Cohesin Loading Factor NIPBL Is Essential for MYCN Expression and MYCN-Driven Oncogenic Transcription in Neuroblastoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Reagents
2.2. Transient Transfection
2.3. Cell Proliferation and Viability Assay
2.4. Protein Extraction and Western Blotting
2.5. RNA Sequencing
2.6. ChIP (Chromatin Immunoprecipitation) Sequencing
2.7. Statistics
3. Results
3.1. Aberrant Upregulation of NIPBL in Neuroblastoma Is Linked to Undifferentiated Cell States and Poor Clinical Outcomes
3.2. NIPBL Is Essential for Neuroblastoma Proliferation
3.3. NIPBL Is Essential for Maintaining Oncogenic Transcriptional Programs in Neuroblastoma Cells
3.4. NIPBL Co-Occupies MYCN-Driven Enhancers in MYCN-Amplified Neuroblastoma
3.5. NIPBL Sustains MYCN Expression to Suppress Neuronal Differentiation Programs in MYCN Amplified Neuroblastoma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartolucci, D.; Montemurro, L.; Raieli, S.; Lampis, S.; Pession, A.; Hrelia, P.; Tonelli, R. MYCN impact on high-risk neuroblastoma: From diagnosis and prognosis to targeted treatment. Cancers 2022, 14, 4421. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.S.; Clarke, S.; Veschi, V.; Thiele, C.J. Targeting MYCN in pediatric and adult cancers. Front. Oncol. 2020, 10, 623679. [Google Scholar] [CrossRef] [PubMed]
- Henssen, A.; Althoff, K.; Odersky, A.; Beckers, A.; Koche, R.; Speleman, F.; Schafers, S.; Bell, E.; Nortmeyer, M.; Westermann, F.; et al. Targeting MYCN-driven transcription by bet-bromodomain inhibition. Clin. Cancer Res. 2016, 22, 2470–2481. [Google Scholar] [CrossRef] [PubMed]
- Roeschert, I.; Poon, E.; Henssen, A.G.; Garcia, H.D.; Gatti, M.; Giansanti, C.; Jamin, Y.; Ade, C.P.; Gallant, P.; Schulein-Volk, C.; et al. Combined inhibition of aurora-a and ATR kinase results in regression of MYCN-amplified neuroblastoma. Nat. Cancer 2021, 2, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Chipumuro, E.; Marco, E.; Christensen, C.L.; Kwiatkowski, N.; Zhang, T.; Hatheway, C.M.; Abraham, B.J.; Sharma, B.; Yeung, C.; Altabef, A.; et al. Cdk7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014, 159, 1126–1139. [Google Scholar] [CrossRef]
- Liu, Z.; Hong, J.J.; Zhang, X.; Sayers, C.M.; Fang, W.; Xu, M.; Loria, S.; Maskal, S.; Lei, H.; Wu, H.; et al. MYCN and kat2a form a feedforward loop to drive an oncogenic transcriptional program in neuroblastoma. Oncogenesis 2025, 14, 13. [Google Scholar] [CrossRef]
- Sole-Ferran, M.; Losada, A. Cohesin in 3d: Development, differentiation, and disease. Genes. Dev. 2025, 39, 679–696. [Google Scholar] [CrossRef]
- Herrmann, J.C.; Beagrie, R.A.; Hughes, J.R. Making connections: Enhancers in cellular differentiation. Trends Genet. 2022, 38, 395–408. [Google Scholar] [CrossRef]
- Davidson, I.F.; Peters, J.M. Genome folding through loop extrusion by smc complexes. Nat. Rev. Mol. Cell Biol. 2021, 22, 445–464. [Google Scholar] [CrossRef]
- Alonso-Gil, D.; Losada, A. Nipbl and cohesin: New take on a classic tale. Trends Cell Biol. 2023, 33, 860–871. [Google Scholar] [CrossRef]
- Robson, M.I.; Ringel, A.R.; Mundlos, S. Regulatory landscaping: How enhancer-promoter communication is sculpted in 3d. Mol. Cell 2019, 74, 1110–1122. [Google Scholar] [CrossRef]
- Krantz, I.D.; McCallum, J.; DeScipio, C.; Kaur, M.; Gillis, L.A.; Yaeger, D.; Jukofsky, L.; Wasserman, N.; Bottani, A.; Morris, C.A.; et al. Cornelia de lange syndrome is caused by mutations in nipbl, the human homolog of drosophila melanogaster nipped-b. Nat. Genet. 2004, 36, 631–635. [Google Scholar] [CrossRef]
- Waldman, T. Emerging themes in cohesin cancer biology. Nat. Rev. Cancer 2020, 20, 504–515. [Google Scholar] [CrossRef]
- Rinaldi, L.; Fettweis, G.; Kim, S.; Garcia, D.A.; Fujiwara, S.; Johnson, T.A.; Tettey, T.T.; Ozbun, L.; Pegoraro, G.; Puglia, M.; et al. The glucocorticoid receptor associates with the cohesin loader nipbl to promote long-range gene regulation. Sci. Adv. 2022, 8, eabj8360. [Google Scholar] [CrossRef]
- Fettweis, G.; Wagh, K.; Stavreva, D.A.; Jimenez-Panizo, A.; Kim, S.; Lion, M.; Alegre-Marti, A.; Rinaldi, L.; Johnson, T.A.; Krishnamurthy, M.; et al. Transcription factors form a ternary complex with nipbl/mau2 to localize cohesin at enhancers. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, D.L.C.; Azzarelli, R.; Oishi, K.; Martynoga, B.; Urban, N.; Dekkers, D.H.W.; Demmers, J.A.; Guillemot, F. Nipbl interacts with zfp609 and the integrator complex to regulate cortical neuron migration. Neuron 2017, 93, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, S.; Sovacool, K.; Kuhn, S.; Tandon, M.; Koparde, V. Renee: Rna Sequencing Analysis Pipeline; v2.6.4; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. Star: Ultrafast universal rna-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. Rsem: Accurate transcript quantification from rna-seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdottir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database (msigdb) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Servant, N.; Philippe, L.R.; Phupe; Allain, F.; Ateissan; Jarlier, F. Bioinfo-pf-curie/chip-seq: V1.0.4; Version v1.0.4; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based analysis of chip-seq (macs). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and b cell identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef]
- Ramirez, F.; Ryan, D.P.; Gruning, B.; Bhardwaj, V.; Kilpert, F.; Richter, A.S.; Heyne, S.; Dundar, F.; Manke, T. Deeptools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016, 44, W160–W165. [Google Scholar] [CrossRef]
- Ponzoni, M.; Bachetti, T.; Corrias, M.V.; Brignole, C.; Pastorino, F.; Calarco, E.; Bensa, V.; Giusto, E.; Ceccherini, I.; Perri, P. Recent advances in the developmental origin of neuroblastoma: An overview. J. Exp. Clin. Cancer Res. 2022, 41, 92. [Google Scholar] [CrossRef]
- Golov, A.K.; Gavrilov, A.A. Cohesin complex: Structure and principles of interaction with DNA. Biochemistry 2024, 89, 585–600. [Google Scholar] [CrossRef]
- Fournier, M.; Bourriquen, G.; Lamaze, F.C.; Cote, M.C.; Fournier, E.; Joly-Beauparlant, C.; Caron, V.; Gobeil, S.; Droit, A.; Bilodeau, S. Foxa and master transcription factors recruit mediator and cohesin to the core transcriptional regulatory circuitry of cancer cells. Sci. Rep. 2016, 6, 34962. [Google Scholar] [CrossRef]
- De Wyn, J.; Zimmerman, M.W.; Weichert-Leahey, N.; Nunes, C.; Cheung, B.B.; Abraham, B.J.; Beckers, A.; Volders, P.J.; Decaesteker, B.; Carter, D.R.; et al. Meis2 is an adrenergic core regulatory transcription factor involved in early initiation of th-MYCN-driven neuroblastoma formation. Cancers 2021, 13, 4783. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zheng, W.; Zhu, Q.; Gu, L.; Du, Y.; Han, Z.; Zhang, X.; Carter, D.R.; Cheung, B.B.; Qiu, A.; et al. Increase in DNA damage by MYCN knockdown through regulating nucleosome organization and chromatin state in neuroblastoma. Front. Genet. 2019, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, X.; Xu, M.; Hong, J.J.; Ciardiello, A.; Lei, H.; Shern, J.F.; Thiele, C.J. MYCN drives oncogenesis by cooperating with the histone methyltransferase g9a and the wdr5 adaptor to orchestrate global gene transcription. PLoS Biol. 2024, 22, e3002240. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, Y.; Watanabe, Y.; Nakamura, H.; Kondoh, H. Regulation of the neural crest cell fate by n-myc: Promotion of ventral migration and neuronal differentiation. Development 1997, 124, 1953–1962. [Google Scholar] [CrossRef]
- Olsen, R.R.; Otero, J.H.; Garcia-Lopez, J.; Wallace, K.; Finkelstein, D.; Rehg, J.E.; Yin, Z.; Wang, Y.D.; Freeman, K.W. MYCN induces neuroblastoma in primary neural crest cells. Oncogene 2017, 36, 5075–5082. [Google Scholar] [CrossRef]
- Otte, J.; Dyberg, C.; Pepich, A.; Johnsen, J.I. MYCN function in neuroblastoma development. Front. Oncol. 2020, 10, 624079. [Google Scholar] [CrossRef]
- Gomez, R.L.; Woods, L.M.; Ramachandran, R.; Tayoun, A.N.A.; Philpott, A.; Ali, F.R. Super-enhancer associated core regulatory circuits mediate susceptibility to retinoic acid in neuroblastoma cells. Front. Cell Dev. Biol. 2022, 10, 943924. [Google Scholar] [CrossRef]
- Linares-Saldana, R.; Kim, W.; Bolar, N.A.; Zhang, H.; Koch-Bojalad, B.A.; Yoon, S.; Shah, P.P.; Karnay, A.; Park, D.S.; Luppino, J.M.; et al. Brd4 orchestrates genome folding to promote neural crest differentiation. Nat. Genet. 2021, 53, 1480–1492. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Zhang, L.; Zhao, W.; Dai, X.; Yang, Y.G.; Zhang, X. Targeting bromodomain and extra-terminal proteins to inhibit neuroblastoma tumorigenesis through regulating MYCN. Front. Cell Dev. Biol. 2022, 10, 1021820. [Google Scholar] [CrossRef]
Target | Company | Cat | Host | Application | Dilution | Lot |
---|---|---|---|---|---|---|
NIPBL | Bethyl | A301-779A | Rabbit | WB | 1000 or 500 | 4 |
MYCN | Santa Cruz Biotechnologies | sc-53993 | Mouse | WB | 1000 | B2316 |
GAPDH | Santa Cruz Biotechnologies | Sc-47727 | Rabbit | WB | 1000 | B2719 |
anti-rabbit IgG-HRP | CellSignaling Technologies | 7074S | Rabbit | WB | 500 | 29 |
goat anti-rabbit IgG-HRP | Santa Cruz Biotechnologies | Sc-2004 | Goat | WB | 500 | B2213 |
mouse anti-rabbit IgG-HRP | Santa Cruz Biotechnologies | Sc-2357 | Mouse | WB | 1000 | D0423 |
anti-mouse IgG-HRP | Santa Cruz Biotechnologies | Sc-525409 | Mouse | WB | 500 | D2523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-Y.; Tremble, K.A.; Homan, P.; Thiele, C.J. Cohesin Loading Factor NIPBL Is Essential for MYCN Expression and MYCN-Driven Oncogenic Transcription in Neuroblastoma. Cancers 2025, 17, 2615. https://doi.org/10.3390/cancers17162615
Kang J-Y, Tremble KA, Homan P, Thiele CJ. Cohesin Loading Factor NIPBL Is Essential for MYCN Expression and MYCN-Driven Oncogenic Transcription in Neuroblastoma. Cancers. 2025; 17(16):2615. https://doi.org/10.3390/cancers17162615
Chicago/Turabian StyleKang, Jee-Youn, Kaitlyn A. Tremble, Philip Homan, and Carol J. Thiele. 2025. "Cohesin Loading Factor NIPBL Is Essential for MYCN Expression and MYCN-Driven Oncogenic Transcription in Neuroblastoma" Cancers 17, no. 16: 2615. https://doi.org/10.3390/cancers17162615
APA StyleKang, J.-Y., Tremble, K. A., Homan, P., & Thiele, C. J. (2025). Cohesin Loading Factor NIPBL Is Essential for MYCN Expression and MYCN-Driven Oncogenic Transcription in Neuroblastoma. Cancers, 17(16), 2615. https://doi.org/10.3390/cancers17162615