Epigenetic Therapies in Endocrine-Related Cancers: Past Insights and Clinical Progress
Simple Summary
Abstract
1. Introduction
2. Epigenetic Drugs Being Trialed in Endocrine-Related Cancers
2.1. DNA Methyltransferase Inhibitors
2.2. Histone Acetyltransferase (HAT) and Bromodomain and Extraterminal (BET) Inhibitors
2.3. Histone Deacetylase Inhibitors
2.4. PRC2 Inhibitors
2.5. KDM1A Inhibitors
Clinical Trial ID | Cancer Type | Epigenetic Drug Type | Intervention | Primary Outcome Measure | Status (Patient Enrolment) |
---|---|---|---|---|---|
NCT02393794 | Breast cancer | HDACi | Romidepsin and cisplatin combination at different doses, with/without nivolumab | Phase I: Recommended dose of romidepsin with cisplatin for phase II Phase II: Objective response rate according to RECIST v1.1 criteria | Phase I/II Active, not recruiting (51) |
NCT03742245 | Breast cancer | HDACi | Vorinostat and olaparib (PARP inhibitor) combination at different doses | Maximum tolerated dose (MTD) of olaparib and vorinostat combination (16 weeks) | Phase I Recruiting (28) |
NCT00616967 | Breast cancer | HDACi | Carboplatin + paclitaxel with/without vorinostat | Pathological complete response rate | Phase II Active, not recruiting (68) |
NCT01349959 | Breast cancer | HDACi DNMTi | Entinostat + azacitidine | Confirmed response rate (complete or partial) as per RECIST criteria | Phase II Active, not recruiting (58) |
NCT02453620 | Breast cancer and other solid tumors | HDACi | Entinostat + nivolumab + ipilimumab | Safety and tolerability analyzed by AEs, SAEs and laboratory abnormalities | Phase I Active, not recruiting (57) |
NCT02115282 | Breast cancer | HDACi | Exemestane with/without entinostat | Progression-free survival (PFS) and overall survival (OS) | Phase III Active, not recruiting (608) |
NCT06556862 | Breast cancer | HDACi | Dalpiciclib (CDK4/6 inhibitor) + tucidinostat | PFS | Phase II Not yet recruiting (155) |
NCT06547476 | Breast cancer | HDACi | Tucidinostat + Tislelizumab (PD-1 inhibitor) | PFS | Phase II Not yet recruiting (40) |
NCT05633914 | Breast cancer | HDACi | Tucidinostat + nab-paclitaxel | Objective response rate as per RECIST v1.1 criteria | Phase II Recruiting (90) |
NCT05411380 | Breast cancer | HDACi | Tucidinostat + Metronomic Capecitabine + endocrine therapy | Objective response rate as per RECIST v1.1 criteria | Phase II Recruiting (73) |
NCT05335473 | Breast cancer | HDACi | Tucidinostat + Eribulin | DLT and MTD for phase Ib, PFS | Phase I/II Recruiting (87) |
NCT06750848 | Breast cancer | HDACi | Tucidinostat + fulvestrant + angiogenesis inhibitor | Objective response rate as per RECIST v1.1 criteria | Phase II Not yet recruiting (48) |
NCT05983107 | Breast cancer | HDACi | Tucidinostat + endocrine therapy (in PIK3CA-wild-type patients) Everolimus + endocrine therapy (in PIK3CA-mutant patients) | First-stage progression-free survival (PFS1) | Phase II Recruiting (102) |
NCT05890287 | Breast cancer | HDACi | Tucidinostat + exemestane/fulvestrant/letrozole/anastrozole/tamoxifen with/without CDK4/6 inhibitor | PFS | Recruiting (60) |
NCT05808582 | Breast cancer | HDACi | Tucidinostat + fulvestrant | PFS | Phase II Not yet recruiting (60) |
NCT05632848 | Breast cancer | HDACi | Tucidinostat + Zimberelimab (targets PD-1) | Objective response rate as per RECIST v1.1 criteria | Phase II Recruiting (47) |
NCT05586841 | Breast cancer | HDACi | Tucidinostat + Dalpiciclib (after failure of CDK4/6 inhibitor) | MTD of combination treatment | Phase I Not yet recruiting (30) |
NCT05464173 | Breast cancer | HDACi | Tucidinostat + Abemaciclib (CDK4/6 inhibitor) + endocrine therapy | DLT and PFS with combination treatment | Phase I/II Recruiting (44) |
NCT05186545 | Breast cancer | HDACi | Tucidinostat + Surufatinib + fulvestrant | PFS | Phase II Recruiting (63) |
NCT04891068 | Breast cancer | DNMTi | Azacitidine | Change in tumor-infiltrating lymphocyte (TIL) count in primary tumors from patients with high-risk early-stage breast cancer | Phase II Recruiting (40) |
NCT01349959 | Breast cancer | DNMTi HDACi | Azacitidine + entinostat | Confirmed response rate (partial or complete response) as per RECIST criteria | Phase II Completed (58) |
NCT05422794 | Breast cancer | BETi | ZEN003694 + nab-paclitaxel + pembrolizumab (at different doses) | MTD, DLT and recommended phase II dose, incidence of AEs | Phase I Recruiting (57) |
NCT05372640 | Breast cancer | BETi | ZEN003694 + Abemaciclib | MTD and recommended phase II dose, AEs, objective response rate, clinical benefit rate (CBR), duration of response, time to response, OS, PFS | Phase I Recruiting (30) |
NCT05633979 | Breast cancer | EZH2i | Valemetostat with/without trastuzumab deruxtecan | Objective response rate | Phase I Recruiting (37) |
NCT04355858 | Breast cancer | EZH2i | SHR2554 + SHR3680 AR inhibitor (in screened cohort with AR > 10%) SHR2554 + SHR3162 (PARP inhibitor) | Objective response rate as per RECIST v1.1 criteria | Phase II Recruiting (319) |
NCT06145633 | Prostate cancer | HDACi | Vorinostat + 177Lu-prostate-specific membrane antigen [PSMA]-617 | Percentage of patients converted from PSMA-low to PSMA-high | Phase II Recruiting (15) |
NCT04703920 | Prostate cancer, breast cancer and ovarian cancer | HDACi | Belinostat + Talazoparib (PARP inhibitor) | DLT within first two cycles | Phase I Completed (26) |
NCT02998567 | Prostate cancer and other solid tumors | DNMTi | Guadecitabine (escalating dose) + pembrolizumab | MTD, AEs according to Common Terminology Criteria for Adverse Events (CTCAE) v4.0 | Phase I Recruiting (34) |
NCT05488548 | Prostate cancer and other solid tumors and hematological malignancies | BETi | EP31670 (dose escalation) | MTD, DLT, recommended phase II dose | Phase I Recruiting (75) |
NCT04840589 | Prostate cancer and other solid tumors | BETi | ZEN003694 + nivolumab with/without ipilimumab | MTD, DLT, recommended phase II dose | Phase I Recruiting (66) |
NCT04471974 | Prostate cancer | BETi | ZEN003694 + enzalutamide + pembrolizumab | Complete response rate as per RECIST v1.1 | Phase II Recruiting (54) |
NCT04986423 | Prostate cancer | BETi | ZEN003694 + enzalutamide combination versus enzalutamide monotherapy | Radiographic PFS (rPFS) as per RECIST v1.1 criteria | Phase II Recruiting (200) |
NCT03568656 | Prostate cancer and other advanced solid tumors | BETi | CCS1477 monotherapy (dose escalation) CCS1477 + abiraterone acetate (antiandrogen) CCS1477 + enzalutamide (antiandrogen) CCS1477 + Darolutamide (antiandrogen) CCS1477 + olaparib CCS1477 + atezolizumab (PD-L1-targeting drug) | Incidence of AEs and SAEs, laboratory assessments (clinical chemistry and hematology) | Phase I/II Active, not recruiting (350) |
NCT04846478 | Prostate cancer | EZH2i | Tazemetostat + Talazoparib (dose escalation) | Rate of DLT, number of participants with treatment-related AEs as per CTCAE v5.0 | Phase I Active, not recruiting (35) |
NCT06632977 | Prostate cancer | EZH2i | Valemetostat (after genetic testing) | Objective response rate as per RECIST v1.1 | Phase II Recruiting (474) |
NCT04388852 | Prostate cancer | EZH2i | Valemetostat + ipilimumab | Incidence of AEs, MTD | Phase I Active, not recruiting (65) |
NCT03460977 | Prostate cancer and other solid tumors | EZH2i | Mervometostat (dose escalation) versus mevrometostat + enzalutamide | Percentage patients with DLTs, MDT, AEs, objective response rate as per RECIST v1.1, laboratory abnormalities, changes in vital signs, rPFS | Phase I Recruiting (343) |
NCT06629779 | Prostate cancer | EZH2i | Enzalutamide with/without mevrometostat | rPFS | Phase III Recruiting (900) |
NCT06551324 | Prostate cancer | EZH2i | Mevrometostat + enzalutamide versus docetaxel + enzalutamide | rPFS | Phase III Recruiting (600) |
NCT04104776 | Prostate cancer, ovarian cancer, endometrial cancer and other solid tumors | EZH2i | CPI-0209 monotherapy in cohort of mCRPC patients, cohort of ovarian clear-cell carcinoma patients (with ARID1A mutations), cohort of endometrial carcinoma patients (with ARID1A mutation) | Frequency of DLTs, objective response rate as per RECIST v1.1 criteria | Phase I/II Recruiting (275) |
NCT05413421 | Prostate cancer | EEDi | ORIC-944 monotherapy (dose escalation) ORIC-944 + abiraterone acetate/apalutamide/Darolutamide/enzalutamide | Recommended phase II dose, pharmacokinetic evaluation of single and combination therapy | Phase I Recruiting (250) |
NCT04606446 | Prostate cancer, breast cancer and other advanced solid tumors | KAT6Ai | PF-07248144 monotherapy PF-07248144 + fulvestrant PF-07248144 + letrozole endocrine therapy + Palbociclib (dose escalation and expansion study) | Determine DLTs, AEs, lab abnormalities | Phase I Recruiting (320) |
NCT04315233 | Ovarian cancer and breast cancer | HDACi | Belinostat + Ribociclib (CDK4/6 inhibitor) | Determine MTD and DLT with combination treatment | Phase I Recruiting (34) |
NCT05983276 | Ovarian cancer | DNMTi | Decitabine with carboplatin/paclitaxel/selinexor | Determine safety and AEs of two drugs in combination | Phase II Recruiting (40) |
NCT02650986 | Ovarian cancer and other cancers | DNMTi | Decitabine with/without cyclophosphamide (chemotherapy) and TGFbDNRII-transduced autologous TILs (in tumors expressing cancer–testis antigens 1 -NY-ESO-1) | Number of participants with DLTs and feasibility concerns in manufacturing of NY-ESO-1/dnTGFbetaRII engineered cells | Phase I/II Active, not recruiting (15) |
NCT03206047 | Ovarian cancer | DNMTi | Atezolizumab with/without guadecitabine | Incidence of AEs, PFS | Phase I/II Completed (12) |
NCT03017131 | Ovarian cancer | DNMTi | Decitabine, cyclophosphamide, genetically engineered NY-ESO-1-specific T lymphocytes, Aldesleukin (recombinant interleukin-2) | Incidence of AEs | Phase I Active, not recruiting (9) |
NCT05071937 | Ovarian cancer | BETi | ZEN003694 + Talazoparib | Confirmed response rate as per RECIST v1.1 | Phase II Recruiting (33) |
NCT05252390 | Ovarian cancer, prostate cancer, breast cancer and other solid tumors | BETi | NUV-868 monotherapy NUV-868 + olaparib NUV-868 + enzalutamide (prostate cancer) | Incidence of DLTs, pharmacokinetics, objective response rate as per RECIST v1.1, rPFS, PSA50 response rate | Phase I/II Recruiting (82) |
NCT05950464 | Endometrial cancer and ovarian cancer | BETi | ZEN003694 + Tuvusertib (ATR kinase inhibitor) | DLTs, measurement of gammaH2AX, incidence of AEs | Phase I Recruiting (60) |
NCT03348631 | Endometrial cancer and ovarian cancer | EZH2i | Tazemetostat | Objective response rate as per RECIST v1.1 | Phase II Active, not recruiting (62) |
3. Clinical Trials Utilizing Epigenetic Therapeutics in Endocrine-Related Cancers
3.1. Breast Cancer
3.2. Ovarian Cancer
3.3. Endometrial Cancer
3.4. Prostate Cancer
3.5. Thyroid Cancer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADT | Androgen deprivation therapy |
AE | Adverse event |
AKT | Ak strain transforming |
AR | Androgen receptor |
ARID1A | AT-rich interaction domain 1A |
ASH2L | ASH2 like, histone lysine methyltransferase complex subunit |
ATRA | All-trans retinoic acid |
BAX | Bcl2-associated X |
BCa | Breast cancer |
BCL2 | B-cell lymphoma 2 |
BET | Bromodomain and extraterminal |
BETi | Bromodomain and extraterminal inhibitor |
BMP7 | Bone Morphogenetic Protein 7 |
BRCA1/2 | Breast cancer gene 1 or 2 |
BRD | Bromodomain-containing |
BRDT | Bromodomain testis-specific protein |
CBP | CREB-binding protein |
CBR | Clinical benefit rate |
CDH1 | Cadherin 1 |
CDK4/6 | Cyclin-dependent kinase 4/6 |
CDKN2A | Cyclin-dependent kinase inhibitor 2A |
CR | Complete response |
CRPC | Castration-resistant prostate cancer |
CRR | Clinical response rate |
CSC | Cancer stem cell |
CTC | Circulating tumor cell |
CTCAE | Common Terminology Criteria for Adverse Events |
CTCL | Cutaneous T-cell lymphoma |
CtDNA | Circulating tumor DNA |
DLT | Dose-limiting toxicity |
DNA | Deoxyribonucleic acid |
DNMT | DNA methyltransferase |
DNMTi | DNA methyltransferase inhibitor |
DOR | Duration of response |
ECa | Endometrial cancer |
EED | Embryonic ectoderm development |
EEDi | Embryonic ectoderm development inhibitor |
EGFR | Epidermal growth factor receptor |
EHMT2 | Euchromatic histone lysine N-methyltransferase 2 |
ER | Estrogen receptor (protein) |
ESR1 | Estrogen receptor 1 (gene) |
EZH2 | Enhancer of zeste homolog 2 |
EZH2i | Enhancer of zeste homolog 2 inhibitor |
FDA | Food and Drug Administration |
GADD45A | DNA damage-inducible alpha |
GSTP1 | Glutathione S-transferase Pi 1 |
H3K23ac | Histone 3 lysine 23 acetylation |
H3K27me3 | Histone 3 lysine 27 trimethylation |
H3K4me2/3 | Histone 3 lysine 4 di-/trimethylation |
H3K9me | Histone 3 lysine 9 methylation |
HAT | Histone acetyltransferase |
HDAC | Histone deacetylase |
HDACi | Histone deacetylase inhibitor |
HER2 | Human epidermal growth factor receptor 2 |
HMA | Hypomethylating agent |
HOXD3 | Homeobox D3 |
HR | Hormone receptor |
HRBC | Hormone-resistant breast cancer |
Hsp90 | Heat shock protein 90 (gene) |
KAT6A/B | Lysine acetyltransferase 6 A/B |
KAT6i | Lysine acetyltransferase 6 inhibitor |
KDM | Lysine demethylase |
KDM1A | Lysine demethylase 1A |
KDM1Ai | Lysine demethylase 1A inhibitor |
KLK3 | Kallikrein-related peptidase 3 |
KMT | Lysine methyltransferase |
LINE-1 | Long Interspersed Nuclear Element-1 |
LSD1 | Lysine-specific demethylase 1 |
mCRPC | Metastatic castration-resistant prostate cancer |
MGMT | O6-methylguanine-DNA methyltransferase |
MLH1 | MutL homolog 1 |
MPA | Medroxyprogesterone acetate |
MTD | Maximum tolerated dose |
mTOR | Mechanistic target of rapamycin kinase |
NF-κβ | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NIS | Sodium iodide symporter |
NSD2 | Nuclear Receptor Binding SET Domain Protein 2 |
ORR | Overall response rate |
OS | Overall survival |
OvCa | Ovarian cancer |
P53 | Tumor protein 53 |
PAEP | Progestagen-Associated Endometrial Protein |
PARP | Poly (ADP-ribose) polymerase |
PCa | Prostate cancer |
pCR | Pathological complete response |
PD-1 | Programmed cell death 1 |
PD-L1 | Programmed Death-Ligand 1 |
PFS | Progression-free survival |
PFS1 | First-stage progression-free survival |
PGR | Progesterone receptor (gene) |
PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
PR | Progesterone receptor (protein) |
PRC2 | Polycomb repressive complex 2 |
PSA | Prostate-specific antigen |
PSA-DT | PSA doubling time |
PSMA | Prostate-specific membrane antigen |
PTEN | Phosphatase and TENsin homolog deleted on chromosome 10 |
RAI | Radioactive-iodine therapy |
RARβ | Retinoic acid receptor β |
RASSF1A | Ras association domain family protein 1 isoform A |
RECIST | Response Evaluation Criteria in Solid Tumors |
RNA | Ribonucleic acid |
rPFS | Radiographic PFS |
RUNX3 | Runt-related transcription factor 3 |
SAE | Serious adverse event |
SASP | Senescence-Associated Secretory Phenotype |
SERM | Selective Estrogen Receptor Modulator |
SET | Su(var)3–9, Enhancer of zeste, and Trithorax |
SLC5A8 | Solute carrier family 5 member 8 |
SWF/SNF | Switch/Sucrose Non-Fermentable |
TCa | Thyroid cancer |
Tg | Thyroglobulin |
TGF-βRII | Transforming growth factor beta receptor type II |
TH | Thyroid hormone |
TIL | Tumor-infiltrating lymphocyte |
TME | Tumor microenvironment |
TNBC | Triple-negative breast cancer |
TPO | Thyroperoxidase |
TSG | Tumor suppressor gene |
TSH | Thyroid stimulating hormone |
TSHR | TSH receptor |
TTF-1 | Thyroid transcription factor-1 |
VPA | Valproic acid |
ZEB1 | Zinc Finger E-box-Binding Homeobox 1 |
References
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, H.; Wang, R.; Chen, Y.; Ouyang, X.; Li, W.; Sun, Y.; Peng, A. Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discov. 2024, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Emons, G. Hormone-Dependent Cancers: Molecular Mechanisms and Therapeutical Implications. Cells 2023, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Clusan, L.; Ferriere, F.; Flouriot, G.; Pakdel, F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 6834. [Google Scholar] [CrossRef] [PubMed]
- Nabieva, N.; Fasching, P.A. Endocrine Treatment for Breast Cancer Patients Revisited-History, Standard of Care, and Possibilities of Improvement. Cancers 2021, 13, 5643. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Atallah, N.; Patke, R.; Harris, A.E.; Woodcock, C.L.; Varun, D.; Thompson, R.L.; Jackson-Oxley, J.; Okui, C.H.; Dean, A.; et al. Cardiotoxicity of breast cancer drug treatments. Transl. Oncol. 2025, 55, 102352. [Google Scholar] [CrossRef] [PubMed]
- Zattarin, E.; Leporati, R.; Ligorio, F.; Lobefaro, R.; Vingiani, A.; Pruneri, G.; Vernieri, C. Hormone Receptor Loss in Breast Cancer: Molecular Mechanisms, Clinical Settings, and Therapeutic Implications. Cells 2020, 9, 2644. [Google Scholar] [CrossRef] [PubMed]
- Belachew, E.B.; Sewasew, D.T. Molecular Mechanisms of Endocrine Resistance in Estrogen-Receptor-Positive Breast Cancer. Front. Endocrinol. 2021, 12, 599586. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Jiang, H.; Liang, L.; Shi, W.; Zhang, Q.; Sun, P.; Xiang, R.; Wang, Y.; Yang, S. ZEB1 induces ER-α promoter hypermethylation and confers antiestrogen resistance in breast cancer. Cell Death Dis. 2017, 8, e2732. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.; Rajabi, H.; Takahashi, H.; Yasumizu, Y.; Li, W.; Jin, C.; Long, M.D.; Hu, Q.; Liu, S.; Fushimi, A.; et al. MUC1-C Activates the NuRD Complex to Drive Dedifferentiation of Triple-Negative Breast Cancer Cells. Cancer Res. 2019, 79, 5711–5722. [Google Scholar] [CrossRef] [PubMed]
- Leu, Y.-W.; Yan, P.S.; Fan, M.; Jin, V.X.; Liu, J.C.; Curran, E.M.; Welshons, W.V.; Wei, S.H.; Davuluri, R.V.; Plass, C.; et al. Loss of Estrogen Receptor Signaling Triggers Epigenetic Silencing of Downstream Targets in Breast Cancer. Cancer Res. 2004, 64, 8184–8192. [Google Scholar] [CrossRef] [PubMed]
- Kirilovas, D.; Schedvins, K.; Naessén, T.; Von Schoultz, B.; Carlström, K. Conversion of circulating estrone sulfate to 17β-estradiol by ovarian tumor tissue: A possible mechanism behind elevated circulating concentrations of 17β-estradiol in postmenopausal women with ovarian tumors. Gynecol. Endocrinol. 2007, 23, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Cheung, L.W.T.; Wong, A.S.T.; Leung, P.C.K. Estrogen Regulates Snail and Slug in the Down-Regulation of E-Cadherin and Induces Metastatic Potential of Ovarian Cancer Cells through Estrogen Receptor α. Mol. Endocrinol. 2008, 22, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, F.; Zhang, W.; He, J.; Zhao, Y.; Sun, J. Prognostic Role of Hormone Receptors in Ovarian Cancer: A Systematic Review and Meta-Analysis. Int. J. Gynecol. Cancer 2013, 23, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Yoriki, K.; Mori, T.; Kokabu, T.; Matsushima, H.; Umemura, S.; Tarumi, Y.; Kitawaki, J. Estrogen-related receptor alpha induces epithelial-mesenchymal transition through cancer-stromal interactions in endometrial cancer. Sci. Rep. 2019, 9, 6697. [Google Scholar] [CrossRef] [PubMed]
- Forsse, D.; Tangen, I.L.; Fasmer, K.E.; Halle, M.K.; Viste, K.; Almås, B.; Bertelsen, B.E.; Trovik, J.; Haldorsen, I.S.; Krakstad, C. Blood steroid levels predict survival in endometrial cancer and reflect tumor estrogen signaling. Gynecol. Oncol. 2020, 156, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.A. First-line treatment of ovarian cancer: Questions and controversies to address. Ther. Adv. Med. Oncol. 2018, 10, 1758835918768232. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.; Wabel, E.; Mitchell, K.; Horibata, S. Mechanisms of chemotherapy resistance in ovarian cancer. Cancer Drug Resist. 2022, 5, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Z.; Li, B.; Liu, L.; Huang, C. The Emerging Roles and Therapeutic Implications of Epigenetic Modifications in Ovarian Cancer. Front. Endocrinol. 2022, 13, 863541. [Google Scholar] [CrossRef] [PubMed]
- van Weelden, W.J.; Birkendahl, P.B.; Lalisang, R.I.; IntHout, J.; Kruitwagen, R.F.P.M.; Romano, A.; Pijnenborg, J.M.A. The effect of progestin therapy in advanced and recurrent endometrial cancer: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2023, 130, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Thiel, K.W.; Leslie, K.K. Progesterone: The ultimate endometrial tumor suppressor. Trends Endocrinol. Metab. TEM 2011, 22, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Chen, P.; Bai, M.; Huang, Y.; Li, L.; Feng, Y.; Liao, H.; Zheng, W.; Chen, X.; Zhang, Z. Progestin Resistance and Corresponding Management of Abnormal Endometrial Hyperplasia and Endometrial Carcinoma. Cancers 2022, 14, 6210. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Gao, X. Epigenetic Modifications and Carcinogenesis of Human Endometrial Cancer. Austin J. Clin. Pathol. 2014, 1, 1014. [Google Scholar]
- Yang, S.; Jia, Y.; Liu, X.; Winters, C.; Wang, X.; Zhang, Y.; Devor, E.J.; Hovey, A.M.; Reyes, H.D.; Xiao, X.; et al. Systematic dissection of the mechanisms underlying progesterone receptor downregulation in endometrial cancer. Oncotarget 2014, 5, 9783–9797. [Google Scholar] [CrossRef] [PubMed]
- Weichert, W.; Denkert, C.; Noske, A.; Darb-Esfahani, S.; Dietel, M.; Kalloger, S.E.; Huntsman, D.G.; Köbel, M. Expression of Class I Histone Deacetylases Indicates Poor Prognosis in Endometrioid Subtypes of Ovarian and Endometrial Carcinomas. Neoplasia 2008, 10, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Fakhry, H.; Miyamoto, T.; Kashima, H.; Suzuki, A.; Ke, H.; Konishi, I.; Shiozawa, T. Immunohistochemical detection of histone deacetylases in endometrial carcinoma: Involvement of histone deacetylase 2 in the proliferation of endometrial carcinoma cells. Human. Pathol. 2010, 41, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, N.; Tao, X.; Hua, K.; Feng, W. The expression and significance of histone lysine methylation in endometrial cancer. Oncol. Lett. 2017, 14, 6210–6216. [Google Scholar] [CrossRef] [PubMed]
- Inoue, F.; Sone, K.; Toyohara, Y.; Takahashi, Y.; Kukita, A.; Hara, A.; Taguchi, A.; Tanikawa, M.; Tsuruga, T.; Osuga, Y. Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications. Int. J. Mol. Sci. 2021, 22, 2305. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; He, B. Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer. Front. Oncol. 2019, 9, 858. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.; Scordo, M.; Yoon, R.S.; Liporace, F.A.; Greene, L.W. Revisiting the role of testosterone: Are we missing something? Rev. Urol. 2017, 19, 16–24. [Google Scholar] [PubMed]
- Harris, A.E.; Metzler, V.M.; Lothion-Roy, J.; Varun, D.; Woodcock, C.L.; Haigh, D.B.; Endeley, C.; Haque, M.; Toss, M.S.; Alsaleem, M.; et al. Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Front. Endocrinol. 2022, 13, 1006101. [Google Scholar] [CrossRef] [PubMed]
- Metzler, V.M.; de Brot, S.; Haigh, D.B.; Woodcock, C.L.; Lothion-Roy, J.; Harris, A.E.; Nilsson, E.M.; Ntekim, A.; Persson, J.L.; Robinson, B.D.; et al. The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer. Front. Cell Dev. Biol. 2023, 11, 1116424. [Google Scholar] [CrossRef] [PubMed]
- Haigh, D.B.; Woodcock, C.L.; Lothion-Roy, J.; Harris, A.E.; Metzler, V.M.; Persson, J.L.; Robinson, B.D.; Khani, F.; Alsaleem, M.; Ntekim, A.; et al. The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer. Cancers 2022, 14, 5148. [Google Scholar] [CrossRef] [PubMed]
- Kron, K.; Pethe, V.; Briollais, L.; Sadikovic, B.; Ozcelik, H.; Sunderji, A.; Venkateswaran, V.; Pinthus, J.; Fleshner, N.; van der Kwast, T.; et al. Discovery of Novel Hypermethylated Genes in Prostate Cancer Using Genomic CpG Island Microarrays. PLoS ONE 2009, 4, e4830. [Google Scholar] [CrossRef] [PubMed]
- Martignano, F.; Gurioli, G.; Salvi, S.; Calistri, D.; Costantini, M.; Gunelli, R.; De Giorgi, U.; Foca, F.; Casadio, V. GSTP1 Methylation and Protein Expression in Prostate Cancer: Diagnostic Implications. Dis. Markers 2016, 2016, 4358292. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, K.; Taavitsainen, S.; Huhtala, L.; Uusi-Makela, J.; Granberg, K.J.; Nykter, M.; Urbanucci, A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers 2021, 13, 3325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Carroll, J.S.; Brown, M. Spatial and Temporal Recruitment of Androgen Receptor and Its Coactivators Involves Chromosomal Looping and Polymerase Tracking. Mol. Cell 2005, 19, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Metzger, E.; Wissmann, M.; Yin, N.; Müller, J.M.; Schneider, R.; Peters, A.H.F.M.; Günther, T.; Buettner, R.; Schüle, R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005, 437, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Yamane, K.; Toumazou, C.; Tsukada, Y.; Erdjument-Bromage, H.; Tempst, P.; Wong, J.; Zhang, Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006, 125, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Wissmann, M.; Yin, N.; Müller, J.M.; Greschik, H.; Fodor, B.D.; Jenuwein, T.; Vogler, C.; Schneider, R.; Günther, T.; Buettner, R.; et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell Biol. 2007, 9, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y.; Lu, X.; Song, B.; Fong, K.W.; Cao, Q.; Licht, J.D.; Zhao, J.C.; Yu, J. Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Rep. 2018, 25, 2808–2820.E4. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, Z.; Cheng, L.; Wang, R.; Chen, X.; Kong, Y.; Feng, F.; Ahmad, N.; Li, L.; Liu, X. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J. Biol. Chem. 2019, 294, 9911–9923. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Xie, T.; Lei, Q.; Gu, Y.R.; Sun, C.Z. A review of complex hormone regulation in thyroid cancer: Novel insights beyond the hypothalamus-pituitary-thyroid axis. Front. Endocrinol. 2024, 15, 1419913. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Mo, G.; Zhou, T.; Hou, Q.; Shi, C.; Yu, J.; Lv, Y. Combined prognostic value of preoperative serum thyrotrophin and thyroid hormone concentration in papillary thyroid cancer. J. Clin. Lab. Anal. 2022, 36, e24503. [Google Scholar] [CrossRef] [PubMed]
- DeGroot, L.J.; Kaplan, E.L.; McCormick, M.; Straus, F.H. Natural history, treatment, and course of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 1990, 71, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Bizhanova, A.; Kopp, P. Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 2009, 150, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Hu, X.; Pan, Z.; Xu, T.; Xu, J.; Jiang, L.; Huang, P.; Zhang, Y.; Ge, M. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy. Drug Resist. Updates 2023, 68, 100939. [Google Scholar] [CrossRef] [PubMed]
- Ringel, M.D.; Anderson, J.; Souza, S.L.; Burch, H.B.; Tambascia, M.; Shriver, C.D.; Tuttle, R.M. Expression of the Sodium Iodide Symporter and Thyroglobulin Genes Are Reduced in Papillary Thyroid Cancer. Mod. Pathol. 2001, 14, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Zafon, C.; Gil, J.; Pérez-González, B.; Jordà, M. DNA methylation in thyroid cancer. Endocr.-Relat. Cancer 2019, 26, R415–R439. [Google Scholar] [CrossRef] [PubMed]
- Puppin, C.; Passon, N.; Lavarone, E.; Di Loreto, C.; Frasca, F.; Vella, V.; Vigneri, R.; Damante, G. Levels of histone acetylation in thyroid tumors. Biochem. Biophys. Res. Commun. 2011, 411, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev. 2025, 44, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, G.; Li, Y.; Lei, D.; Xiang, J.; Ouyang, L.; Wang, Y.; Yang, J. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Front. Pharmacol. 2022, 13, 1072651. [Google Scholar] [CrossRef] [PubMed]
- Kaminskas, E.; Farrell, A.T.; Wang, Y.-C.; Sridhara, R.; Pazdur, R. FDA Drug Approval Summary: Azacitidine (5-azacytidine, Vidaza™) for Injectable Suspension. Oncol. 2005, 10, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 2008, 123, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Rius, M.; Stresemann, C.; Keller, D.; Brom, M.; Schirrmacher, E.; Keppler, D.; Lyko, F. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Mol. Cancer Ther. 2009, 8, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Santi, D.V.; Norment, A.; Garrett, C.E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc. Natl. Acad. Sci. USA 1984, 81, 6993–6997. [Google Scholar] [CrossRef] [PubMed]
- Momparler, R.L. Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin. Hematol. 2005, 42, S9–S16. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.B.; Jeong, S.; Egger, G.; Liang, G.; Phiasivongsa, P.; Tang, C.; Redkar, S.; Jones, P.A. Delivery of 5-Aza-2′-Deoxycytidine to Cells Using Oligodeoxynucleotides. Cancer Res. 2007, 67, 6400–6408. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.C.; Warner, S.L.; Vollmer, D.; Vankayalapati, H.; Redkar, S.; Bearss, D.J.; Qiu, X.; Yoo, C.B.; Jones, P.A. S110, a 5-Aza-2′-Deoxycytidine–Containing Dinucleotide, Is an Effective DNA Methylation Inhibitor In vivo and Can Reduce Tumor Growth. Mol. Cancer Ther. 2010, 9, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Issa, J.-P.J.; Roboz, G.; Rizzieri, D.; Jabbour, E.; Stock, W.; O’Connell, C.; Yee, K.; Tibes, R.; Griffiths, E.A.; Walsh, K.; et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: A multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015, 16, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Roboz, G.J.; Kantarjian, H.M.; Yee, K.W.L.; Kropf, P.L.; O’Connell, C.L.; Griffiths, E.A.; Stock, W.; Daver, N.G.; Jabbour, E.; Ritchie, E.K.; et al. Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. Cancer 2018, 124, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Arce, C.; Segura-Pacheco, B.; Perez-Cardenas, E.; Taja-Chayeb, L.; Candelaria, M.; Dueñnas-Gonzalez, A. Hydralazine target: From blood vessels to the epigenome. J. Transl. Med. 2006, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Candelaria, M.; Gallardo-Rincón, D.; Arce, C.; Cetina, L.; Aguilar-Ponce, J.L.; Arrieta, Ó.; González-Fierro, A.; Chávez-Blanco, A.; de la Cruz-Hernández, E.; Camargo, M.F.; et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol. 2007, 18, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Pappalardi, M.B.; Keenan, K.; Cockerill, M.; Kellner, W.A.; Stowell, A.; Sherk, C.; Wong, K.; Pathuri, S.; Briand, J.; Steidel, M.; et al. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat. Cancer 2021, 2, 1002–1017. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, B.; Zeng, Y.; Hwang, J.W.; Dai, N.; Correa, I.R., Jr.; Estecio, M.R.; Zhang, X.; Santos, M.A.; Chen, T.; et al. GSK-3484862 targets DNMT1 for degradation in cells. NAR Cancer 2023, 5, zcad022. [Google Scholar] [CrossRef] [PubMed]
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Derheimer, F.A.; Jensen-Pergakes, K.; O’Connell, S.; Sharma, S.; Spiegel, N.; Paul, T.A. Histone lysine acetyltransferase inhibitors: An emerging class of drugs for cancer therapy. Trends Pharmacol. Sci. 2024, 45, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Abmayr, S.; Workman, J. Regulation of KAT6 Acetyltransferases and Their Roles in Cell Cycle Progression, Stem Cell Maintenance, and Human Disease. Mol. Cell. Biol. 2016, 36, 1900–1907. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chung, C.-Y.; Uryu, S.; Petrovic, J.; Cao, J.; Rickard, A.; Nady, N.; Greasley, S.; Johnson, E.; Brodsky, O.; et al. Discovery of a highly potent, selective, orally bioavailable inhibitor of KAT6A/B histone acetyltransferases with efficacy against KAT6A-high ER+ breast cancer. Cell Chem. Biol. 2023, 30, 1191–1210.E20. [Google Scholar] [CrossRef] [PubMed]
- Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.-P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; et al. Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell 2012, 149, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutierrez, P.; Mundi, M.; Garcia-Dominguez, M. Association of bromodomain BET proteins with chromatin requires dimerization through the conserved motif B. J. Cell Sci. 2012, 125, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Xing, E.; Larue, R.C.; Li, P.K. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023, 28, 3043. [Google Scholar] [CrossRef] [PubMed]
- Asangani, I.A.; Dommeti, V.L.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.; Dhanireddy, S.; Engelke, C.; et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014, 510, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Dombret, H.; Preudhomme, C.; Berthon, C.; Raffoux, E.; Thomas, X.; Vey, N.; Gomez-Roca, C.; Ethell, M.; Yee, K.; Bourdel, F.; et al. A Phase 1 Study of the BET-Bromodomain Inhibitor OTX015 in Patients with Advanced Acute Leukemia. Blood 2014, 124, 117. [Google Scholar] [CrossRef]
- Lewin, J.; Soria, J.C.; Stathis, A.; Delord, J.P.; Peters, S.; Awada, A.; Aftimos, P.G.; Bekradda, M.; Rezai, K.; Zeng, Z.; et al. Phase Ib Trial with Birabresib, a Small-Molecule Inhibitor of Bromodomain and Extraterminal Proteins, in Patients with Selected Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 3007–3014. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Hertzog, J.; Heller, L.; Vootukuri, S.; Zhang, Y.; Miller, C.; Hattersley, G. Abstract 6264: NUV-868, a novel BD2-selective BET inhibitor, in combination with enzalutamide or olaparib, inhibits growth of solid tumor xenografts. Cancer Res. 2023, 83, 6264. [Google Scholar] [CrossRef]
- Nicosia, L.; Spencer, G.J.; Brooks, N.; Amaral, F.M.R.; Basma, N.J.; Chadwick, J.A.; Revell, B.; Wingelhofer, B.; Maiques-Diaz, A.; Sinclair, O.; et al. Therapeutic targeting of EP300/CBP by bromodomain inhibition in hematologic malignancies. Cancer Cell 2023, 41, 2136–2153.E13. [Google Scholar] [CrossRef] [PubMed]
- Welti, J.; Sharp, A.; Brooks, N.; Yuan, W.; McNair, C.; Chand, S.N.; Pal, A.; Figueiredo, I.; Riisnaes, R.; Gurel, B.; et al. Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discov. 2021, 11, 1118–1137. [Google Scholar] [CrossRef] [PubMed]
- Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed]
- Hai, R.; He, L.; Shu, G.; Yin, G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front. Oncol. 2021, 11, 700947. [Google Scholar] [CrossRef] [PubMed]
- Parveen, R.; Harihar, D.; Chatterji, B.P. Recent histone deacetylase inhibitors in cancer therapy. Cancer 2023, 129, 3372–3380. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.; Rahman, F.; Piekarz, R.; Peer, C.; Frye, R.; Robey, R.W.; Gardner, E.R.; Figg, W.D.; Bates, S.E. Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev. Anticancer Ther. 2010, 10, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.H.; Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.; et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002, 62, 4916–4921. [Google Scholar] [PubMed]
- El Omari, N.; Lee, L.-H.; Bakrim, S.; Makeen, H.A.; Alhazmi, H.A.; Mohan, S.; Khalid, A.; Ming, L.C.; Bouyahya, A. Molecular mechanistic pathways underlying the anticancer therapeutic efficiency of romidepsin. Biomed. Pharmacother. 2023, 164, 114774. [Google Scholar] [CrossRef] [PubMed]
- Richon, V.M. Cancer biology: Mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br. J. Cancer 2006, 95, S2–S6. [Google Scholar] [CrossRef]
- Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007, 12, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999, 401, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Nanavati, C.; Ruszaj, D.; Mager, D.E. Cell Signaling Model Connects Vorinostat Pharmacokinetics and Tumor Growth Response in Multiple Myeloma Xenografts. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Sooraj, D.; Xu, D.; Cain, J.E.; Gold, D.P.; Williams, B.R. Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat. Mol. Cancer Ther. 2016, 15, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Mensah, A.A.; Spriano, F.; Sartori, G.; Priebe, V.; Cascione, L.; Gaudio, E.; Tarantelli, C.; Civanelli, E.; Aresu, L.; Rinaldi, A.; et al. Study of the antilymphoma activity of pracinostat reveals different sensitivities of DLBCL cells to HDAC inhibitors. Blood Adv. 2021, 5, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Novotny-Diermayr, V.; Sangthongpitag, K.; Hu, C.Y.; Wu, X.; Sausgruber, N.; Yeo, P.; Greicius, G.; Pettersson, S.; Liang, A.L.; Loh, Y.K.; et al. SB939, a Novel Potent and Orally Active Histone Deacetylase Inhibitor with High Tumor Exposure and Efficacy in Mouse Models of Colorectal Cancer. Mol. Cancer Ther. 2010, 9, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Razak, A.R.A.; Hotte, S.J.; Siu, L.L.; Chen, E.X.; Hirte, H.W.; Powers, J.; Walsh, W.; Stayner, L.A.; Laughlin, A.; Novotny-Diermayr, V.; et al. Phase I clinical, pharmacokinetic and pharmacodynamic study of SB939, an oral histone deacetylase (HDAC) inhibitor, in patients with advanced solid tumours. Br. J. Cancer 2011, 104, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Atadja, P. Development of the pan-DAC inhibitor panobinostat (LBH589): Successes and challenges. Cancer Lett. 2009, 280, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Rathkopf, D.E.; Picus, J.; Hussain, A.; Ellard, S.; Chi, K.N.; Nydam, T.; Allen-Freda, E.; Mishra, K.K.; Porro, M.G.; Scher, H.I.; et al. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol. 2013, 72, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Medon, M.; Vidacs, E.; Vervoort, S.J.; Li, J.; Jenkins, M.R.; Ramsbottom, K.M.; Trapani, J.A.; Smyth, M.J.; Darcy, P.K.; Atadja, P.W.; et al. HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors. Cancer Res. 2017, 77, 2594–2606. [Google Scholar] [CrossRef] [PubMed]
- Paluszczak, J.; Kleszcz, R.; Witczak, O.; Krajka-Kuźniak, V. The Comparison of the Effects of Panobinostat and Pkf118-310 on Β-Catenin-Dependent Transcription in Head and Neck Squamous Cell Carcinoma Cell Lines. Acta Pol. Pharm.-Drug Res. 2020, 77, 77–88. [Google Scholar] [CrossRef]
- Lee, W.-Y.; Chen, P.-C.; Wu, W.-S.; Wu, H.-C.; Lan, C.-H.; Huang, Y.-H.; Cheng, C.-H.; Chen, K.-C.; Lin, C.-W. Panobinostat sensitizes KRAS-mutant non-small-cell lung cancer to gefitinib by targeting TAZ. Int. J. Cancer 2017, 141, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; Qi, Q.; Peng, X.; Yan, L.; Takabe, K.; Hait, N.C. Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells. Int. J. Oncol. 2019, 55, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lim, B.; Pearson, T.; Tripathy, D.; Ordentlich, P.; Ueno, N.T. Abstract P5-21-15: The synergistic antitumor activity of entinostat (MS-275) in combination with palbociclib (PD 0332991) in estrogen receptor-positive and triple-negative breast cancer. Cancer Res. 2018, 78, P5-21-15. [Google Scholar] [CrossRef]
- Christmas, B.J.; Rafie, C.I.; Hopkins, A.C.; Scott, B.A.; Ma, H.S.; Cruz, K.A.; Woolman, S.; Armstrong, T.D.; Connolly, R.M.; Azad, N.A.; et al. Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs. Cancer Immunol. Res. 2018, 6, 1561–1577. [Google Scholar] [CrossRef] [PubMed]
- Minnar, C.M.; Chariou, P.L.; Horn, L.A.; Hicks, K.C.; Palena, C.; Schlom, J.; Gameiro, S.R. Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies. J. Immunother. Cancer 2022, 10, e004561. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hong, J.H.; Ning, Z.; Pan, D.; Fu, X.; Lu, X.; Tan, J. Therapeutic potential of tucidinostat, a subtype-selective HDAC inhibitor, in cancer treatment. Front. Pharmacol. 2022, 13, 932914. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Dong, M.; Zhu, J.; Zhou, D.; Huang, H.; Tu, P.; Zhang, W.; Hong, X.; Zhao, X.; Sun, J.; et al. Phase II Study of Chidamide, a New Subtype-Selective Oral Histone Deacetylase Inhibitor, in Patients with Relapsed or Refractory Cutaneous T-Cell Lymphoma. Blood 2015, 126, 1513. [Google Scholar] [CrossRef]
- Zhao, B.; He, T. Chidamide, a histone deacetylase inhibitor, functions as a tumor inhibitor by modulating the ratio of Bax/Bcl-2 and P21 in pancreatic cancer. Oncol. Rep. 2015, 33, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ding, K.; Li, L.; Liu, H.; Wang, Y.; Liu, C.; Fu, R. A novel histone deacetylase inhibitor Chidamide induces G0/G1 arrest and apoptosis in myelodysplastic syndromes. Biomed. Pharmacother. 2016, 83, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Arts, J.; King, P.; Marin, A.; Floren, W.; Belin, A.; Janssen, L.; Pilatte, I.; Roux, B.; Decrane, L.; Gilissen, R.; et al. JNJ-26481585, a Novel Second-Generation Oral Histone Deacetylase Inhibitor, Shows Broad-Spectrum Preclinical Antitumoral Activity. Clin. Cancer Res. 2009, 15, 6841–6851. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Dai, L.; Zhang, X.; Chen, D.; Wu, J.; Feng, X.; Zhang, Y.; Xie, H.; Zhou, L.; Wu, J.; et al. The HDAC Inhibitor Quisinostat (JNJ-26481585) Supresses Hepatocellular Carcinoma alone and Synergistically in Combination with Sorafenib by G0/G1 phase arrest and Apoptosis induction. Int. J. Biol. Sci. 2018, 14, 1845–1858. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, B.; Baird, R.; Kristeleit, R.S.; Plummer, R.; Cowan, R.; Stewart, A.; Fourneau, N.; Hellemans, P.; Elsayed, Y.; Mcclue, S.; et al. A Phase I Study of Quisinostat (JNJ-26481585), an Oral Hydroxamate Histone Deacetylase Inhibitor with Evidence of Target Modulation and Antitumor Activity, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2013, 19, 4262–4272. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, O.A.; Horwitz, S.; Masszi, T.; Van Hoof, A.; Brown, P.; Doorduijn, J.; Hess, G.; Jurczak, W.; Knoblauch, P.; Chawla, S.; et al. Belinostat in Patients with Relapsed or Refractory Peripheral T-Cell Lymphoma: Results of the Pivotal Phase II BELIEF (CLN-19) Study. J. Clin. Oncol. 2015, 33, 2492–2499. [Google Scholar] [CrossRef] [PubMed]
- Plumb, J.A.; Finn, P.W.; Williams, R.J.; Bandara, M.J.; Romero, M.R.; Watkins, C.J.; La Thangue, N.B.; Brown, R. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther. 2003, 2, 721–728. [Google Scholar] [PubMed]
- Blaheta, R.A.; Cinatl, J., Jr. Anti-tumor mechanisms of valproate: A novel role for an old drug. Med. Res. Rev. 2002, 22, 492–511. [Google Scholar] [CrossRef] [PubMed]
- Krämer, O.H.; Zhu, P.; Ostendorff, H.P.; Golebiewski, M.; Tiefenbach, J.; Peters, M.A.; Brill, B.; Groner, B.; Bach, I.; Heinzel, T.; et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003, 22, 3411–3420. [Google Scholar] [CrossRef]
- Sidana, A.; Wang, M.; Shabbeer, S.; Chowdhury, W.H.; Netto, G.; Lupold, S.E.; Carducci, M.; Rodriguez, R. Mechanism of Growth Inhibition of Prostate Cancer Xenografts by Valproic Acid. BioMed Res. Int. 2012, 2012, 180363. [Google Scholar] [CrossRef] [PubMed]
- Laugesen, A.; Højfeldt, J.W.; Helin, K. Molecular Mechanisms Directing PRC2 Recruitment and H3K27 Methylation. Mol. Cell 2019, 74, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Straining, R.; Eighmy, W. Tazemetostat: EZH2 Inhibitor. J. Adv. Pract. Oncol. 2022, 13, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Julia, E.; Salles, G. EZH2 inhibition by tazemetostat: Mechanisms of action, safety and efficacy in relapsed/refractory follicular lymphoma. Future Oncol. 2021, 17, 2127–2140. [Google Scholar] [CrossRef] [PubMed]
- Knutson, S.K.; Kawano, S.; Minoshima, Y.; Warholic, N.M.; Huang, K.C.; Xiao, Y.; Kadowaki, T.; Uesugi, M.; Kuznetsov, G.; Kumar, N.; et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol. Cancer Ther. 2014, 13, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, A.; Ozawa, H.; Hirakawa, A.; Sadachi, R.; Hoshina, Y.; Tomatsuri, S.; Saito, Y.; Ando, R.M.; Terashima, K.; Nakamura, K.; et al. Trial in progress: A phase I trial of dual EZH 1/2 inhibitor valemetostat tosylate (DS-3201b) in pediatric, adolescent, and young adult patients with malignant solid tumors. J. Clin. Oncol. 2022, 40, TPS10059. [Google Scholar] [CrossRef]
- Dou, F.; Tian, Z.; Yang, X.; Li, J.; Wang, R.; Gao, J. Valemetostat: First approval as a dual inhibitor of EZH1/2 to treat adult T-cell leukemia/lymphoma. Drug Discov. Ther. 2022, 16, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Schweizer, M.T.; Castro, E.; Azad, A.; George, D.J.; Chakrabarti, J.; Narayanan, S.; Tang, Y.; Fizazi, K. Mevrometostat (PF-06821497) in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer previously treated with abiraterone acetate: The phase 3, randomized MEVPRO-1 study. J. Clin. Oncol. 2025, 43, TPS288. [Google Scholar] [CrossRef]
- Keller, P.J.; Adams, E.J.; Wu, R.; Côté, A.; Arora, S.; Cantone, N.; Meyer, R.; Mertz, J.A.; Gehling, V.; Cui, J.; et al. Comprehensive Target Engagement by the EZH2 Inhibitor Tulmimetostat Allows for Targeting of ARID1A Mutant Cancers. Cancer Res. 2024, 84, 2501–2517. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, N.J.; Gutierrez, M.; Duska, L.R.; Do, K.T.; Sharma, M.; Gandhi, L.; Papadopoulos, K.P.; Truong, J.; Fan, X.; Lee, J.H.; et al. Phase 1/2 first-in-human (FIH) study of CPI-0209, a novel small molecule inhibitor of enhancer of zeste homolog 2 (EZH2) in patients with advanced tumors. J. Clin. Oncol. 2021, 39, 3104. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Li, Z.-M.; Li, L.; Su, H.; Jin, Z.; Zuo, X.; Wu, J.; Zhou, H.; Li, K.; et al. SHR2554, an EZH2 inhibitor, in relapsed or refractory mature lymphoid neoplasms: A first-in-human, dose-escalation, dose-expansion, and clinical expansion phase 1 trial. Lancet Haematol. 2022, 9, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Liu, Y.; Wang, C.; Nie, J.; Xia, Y.; Jiang, J.; Han, W. Phase I study of the bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 combined with SHR2554, an EZH2 inhibitor, in patients with previously treated advanced lymphoma and solid tumors. J. Clin. Oncol. 2023, 41, 2507. [Google Scholar] [CrossRef]
- Deng, K.; Zou, Y.; Zou, C.; Wang, H.; Xiang, Y.; Yang, X.; Yang, S.; Cui, C.; Yang, G.; Huang, J. Study on pharmacokinetic interactions between SHR2554 and itraconazole in healthy subjects: A single-center, open-label phase I trial. Cancer Med. 2023, 12, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Ding, N.; Mi, L.; Yu, H.; Wu, M.; Feng, F.; Hu, L.; Zhang, Y.; Zhong, C.; et al. The Synergistic Anti-Tumor Activity of EZH2 Inhibitor SHR2554 and HDAC Inhibitor Chidamide through ORC1 Reduction of DNA Replication Process in Diffuse Large B Cell Lymphoma. Cancers 2021, 13, 4249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guan, Y.-Y.; Zhao, F.; Yu, T.; Zhang, S.-J.; Zhang, Y.-Z.; Duan, Y.-C.; Zhou, X.-L. Recent strategies targeting Embryonic Ectoderm Development (EED) for cancer therapy: Allosteric inhibitors, PPI inhibitors, and PROTACs. Eur. J. Med. Chem. 2022, 231, 114144. [Google Scholar] [CrossRef] [PubMed]
- Rej, R.K.; Wang, C.; Lu, J.; Wang, M.; Petrunak, E.; Zawacki, K.P.; McEachern, D.; Yang, C.Y.; Wang, L.; Li, R.; et al. Discovery of EEDi-5273 as an Exceptionally Potent and Orally Efficacious EED Inhibitor Capable of Achieving Complete and Persistent Tumor Regression. J. Med. Chem. 2021, 64, 14540–14556. [Google Scholar] [CrossRef] [PubMed]
- Goleij, P.; Heidari, M.M.; Tabari, M.A.K.; Hadipour, M.; Rezaee, A.; Javan, A.; Sanaye, P.M.; Larsen, D.S.; Daglia, M.; Khan, H. Polycomb repressive complex 2 (PRC2) pathway’s role in cancer cell plasticity and drug resistance. Funct. Integr. Genom. 2025, 25, 53. [Google Scholar] [CrossRef] [PubMed]
- Ribrag, V.; Iglesias, L.; De Braud, F.; Ma, B.; Yokota, T.; Zander, T.; Spreafico, A.; Subbiah, V.; Illert, A.L.; Tan, D.; et al. A first-in-human phase 1/2 dose-escalation study of MAK683 (EED inhibitor) in patients with advanced malignancies. Eur. J. Cancer 2025, 216, 115122. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sendzik, M.; Zhang, J.; Gao, Z.; Sun, Y.; Wang, L.; Gu, J.; Zhao, K.; Yu, Z.; Zhang, L.; et al. Discovery of the Clinical Candidate MAK683: An EED-Directed, Allosteric, and Selective PRC2 Inhibitor for the Treatment of Advanced Malignancies. J. Med. Chem. 2022, 65, 5317–5333. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Qu, Y.; An, Y.; Hou, L.; Li, J.; Li, W.; Fan, G.; Song, B.L.; Li, E.; Zhang, L.; et al. Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. Cell Death Dis. 2022, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Daemen, A.; Yuen, N.; Wang, A.; Pankov, A.; Ulicna, L.; Chen, C.; Duong, F.L.; Long, J.; Marx, M.A.; Christensen, J.G.; et al. Abstract 6586: ORIC-944, a potent and selective allosteric PRC2 inhibitor with best-in-class properties, demonstrates combination synergy with AR pathway inhibitors in prostate cancer models. Cancer Res. 2024, 84, 6586. [Google Scholar] [CrossRef]
- Cai, W.; Xiao, C.; Fan, T.; Deng, Z.; Wang, D.; Liu, Y.; Li, C.; He, J. Targeting LSD1 in cancer: Molecular elucidation and recent advances. Cancer Lett. 2024, 598, 217093. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell 2004, 119, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.A.; Larrea, M.D.; Jasper, J.S.; McDonnell, D.P.; McCafferty, D.G. Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chem. Biol. 2012, 7, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Kanouni, T.; Severin, C.; Cho, R.W.; Yuen, N.Y.Y.; Xu, J.; Shi, L.; Lai, C.; Del Rosario, J.R.; Stansfield, R.K.; Lawton, L.N.; et al. Discovery of CC-90011: A Potent and Selective Reversible Inhibitor of Lysine Specific Demethylase 1 (LSD1). J. Med. Chem. 2020, 63, 14522–14529. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Weng, X.; Chen, Y.; Yang, J. Pulrodemstat, a selective inhibitor of KDM1A, suppresses head and neck squamous cell carcinoma growth by triggering apoptosis. BMC Pharmacol. Toxicol. 2024, 25, 89. [Google Scholar] [CrossRef] [PubMed]
- Hollebecque, A.; de Bono, J.S.; Plummer, R.; Isambert, N.; Martin-Romano, P.; Baudin, E.; Mora, S.; Filvaroff, E.; Lamba, M.; Nikolova, Z. 7O-Phase I study of CC-90011 in patients with advanced solid tumors and relapsed/refractory non-Hodgkin lymphoma (R/R NHL). Ann. Oncol. 2019, 30, i4. [Google Scholar] [CrossRef]
- Sorna, V.; Theisen, E.R.; Stephens, B.; Warner, S.L.; Bearss, D.J.; Vankayalapati, H.; Sharma, S. High-Throughput Virtual Screening Identifies Novel N′-(1-Phenylethylidene)-benzohydrazides as Potent, Specific, and Reversible LSD1 Inhibitors. J. Med. Chem. 2013, 56, 9496–9508. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Lu, W.; Tan, X.; Luo, B.; Yu, T.; Sun, Y.; Guo, Z.; Huang, P.; Zhu, D.; Wu, Q.; et al. Design, Synthesis, and Biological Evaluation of Potent EZH2/LSD1 Dual Inhibitors for Prostate Cancer. J. Med. Chem. 2024, 67, 15586–15605. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.W.; Chen, I.C.; Chou, P.Y.; Lai, M.J.; Liu, Z.Y.; Tsai, K.K.; Cheng, L.H.; Zhao, J.X.; Cho, E.C.; Chang, H.H.; et al. HSP90/LSD1 dual inhibitors against prostate cancer as well as patient-derived colorectal organoids. Eur. J. Med. Chem. 2024, 278, 116801. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Sun, M.M.; Zhang, R.L.; Wang, L.; Yang, L.H.; Shan, C.L.; Lin, J.P. Discovery of novel dual-target inhibitors of LSD1/EGFR for non-small cell lung cancer therapy. Acta Pharmacol. Sin. 2025, 46, 1030–1044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ren, X.; Song, Y.; Yu, B. JBI-802: The first orally available LSD1/HDAC6 dual inhibitor to enter clinical trials. Expert Opin. Ther. Pat. 2025, 35, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Connolly, R.M.; Fackler, M.J.; Zhang, Z.; Zhou, X.C.; Goetz, M.P.; Boughey, J.C.; Walsh, B.; Carpenter, J.T.; Storniolo, A.M.; Watkins, S.P.; et al. Tumor and serum DNA methylation in women receiving preoperative chemotherapy with or without vorinostat in TBCRC008. Breast Cancer Res. Treat. 2018, 167, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Hershman, D.L.; Bhalla, K.; Fiskus, W.; Pellegrino, C.M.; Andreopoulou, E.; Makower, D.; Kalinsky, K.; Fehn, K.; Fineberg, S.; et al. A phase I-II study of the histone deacetylase inhibitor vorinostat plus sequential weekly paclitaxel and doxorubicin-cyclophosphamide in locally advanced breast cancer. Breast Cancer Res. Treat. 2014, 146, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, B.; Fiskus, W.; Cohen, B.; Pellegrino, C.; Hershman, D.L.; Chuang, E.; Luu, T.; Somlo, G.; Goetz, M.; Swaby, R.; et al. Phase I–II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: Evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo. Breast Cancer Res. Treat. 2012, 132, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.J.; Zhao, F.; Wang, M.; Swaby, R.F.; Sparano, J.A.; Meropol, N.J.; Bhalla, K.N.; Pellegrino, C.M.; Katherine Alpaugh, R.; Falkson, C.I.; et al. A Phase I/II study of suberoylanilide hydroxamic acid (SAHA) in combination with trastuzumab (Herceptin) in patients with advanced metastatic and/or local chest wall recurrent HER2-amplified breast cancer: A trial of the ECOG-ACRIN Cancer Research Group (E1104). Breast Cancer Res. Treat. 2017, 165, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Connolly, R.M.; Li, H.; Jankowitz, R.C.; Zhang, Z.; Rudek, M.A.; Jeter, S.C.; Slater, S.A.; Powers, P.; Wolff, A.C.; Fetting, J.H.; et al. Combination Epigenetic Therapy in Advanced Breast Cancer with 5-Azacitidine and Entinostat: A Phase II National Cancer Institute/Stand Up to Cancer Study. Clin. Cancer Res. 2017, 23, 2691–2701. [Google Scholar] [CrossRef] [PubMed]
- Connolly, R.M.; Zhao, F.; Miller, K.D.; Lee, M.J.; Piekarz, R.L.; Smith, K.L.; Brown-Glaberman, U.A.; Winn, J.S.; Faller, B.A.; Onitilo, A.A.; et al. E2112: Randomized Phase III Trial of Endocrine Therapy Plus Entinostat or Placebo in Hormone Receptor-Positive Advanced Breast Cancer. A Trial of the ECOG-ACRIN Cancer Research Group. J. Clin. Oncol. 2021, 39, 3171–3181. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, W.; Hu, X.; Zhang, Q.; Sun, T.; Cui, S.; Wang, S.; Ouyang, Q.; Yin, Y.; Geng, C.; et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Mukohara, T.; Park, Y.H.; Sommerhalder, D.; Yonemori, K.; Hamilton, E.; Kim, S.B.; Kim, J.H.; Iwata, H.; Yamashita, T.; Layman, R.M.; et al. Inhibition of lysine acetyltransferase KAT6 in ER(+)HER2(-) metastatic breast cancer: A phase 1 trial. Nat. Med. 2024, 30, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Tavares, V.; Marques, I.S.; Melo, I.G.; Assis, J.; Pereira, D.; Medeiros, R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int. J. Mol. Sci. 2024, 25, 1845. [Google Scholar] [CrossRef] [PubMed]
- Brownlie, J.; Kulkarni, S.; Algethami, M.; Jeyapalan, J.N.; Mongan, N.P.; Rakha, E.A.; Madhusudan, S. Targeting DNA damage repair precision medicine strategies in cancer. Curr. Opin. Pharmacol. 2023, 70, 102381. [Google Scholar] [CrossRef] [PubMed]
- Modesitt, S.C.; Sill, M.; Hoffman, J.S.; Bender, D.P.; Gynecologic Oncology, G. A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol. 2008, 109, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Matulonis, U.; Berlin, S.; Lee, H.; Whalen, C.; Obermayer, E.; Penson, R.; Liu, J.; Campos, S.; Krasner, C.; Horowitz, N. Phase I study of combination of vorinostat, carboplatin, and gemcitabine in women with recurrent, platinum-sensitive epithelial ovarian, fallopian tube, or peritoneal cancer. Cancer Chemother. Pharmacol. 2015, 76, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Meteran, H.; Knudsen, A.O.; Jorgensen, T.L.; Nielsen, D.; Herrstedt, J. Carboplatin plus Paclitaxel in Combination with the Histone Deacetylate Inhibitor, Vorinostat, in Patients with Recurrent Platinum-Sensitive Ovarian Cancer. J. Clin. Med. 2024, 13, 897. [Google Scholar] [CrossRef] [PubMed]
- Falchook, G.S.; Fu, S.; Naing, A.; Hong, D.S.; Hu, W.; Moulder, S.; Wheler, J.J.; Sood, A.K.; Bustinza-Linares, E.; Parkhurst, K.L.; et al. Methylation and histone deacetylase inhibition in combination with platinum treatment in patients with advanced malignancies. Investig. New Drugs 2013, 31, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Oza, A.M.; Matulonis, U.A.; Alvarez Secord, A.; Nemunaitis, J.; Roman, L.D.; Blagden, S.P.; Banerjee, S.; McGuire, W.P.; Ghamande, S.; Birrer, M.J.; et al. A Randomized Phase II Trial of Epigenetic Priming with Guadecitabine and Carboplatin in Platinum-resistant, Recurrent Ovarian Cancer. Clin. Cancer Res. 2020, 26, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xiao, X.; Jia, Y.; Liu, X.; Zhang, Y.; Wang, X.; Winters, C.J.; Devor, E.J.; Meng, X.; Thiel, K.W.; et al. Epigenetic modification restores functional PR expression in endometrial cancer cells. Curr. Pharm. Des. 2014, 20, 1874–1880. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, W.; Li, L.; Li, J.W.; Li, T.; Huang, C.; Lazaro-Camp, V.J.; Kavlashvili, T.; Zhang, Y.; Reyes, H.; et al. Enhancing progestin therapy via HDAC inhibitors in endometrial cancer. Am. J. Cancer Res. 2022, 12, 5029–5048. [Google Scholar] [PubMed]
- Duska, L.R.; Filiaci, V.L.; Walker, J.L.; Holman, L.L.; Hill, E.K.; Moore, R.G.; Ring, K.L.; Pearl, M.L.; Muller, C.Y.; Kushnir, C.L.; et al. A Surgical Window Trial Evaluating Medroxyprogesterone Acetate with or without Entinostat in Patients with Endometrial Cancer and Validation of Biomarkers of Cellular Response. Clin. Cancer Res. 2021, 27, 2734–2741. [Google Scholar] [CrossRef] [PubMed]
- Molife, L.R.; Attard, G.; Fong, P.C.; Karavasilis, V.; Reid, A.H.M.; Patterson, S.; Riggs, C.E.; Higano, C.; Stadler, W.M.; McCulloch, W.; et al. Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann. Oncol. 2010, 21, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Eigl, B.J.; North, S.; Winquist, E.; Finch, D.; Wood, L.; Sridhar, S.S.; Powers, J.; Good, J.; Sharma, M.; Squire, J.A.; et al. A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Investig. New Drugs 2015, 33, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Sonpavde, G.; Aparicio, A.M.; Zhan, F.; North, B.; DeLaune, R.; Garbo, L.E.; Rousey, S.R.; Weinstein, R.E.; Xiao, L.; Boehm, K.A.; et al. Azacitidine favorably modulates PSA kinetics correlating with plasma DNA LINE-1 hypomethylation in men with chemonaïve castration-resistant prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2011, 29, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.S.; Doshi, K.D.; Choi, S.-W.; Mason, J.B.; Mannari, R.K.; Gharybian, V.; Luna, R.; Rashid, A.; Shen, L.; Estecio, M.R.H.; et al. DNA Methylation Changes after 5-Aza-2′-Deoxycytidine Therapy in Patients with Leukemia. Cancer Res. 2006, 66, 5495–5503. [Google Scholar] [CrossRef] [PubMed]
- Appleton, K.; Mackay, H.J.; Judson, I.; Plumb, J.A.; McCormick, C.; Strathdee, G.; Lee, C.; Barrett, S.; Reade, S.; Jadayel, D.; et al. Phase I and Pharmacodynamic Trial of the DNA Methyltransferase Inhibitor Decitabine and Carboplatin in Solid Tumors. J. Clin. Oncol. 2007, 25, 4603–4609. [Google Scholar] [CrossRef] [PubMed]
- Singal, R.; Ramachandran, K.; Gordian, E.; Quintero, C.; Zhao, W.; Reis, I.M. Phase I/II Study of Azacitidine, Docetaxel, and Prednisone in Patients with Metastatic Castration-Resistant Prostate Cancer Previously Treated with Docetaxel-Based Therapy. Clin. Genitourin. Cancer 2015, 13, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, K.; Gopisetty, G.; Gordian, E.; Navarro, L.; Hader, C.; Reis, I.M.; Schulz, W.A.; Singal, R. Methylation-Mediated Repression of GADD45α in Prostate Cancer and Its Role as a Potential Therapeutic Target. Cancer Res. 2009, 69, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Furuya, F.; Shimura, H.; Suzuki, H.; Taki, K.; Ohta, K.; Haraguchi, K.; Onaya, T.; Endo, T.; Kobayashi, T. Histone Deacetylase Inhibitors Restore Radioiodide Uptake and Retention in Poorly Differentiated and Anaplastic Thyroid Cancer Cells by Expression of the Sodium/Iodide Symporter Thyroperoxidase and Thyroglobulin. Endocrinology 2004, 145, 2865–2875. [Google Scholar] [CrossRef] [PubMed]
- Kitazono, M.; Robey, R.; Zhan, Z.; Sarlis, N.J.; Skarulis, M.C.; Aikou, T.; Bates, S.; Fojo, T. Low Concentrations of the Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Increase Expression of the Na+/I− Symporter and Iodine Accumulation in Poorly Differentiated Thyroid Carcinoma Cells. J. Clin. Endocrinol. Metab. 2001, 86, 3430–3435. [Google Scholar] [CrossRef] [PubMed]
- Wächter, S.; Damanakis, A.I.; Elxnat, M.; Roth, S.; Wunderlich, A.; Verburg, F.A.; Fellinger, S.A.; Bartsch, D.K.; Di Fazio, P. Epigenetic Modifications in Thyroid Cancer Cells Restore NIS and Radio-Iodine Uptake and Promote Cell Death. J. Clin. Med. 2018, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.T.; Wong, T.S.; Chung, W.-Y.; Wong, M.G.; Kebebew, E.; Duh, Q.-Y.; Clark, O.H. Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 2005, 138, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, N.; Catalano, M.G.; Arena, K.; Brignardello, E.; Piovesan, A.; Boccuzzi, G. Valproic acid induces the expression of the Na+/I− symporter and iodine uptake in poorly differentiated thyroid cancer cells. J. Clin. Endocrinol. Metab. 2004, 89, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Kloos, R.T.; Ringel, M.D.; Arbogast, D.; Collamore, M.; Zwiebel, J.A.; Grever, M.; Villalona-Calero, M.; Shah, M.H. Lack of Therapeutic Effect of the Histone Deacetylase Inhibitor Vorinostat in Patients with Metastatic Radioiodine-Refractory Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2009, 94, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Nilubol, N.; Merkel, R.; Yang, L.; Patel, D.; Reynolds, J.C.; Sadowski, S.M.; Neychev, V.; Kebebew, E. A phase II trial of valproic acid in patients with advanced, radioiodine-resistant thyroid cancers of follicular cell origin. Clin. Endocrinol. 2017, 86, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Kitazono, M.; Bates, S.; Fok, P.; Fojo, T.; Blagosklonny, M.V. The Histone Deacetylase Inhibitor FR901228 (Depsipeptide) Restores Expression and Function of Pseudo-Null p53. Cancer Biol. Ther. 2002, 1, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.F.; Lin, J.D.; Chou, T.C.; Huang, Y.Y.; Wong, R.J. Utility of a histone deacetylase inhibitor (PXD101) for thyroid cancer treatment. PLoS ONE 2013, 8, e77684. [Google Scholar] [CrossRef] [PubMed]
- Kotian, S.; Zhang, L.; Boufraqech, M.; Gaskins, K.; Gara, S.K.; Quezado, M.; Nilubol, N.; Kebebew, E. Dual Inhibition of HDAC and Tyrosine Kinase Signaling Pathways with CUDC-907 Inhibits Thyroid Cancer Growth and Metastases. Clin. Cancer Res. 2017, 23, 5044–5054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Mehta, A.; Boufraqech, M.; Davis, S.; Wang, J.; Tian, Z.; Yu, Z.; Boxer, M.B.; Kiefer, J.A.; et al. Dual inhibition of HDAC and EGFR signaling with CUDC-101 induces potent suppression of tumor growth and metastasis in anaplastic thyroid cancer. Oncotarget 2015, 6, 9073–9085. [Google Scholar] [CrossRef] [PubMed]
- Bojang, P., Jr.; Ramos, K.S. The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat. Rev. 2014, 40, 153–169. [Google Scholar] [CrossRef] [PubMed]
- König, I.R.; Fuchs, O.; Hansen, G.; von Mutius, E.; Kopp, M.V. What is precision medicine? Eur. Respir. J. 2017, 50, 1700391. [Google Scholar] [CrossRef] [PubMed]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; George, T.L.; Otterson, G.A.; Verschraegen, C.; Wen, H.; Carbone, D.; Herman, J.; Bertino, E.M.; He, K. Advances in epigenetic therapeutics with focus on solid tumors. Clin. Epigenetics 2021, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.J.; Achinger-Kawecka, J.; Portman, N.; Clark, S.; Stirzaker, C.; Lim, E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers 2022, 14, 474. [Google Scholar] [CrossRef] [PubMed]
- Llinas-Bertran, A.; Bellet-Ezquerra, M.; Seoane, J.A. Epigenetic Control of Cancer Cell Dormancy and Awakening in Endocrine Therapy Resistance. Cancer Discov. 2024, 14, 704–706. [Google Scholar] [CrossRef] [PubMed]
Epigenetic Drug Type | Inhibitor | Mechanism of Action |
---|---|---|
DNMTi | Azacitidine | Forms covalent adducts with DNMTs, trapping them and preventing DNA methylation. |
Decitabine | Covalently binds DNMTs, depleting their activity. | |
Guadecitabine | Cleavage of phosphodiester bond, leading to gradual decitabine release. Resistant to degradation by cytidine deaminase unlike decitabine. | |
Hydralazine | Binds the active site of DNMT1 and DNMT3A, inactivating their methyltransferase activity. | |
GSK3685032 | Reversible inhibition of DNMT1 activity. | |
GSK3484862 | Leads to DNMT1 degradation through a proteasome-dependent mechanism. | |
KAT6i | PF-07248144 | Inhibits the catalytic activity of KAT6A and KAT6B, modulating global H3K23ac levels. Exact mechanism of action unknown. |
CTx-648 | ||
BETi | Birabresib | Binds to the acetyl-binding pockets of BRD2, BRD3 and BRD4, inhibiting their activity. |
ZEN003694 | Pan-BET inhibitor. | |
EP31670 | Binds to BET proteins (BRD2, BRD3, BRD4 and BRDT) and the bromodomains of CBP/p300, inhibiting their activity. | |
NUV-868 | Binds to the BD2 domain of BRD4, preventing interaction between BET proteins and acetylated histones. | |
CCS1477 | Selectively inhibits EP300/CBP bromodomain. | |
HDACi | Romidepsin | Inhibits HDAC class I and class II enzymes by binding to the zinc atom on the active site of the enzymes. |
Vorinostat | Inhibits HDAC1/2/3 from class I and HDAC6 from class II by binding to the active site of the enzymes. | |
Pracinostat | Pan-HDAC inhibitor. | |
Panobinostat | Pan-HDAC inhibitor. Inhibits deacetylation on histone and non-histone targets. | |
Entinostat | Selective HDAC class I inhibitor. | |
Tucidinostat | Targets HDAC1/2/3 from class I and HDAC10 from class IIb. | |
Quisinostat | Targets class I HDACs and exhibits weak potency for class II HDACs. | |
Belinostat | Pan-HDAC inhibitor. | |
Valproic acid | Proteasome-mediated degradation of HDAC2. | |
EZH2i | Tazemetostat | Competitively binds to the EZH2 SET domain and inhibits EZH2 methyltransferase activity. Inhibits Y641N-mutant and wild-type forms of EZH2. |
Valemetostat | Dual EZH1/2 inhibitor. Exact mechanism of action unknown. | |
Mevrometostat | Inhibits Y641N-mutant and wild-type EZH2, reducing H3K27me3 levels, but exact mechanism of action unknown. | |
Tulmimetostat | Second-generation EZH1/2 inhibitor, reduces global H3K27me3 levels. | |
SHR2554 | Competitively binds to the EZH2 SET domain and inhibits EZH2 methyltransferase activity. | |
EEDi | MAK683 | Binds to EED and disrupts EED-EZH1/2 interaction, allosterically inhibiting PRC2 activity. |
ORIC-944 | Allosteric inhibition of PRC2 activity by binding to EED. | |
KDM1Ai | Pulrodemstat | Binds to the AO pocket of KDM1A, resulting in reversible inhibition of KDM1A activity. |
Seclidemstat | Non-competitive KDM1A inhibition by blocking the enzymatic and scaffolding activity of KDM1A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varun, D.; Haque, M.; Jackson-Oxley, J.; Thompson, R.; Kumari, A.A.; Woodcock, C.L.; Harris, A.E.; Madhusudan, S.; Rakha, E.; Rutland, C.S.; et al. Epigenetic Therapies in Endocrine-Related Cancers: Past Insights and Clinical Progress. Cancers 2025, 17, 2418. https://doi.org/10.3390/cancers17152418
Varun D, Haque M, Jackson-Oxley J, Thompson R, Kumari AA, Woodcock CL, Harris AE, Madhusudan S, Rakha E, Rutland CS, et al. Epigenetic Therapies in Endocrine-Related Cancers: Past Insights and Clinical Progress. Cancers. 2025; 17(15):2418. https://doi.org/10.3390/cancers17152418
Chicago/Turabian StyleVarun, Dhruvika, Maria Haque, Jorja Jackson-Oxley, Rachel Thompson, Amber A. Kumari, Corinne L. Woodcock, Anna E. Harris, Srinivasan Madhusudan, Emad Rakha, Catrin S. Rutland, and et al. 2025. "Epigenetic Therapies in Endocrine-Related Cancers: Past Insights and Clinical Progress" Cancers 17, no. 15: 2418. https://doi.org/10.3390/cancers17152418
APA StyleVarun, D., Haque, M., Jackson-Oxley, J., Thompson, R., Kumari, A. A., Woodcock, C. L., Harris, A. E., Madhusudan, S., Rakha, E., Rutland, C. S., Mongan, N. P., & Jeyapalan, J. N. (2025). Epigenetic Therapies in Endocrine-Related Cancers: Past Insights and Clinical Progress. Cancers, 17(15), 2418. https://doi.org/10.3390/cancers17152418