Response and NK Cell-Mediated Tumor Regression in Glioblastoma Models. Proc. Natl. Acad. Sci. USA 2022, 119, e2111003119. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Li, Q.; Zhang, X.; Chen, Y.; Yu, K. mTOR Promotes Tissue Factor Expression and Activity in EGFR-Mutant Cancer. Front. Oncol. 2020, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Angelova, A.; Barf, M.; Geletneky, K.; Unterberg, A.; Rommelaere, J. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity. Viruses 2017, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Geletneky, K.; Hajda, J.; Angelova, A.L.; Leuchs, B.; Capper, D.; Bartsch, A.J.; Neumann, J.-O.; Schöning, T.; Hüsing, J.; Beelte, B.; et al. Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial. Mol. Ther. 2017, 25, 2620–2634. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Ji, Q.; Fang, A.; Song, L.; Xu, X.; Lin, Y.; Peng, Y.; Yu, J.; Xie, L.; et al. OH2 Oncolytic Virus: A Novel Approach to Glioblastoma Intervention through Direct Targeting of Tumor Cells and Augmentation of Anti-Tumor Immune Responses. Cancer Lett. 2024, 589, 216834. [Google Scholar] [CrossRef]
- Van Putten, E.H.P.; Kleijn, A.; Van Beusechem, V.W.; Noske, D.; Lamers, C.H.J.; De Goede, A.L.; Idema, S.; Hoefnagel, D.; Kloezeman, J.J.; Fueyo, J.; et al. Convection Enhanced Delivery of the Oncolytic Adenovirus Delta24-RGD in Patients with Recurrent GBM: A Phase I Clinical Trial Including Correlative Studies. Clin. Cancer Res. 2022, 28, 1572–1585. [Google Scholar] [CrossRef]
- Quail, D.F.; Bowman, R.L.; Akkari, L.; Quick, M.L.; Schuhmacher, A.J.; Huse, J.T.; Holland, E.C.; Sutton, J.C.; Joyce, J.A. The Tumor Microenvironment Underlies Acquired Resistance to CSF-1R Inhibition in Gliomas. Science 2016, 352, aad3018. [Google Scholar] [CrossRef]
- Cloughesy, T.F.; Mochizuki, A.Y.; Orpilla, J.R.; Hugo, W.; Lee, A.H.; Davidson, T.B.; Wang, A.C.; Ellingson, B.M.; Rytlewski, J.A.; Sanders, C.M.; et al. Neoadjuvant Anti-PD-1 Immunotherapy Promotes a Survival Benefit with Intratumoral and Systemic Immune Responses in Recurrent Glioblastoma. Nat. Med. 2019, 25, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Giordano, C.; Sabatino, G.; Romano, S.; Della Pepa, G.M.; Tufano, M.; D’Alessandris, Q.G.; Cottonaro, S.; Gessi, M.; Balducci, M.; Romano, M.F.; et al. Combining Magnetic Resonance Imaging with Systemic Monocyte Evaluation for the Implementation of GBM Management. Int. J. Mol. Sci. 2021, 22, 3797. [Google Scholar] [CrossRef]
- Menna, G.; Manini, I.; Cesselli, D.; Skrap, M.; Olivi, A.; Ius, T.; Della Pepa, G.M. Immunoregulatory Effects of Glioma-Associated Stem Cells on the Glioblastoma Peritumoral Microenvironment: A Differential PD-L1 Expression from Core to Periphery? Neurosurg. Focus 2022, 52, E4. [Google Scholar] [CrossRef]
- Della Pepa, G.M.; Ius, T.; La Rocca, G.; Gaudino, S.; Isola, M.; Pignotti, F.; Rapisarda, A.; Mazzucchi, E.; Giordano, C.; Dragonetti, V.; et al. 5-Aminolevulinic Acid and Contrast-Enhanced Ultrasound: The Combination of the Two Techniques to Optimize the Extent of Resection in Glioblastoma Surgery. Neurosurgery 2020, 86, E529–E540. [Google Scholar] [CrossRef] [PubMed]
Authors | Study Design | Molecule | Action Mechanism |
---|---|---|---|
Flores-Toro et al. [11] | In vivo (murine) | CCX872 | CCR2 inhibition |
Cho et al. [12] | In vivo (murine) | mNOX-E36 | CCL2 inhibition |
Zhang et al. [13] | Ex vivo (glioma cells) | Ginsenoside RK3 | PPARG downregulation |
Tian et al. [14] | In vivo (murine) | OV-Cmab-CCL5 | CCL5 production |
Miyazaki et al., 2020 [15] | In vivo (murine) | IPI-549 | PDL-1 inhibition |
Saha et al. [16] | In vivo (murine) | oHSV G47Δ | IL-12 agonism |
Deng et al. [17] | In vivo (murine) | OLA-PEG | SDF-1α inhibition |
Qiao et al. [18] | Ex vivo (glioma cells) | ZOL@CNPs | HIF-1α inhibition |
Saha et al. [19] | In vivo (murine) | Axitinib | VEGFR kinase inhibition |
Koula et al. [20] | In vivo (murine) | CeNP + Dox + RGD nanoparticles | Integrin receptors targeting |
J. Rubin et al. [21] | In vivo (murine) | AMD 3100 | SDF-1α inhibition |
Authors | Study Design | Molecule | Action Mechanism |
---|---|---|---|
Gholamin et al. [29] | In vitro, in vivo | Hu5F9-G4 | SIRPα inhibition |
Von Roemeling et al. [32] | In vivo (murine) | Anti-CD47 Ab | CD47 inhibition |
Gholamin et al. [33] | In vivo (murine) | Anti-CD47 Ab | CD47 inhibition |
Li et al. [34] | Ex vivo (glioma cells) | Nanoparticles loaded with TMZ, anti-CD47 Ab, and PA1094T | Anti-CD47, direct chemo-phototherapy |
Xu et al. [35] | In vivo (murine) | oHSV expressing anti-CD47 IgG | CD47 inhibition |
Wang et al. [36] | In vivo (murine) | PTX filament hydrogel containing aCD47 | CD47 inhibition |
Zhai et al. [37] | In vivo (murine) | MK-8931 | BACE1 inhibition |
Zhan et al. [38] | In vivo (murine) | 4-MU | UGDH inhibition |
Authors, Year | Study Design | Molecule | Action Mechanism |
---|---|---|---|
Pyonteck et al. [43] | In vivo (murine) | BLZ945 | CSF-1R inhibition |
Przystal et al. [44] | In vivo, ex vivo | Anti-CSF-1R Ab | CSF-1R inhibition |
Van Overmeire et al. [45] | In vivo (murine) | Anti-M-CSFR | M-CSFR inhibition |
Butowski et al. [46] | In vivo (phase II trial) | PLX3397 | CSF-1R/KIT inhibition |
Wang et al. [47] | In vivo (murine) | CCA-M1EVs | M1 reprogramming |
Berger et al. [48] | In vivo (murine) | ADU-S100 | STING activation |
Cong et al. [49] | In vivo (murine) | AZD8055, WYE-125132, MTI-31, rapamicin | mTORC1/2 inhibition |
Angelova et al. [50] | In vivo (phase I/IIa trial) | H-1PV | Increased cytotoxic T-cells, activation of TAMs and microglia, etc. |
Geletneky et al. [51] | In vivo (murine) | H-1PV | Increased cytotoxic T-cells, activation of TAMs and microglia, etc. |
Zheng et al. [52] | In vivo (murine, phase I/IIa trial) | oH2 | Direct tumor toxicity, increased anti-tumor immune response |
Van Putten et al. [53] | In vivo (phase I trial) | DNX-2401 | CDD192, TLR4, and CD64 expression, CD206 reduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pennisi, G.; Valeri, F.; Burattini, B.; Bruzzaniti, P.; Sturiale, C.L.; Talacchi, A.; Papacci, F.; Olivi, A.; Della Pepa, G.M. Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions. Cancers 2025, 17, 2687. https://doi.org/10.3390/cancers17162687
Pennisi G, Valeri F, Burattini B, Bruzzaniti P, Sturiale CL, Talacchi A, Papacci F, Olivi A, Della Pepa GM. Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions. Cancers. 2025; 17(16):2687. https://doi.org/10.3390/cancers17162687
Chicago/Turabian StylePennisi, Giovanni, Federico Valeri, Benedetta Burattini, Placido Bruzzaniti, Carmelo Lucio Sturiale, Andrea Talacchi, Fabio Papacci, Alessandro Olivi, and Giuseppe Maria Della Pepa. 2025. "Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions" Cancers 17, no. 16: 2687. https://doi.org/10.3390/cancers17162687
APA StylePennisi, G., Valeri, F., Burattini, B., Bruzzaniti, P., Sturiale, C. L., Talacchi, A., Papacci, F., Olivi, A., & Della Pepa, G. M. (2025). Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions. Cancers, 17(16), 2687. https://doi.org/10.3390/cancers17162687