The Lithuanian Lung Cancer Screening Model: Results of a Pilot Study
Simple Summary
Abstract
1. Introduction
2. Methods
- Call duration: The length of the phone conversation.
- Incidental diagnoses: If significant comorbid diagnoses were identified, they were recorded by the ICD-10-AM code.
- Outcome of this stage: Recorded as one of the following—will be invited again by the Program, referred to a specialist physician, will no longer be asked by the Program, or a follow-up LDCT will be performed.
- I.
- Screening process (program implementation) metrics
- The number of people invited (i.e., contacted by phone).
- Number of people who underwent LDCT: how many attended the LDCT scan, and what percentage of all those invited does this represent, overall and stratified by sex (women/men) and smoking status (smokers/non-smokers).
- Number of people who agreed to LDCT but did not attend: the count of individuals who consented to LDCT but did not attend for the scan, and this number as a percentage of those who agreed.
- Invitation call duration: the average length of the phone invitation call, overall and for men, women, smokers, and non-smokers.
- Requests for physician consultation: how many invitees requested a family doctor consultation before deciding, as a number and percentage of all invited.
- Average LDCT appointment duration: the average time a screening visit took (from entering to exiting the CT suite).
- Average LDCT interpretation time: the average time for radiologists to interpret and report on baseline LDCT scan, with and without the aid of AI software.
- Profile of those who refused participation: the breakdown of individuals who declined participation, categorized by sex and smoking status (each expressed as a percentage of all who refused).
- Reasons for declining participation in the pilot.
- II.
- Screening effectiveness indicators:
- Lung nodules detected: the number of nodules detected, categorized by Lung-RADS v2022, with each category expressed as a percentage of all nodules.
- Significant incidental findings: the number of substantial incidental findings (stratified by ICD-10-AM diagnosis codes) and the percentage of newly identified (previously undiagnosed) findings.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Dalmartello, M.; La Vecchia, C.; Bertuccio, P.; Boffetta, P.; Levi, F.; Negri, E.; Malvezzi, M. European Cancer Mortality Predictions for the Year 2022 with Focus on Ovarian Cancer. Ann. Oncol. 2022, 33, 330–339. [Google Scholar] [CrossRef]
- Ruano-Raviña, A.; Provencio, M.; Calvo de Juan, V.; Carcereny, E.; Moran, T.; Rodriguez-Abreu, D.; López-Castro, R.; Cuadrado Albite, E.; Guirado, M.; Gómez González, L.; et al. Lung Cancer Symptoms at Diagnosis: Results of a Nationwide Registry Study. ESMO Open 2020, 5, e001021. [Google Scholar] [CrossRef]
- Kaushal, A.; Waller, J.; von Wagner, C.; Kummer, S.; Whitaker, K.; Puri, A.; Lyratzopoulos, G.; Renzi, C. The Role of Chronic Conditions in Influencing Symptom Attribution and Anticipated Help-Seeking for Potential Lung Cancer Symptoms: A Vignette-Based Study. BJGP Open 2020, 4, bjgpopen20X101086. [Google Scholar] [CrossRef]
- van Klaveren, R.J.; van’t Westeinde, S.C.; de Hoop, B.-J.; Hoogsteden, H.C. Stem Cells and the Natural History of Lung Cancer: Implications for Lung Cancer Screening. Clin. Cancer Res. 2009, 15, 2215–2218. [Google Scholar] [CrossRef]
- Kay, F.U.; Kandathil, A.; Batra, K.; Saboo, S.S.; Abbara, S.; Rajiah, P. Revisions to the Tumor, Node, Metastasis Staging of Lung Cancer (8th Edition): Rationale, Radiologic Findings and Clinical Implications. World J. Radiol. 2017, 9, 269. [Google Scholar] [CrossRef]
- Sands, J.; Tammemägi, M.C.; Couraud, S.; Baldwin, D.R.; Borondy-Kitts, A.; Yankelevitz, D.; Lewis, J.; Grannis, F.; Kauczor, H.U.; von Stackelberg, O.; et al. Lung Screening Benefits and Challenges: A Review of The Data and Outline for Implementation. J. Thorac. Oncol. 2021, 16, 37–53. [Google Scholar] [CrossRef]
- Saw, S.P.L.; Zhou, S.; Chen, J.; Lai, G.; Ang, M.K.; Chua, K.; Kanesvaran, R.; Ng, Q.S.; Jain, A.; Tan, W.L.; et al. Association of Clinicopathologic and Molecular Tumor Features With Recurrence in Resected Early-Stage Epidermal Growth Factor Receptor-Positive Non-Small Cell Lung Cancer. JAMA Netw. Open 2021, 4, e2131892. [Google Scholar] [CrossRef]
- Flores, R.; Patel, P.; Alpert, N.; Pyenson, B.; Taioli, E. Association of Stage Shift and Population Mortality Among Patients with Non-Small Cell Lung Cancer. JAMA Netw. Open 2021, 4, e2137508. [Google Scholar] [CrossRef]
- Chen, X.; Foy, M.; Kimmel, M.; Gorlova, O.Y. Modeling the Natural History and Detection of Lung Cancer Based on Smoking Behavior. PLoS ONE 2014, 9, e93430. [Google Scholar] [CrossRef]
- Ten Haaf, K.; Van Rosmalen, J.; De Koning, H.J. Lung Cancer Detectability by Test, Histology, Stage, and Gender: Estimates from the NLST and the PLCO Trials. Cancer Epidemiol. Biomark. Prev. 2015, 24, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Pattanayak, P.; Szabo, E.; Pinsky, P. Characteristics and Outcomes of Small Cell Lung Cancer Detected by CT Screening. Chest 2018, 154, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Amicizia, D.; Piazza, M.F.; Marchini, F.; Astengo, M.; Grammatico, F.; Battaglini, A.; Schenone, I.; Sticchi, C.; Lavieri, R.; Di Silverio, B.; et al. Systematic Review of Lung Cancer Screening: Advancements and Strategies for Implementation. Healthcare 2023, 11, 2085. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, T.; Aguiar, P.; Araújo, A. Current Evidence for a Lung Cancer Screening Program. Port. J. Public Health 2024, 42, 133–158. [Google Scholar] [CrossRef]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.-W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Pozzessere, C.; von Garnier, C.; Beigelman-Aubry, C. Radiation Exposure to Low-Dose Computed Tomography for Lung Cancer Screening: Should We Be Concerned? Tomography 2023, 9, 166–177. [Google Scholar] [CrossRef]
- Huo, J.; Shen, C.; Volk, R.J.; Shih, Y.C.T. Use of CT and Chest Radiography for Lung Cancer Screening before and after Publication of Screening Guidelines: Intended and Unintended Uptake. JAMA Intern. Med. 2017, 177, 439–441. [Google Scholar] [CrossRef]
- Pham, D.; Bhandari, S.; Pinkston, C.; Oechsli, M.; Kloecker, G. Lung Cancer Screening Registry Reveals Low-Dose CT Screening Remains Heavily Underutilized. Clin. Lung Cancer 2020, 21, e206–e211. [Google Scholar] [CrossRef]
- Kakinuma, R.; Muramatsu, Y.; Asamura, H.; Watanabe, S.I.; Kusumoto, M.; Tsuchida, T.; Kaneko, M.; Tsuta, K.; Maeshima, A.M.; Ishii, G.; et al. Low-Dose CT Lung Cancer Screening in Never-Smokers and Smokers: Results of an Eight-Year Observational Study. Transl. Lung Cancer Res. 2020, 9, 10–22. [Google Scholar] [CrossRef]
- Nobel, T.B.; Carr, R.A.; Caso, R.; Livschitz, J.; Nussenzweig, S.; Hsu, M.; Tan, K.S.; Sihag, S.; Adusumilli, P.S.; Bott, M.J.; et al. Primary Lung Cancer in Women after Previous Breast Cancer. BJS Open 2021, 5, zrab115. [Google Scholar] [CrossRef]
- Kerpel-Fronius, A.; Tammemägi, M.; Cavic, M.; Henschke, C.; Jiang, L.; Kazerooni, E.; Lee, C.T.; Ventura, L.; Yang, D.; Lam, S.; et al. Screening for Lung Cancer in Individuals Who Never Smoked: An International Association for the Study of Lung Cancer Early Detection and Screening Committee Report. J. Thorac. Oncol. 2022, 17, 56–66. [Google Scholar] [CrossRef] [PubMed]
- LR Sveikatos Apsaugos Ministro Įsakymas dėl Broncho ir Plaučio Piktybinio Naviko Ankstyvosios Diagnostikos Programos Organizavimo, Vykdymo ir Kokybės Užtikrinimo Reikalavimų Aprašo Patvirtinimo. 2024 m. lapkričio 25 d. Nr. V-1161; Lithuania: 2024. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/f9670271ab6c11efaae6a4c601761171?jfwid=dcv75q7u0 (accessed on 3 June 2025). (In Lithuanian).
- Christensen, J.; Prosper, A.E.; Wu, C.C.; Chung, J.; Lee, E.; Elicker, B.; Hunsaker, A.R.; Petranovic, M.; Sandler, K.L.; Stiles, B.; et al. ACR Lung-RADS V2022: Assessment Categories and Management Recommendations. J. Am. Coll. Radiol. 2024, 21, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Dowd, E.L.O.; Tietzova, I.; Bartlett, E.; Devaraj, A.; Biederer, J.; Brambilla, M.; Brunelli, A.; Chorostowska-Wynimko, J.; Deruysscher, H.D.D.; De Wever, W.; et al. ERS/ESTS/ESTRO/ESR/ESTI/EFOMP Statement on Management of Incidental Findings from Low Dose CT Screening for Lung Cancer. Eur. Respir. J. 2023, 62, 2300533. [Google Scholar] [CrossRef] [PubMed]
- ECOG Performance Status Scale—ECOG-ACRIN Cancer Research Group. Available online: https://ecog-acrin.org/resources/ecog-performance-status/ (accessed on 3 June 2025).
- Vonder, M.; Dorrius, M.D.; Vliegenthart, R. Latest CT Technologies in Lung Cancer Screening: Protocols and Radiation Dose Reduction. Transl. Lung Cancer Res. 2021, 10, 1154–1164. [Google Scholar] [CrossRef]
- AAPM CT Scan Protocols—The Alliance for Quality Computed Tomography. Lung Cancer Screening CT Protocols Version 6.0. Available online: https://www.aapm.org/pubs/CTProtocols/documents/LungCancerScreeningCT.pdf (accessed on 27 February 2025).
- LCS Project|ESTI—European Society of Thoracic Imaging. Technical Standards. Available online: https://www.myesti.org/content-esti/uploads/ESTI-LCS-technical-standards_2019-06-14.pdf (accessed on 27 February 2025).
- American College of Radiology. ACR-STR Practice Parameters for the Performance and Reporting of Lung Cancer Screening Thoracic Computed Tomography (CT). Available online: https://gravitas.acr.org/PPTS/DownloadPreviewDocument?ReleaseId=2&DocId=38 (accessed on 27 February 2025).
- X-Ray Risk. Available online: https://www.xrayrisk.com/calculator/select_study.php?id=68 (accessed on 27 February 2025).
- Sonawane, K.; Garg, A.; Toll, B.A.; Deshmukh, A.A.; Silvestri, G.A. Lung Cancer Screening Communication in the US, 2022. JAMA Netw. Open 2024, 7, e2442811. [Google Scholar] [CrossRef]
- Poon, C.; Wilsdon, T.; Sarwar, I.; Roediger, A.; Yuan, M. Why Is the Screening Rate in Lung Cancer Still Low? A Seven-Country Analysis of the Factors Affecting Adoption. Front. Public Health 2023, 11, 1264342. [Google Scholar] [CrossRef]
- Crosbie, P.A.J.; Gabe, R.; Simmonds, I.; Hancock, N.; Alexandris, P.; Kennedy, M.; Rogerson, S.; Baldwin, D.; Booton, R.; Bradley, C.; et al. Participation in Community-Based Lung Cancer Screening: The Yorkshire Lung Screening Trial. Eur. Respir. J. 2022, 60, 2200483. [Google Scholar] [CrossRef]
- Laisaar, T.; Kallavus, K.; Poola, A.; Räppo, M.; Taur, M.; Makke, V.; Frik, M.; Ilves, P.; Laisaar, K.-T. Population-Based Systematic Enrolment of Individuals Ensures High Lung Cancer Screening Uptake. Cancer Treat. Res. Commun. 2025, 43, 100889. [Google Scholar] [CrossRef]
- Sheehan, D.F.; Criss, S.D.; Chen, Y.; Eckel, A.; Palazzo, L.; Tramontano, A.C.; Hur, C.; Cipriano, L.E.; Kong, C.Y. Lung Cancer Costs by Treatment Strategy and Phase of Care among Patients Enrolled in Medicare. Cancer Med. 2019, 8, 94–103. [Google Scholar] [CrossRef]
- Mitzman, B.; Varghese, T.K.; Akerley, W.L.; Nelson, R.E. Surgical-Decision Making in the Setting of Unsuspected N2 Disease: A Cost-Effectiveness Analysis. J. Thorac. Dis. 2024, 16, 1063–1073. [Google Scholar] [CrossRef]
- Cao, P.; Smith, L.; Mandelblatt, J.S.; Jeon, J.; Taylor, K.L.; Zhao, A.; Levy, D.T.; Williams, R.M.; Meza, R.; Jayasekera, J. Cost-Effectiveness of a Telephone-Based Smoking Cessation Randomized Trial in the Lung Cancer Screening Setting. JNCI Cancer Spectr. 2022, 6, pkac048. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.L.; Williams, R.M.; Li, T.; Luta, G.; Smith, L.; Davis, K.M.; Stanton, C.A.; Niaura, R.; Abrams, D.; Lobo, T.; et al. A Randomized Trial of Telephone-Based Smoking Cessation Treatment in the Lung Cancer Screening Setting. J. Natl. Cancer Inst. 2022, 114, 1410–1419. [Google Scholar] [CrossRef] [PubMed]
- Dickson, J.L.; Hall, H.; Horst, C.; Tisi, S.; Verghese, P.; Mullin, A.M.; Teague, J.; Farrelly, L.; Bowyer, V.; Gyertson, K.; et al. Telephone Risk-Based Eligibility Assessment for Low-Dose CT Lung Cancer Screening. Thorax 2022, 77, 1036–1040. [Google Scholar] [CrossRef]
- Cabrera-Jaime, S.; Hernández-Marfil, A.; Adamuz-Tomas, J.; Sánchez-Martín, S. Early Telephone-Based Frailty Screening with the Vulnerable Elders Survey in Adults Aged 75 Years and Older with Lung and Gynecological Cancer. Cancer Nurs. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.C.; Lee, J.; Zhu, H.; Chen, P.M.; Wahid, U.; Hamann, H.A.; Bhalla, S.; Cardenas, R.C.; Natchimuthu, V.S.; Johnson, D.H.; et al. Assessing Barriers and Facilitators to Lung Cancer Screening: Initial Findings from a Patient Navigation Intervention. Popul. Health Manag. 2023, 26, 177–184. [Google Scholar] [CrossRef]
- Osarogiagbon, R.U.; Liao, W.; Faris, N.R.; Fehnel, C.; Goss, J.; Shepherd, C.J.; Qureshi, T.; Matthews, A.T.; Smeltzer, M.P.; Pinsky, P.F. Evaluation of Lung Cancer Risk Among Persons Undergoing Screening or Guideline-Concordant Monitoring of Lung Nodules in the Mississippi Delta. JAMA Netw. Open 2023, 6, e230787. [Google Scholar] [CrossRef]
- McKee, B.J.; Regis, S.M.; McKee, A.B.; Flacke, S.; Wald, C. Performance of ACR Lung-RADS in a Clinical CT Lung Screening Program. J. Am. Coll. Radiol. 2015, 12, 273–276. [Google Scholar] [CrossRef]
- Pinsky, P.F.; Gierada, D.S.; Black, W.; Munden, R.; Nath, H.; Aberle, D.; Kazerooni, E. Performance of Lung-RADS in the National Lung Screening Trial: A Retrospective Assessment. Ann. Intern. Med. 2015, 162, 485–491. [Google Scholar] [CrossRef]
- Mendoza, D.P.; Petranovic, M.; Som, A.; Wu, M.Y.; Park, E.Y.; Zhang, E.W.; Archer, J.M.; McDermott, S.; Khandekar, M.; Lanuti, M.; et al. Lung-RADS Category 3 and 4 Nodules on Lung Cancer Screening in Clinical Practice. Am. J. Roentgenol. 2022, 219, 55–65. [Google Scholar] [CrossRef]
- Kocher Wulfeck, M.; Plesner, S.; Herndon, J.E.; Christensen, J.D.; Patz, E.F. Characterizing Lung-RADS Category 4 Lesions in a University Lung Cancer Screening Program. Lung Cancer 2023, 186, 107420. [Google Scholar] [CrossRef]
- Rūkymas—Oficialiosios Statistikos Portalas. Available online: https://osp.stat.gov.lt/lietuvos-gyventoju-sveikata-2020/rukymas (accessed on 3 June 2025).
- Paci, E.; Puliti, D.; Lopes Pegna, A.; Carrozzi, L.; Picozzi, G.; Falaschi, F.; Pistelli, F.; Aquilini, F.; Ocello, C.; Zappa, M.; et al. Mortality, Survival and Incidence Rates in the ITALUNG Randomised Lung Cancer Screening Trial. Thorax 2017, 72, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Motsch, E.; Trotter, A.; Heussel, C.P.; Dienemann, H.; Schnabel, P.A.; Kauczor, H.U.; Maldonado, S.G.; Miller, A.B.; Kaaks, R.; et al. Lung Cancer Mortality Reduction by LDCT Screening—Results from the Randomized German LUSI Trial. Int. J. Cancer 2020, 146, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M.; Atallah, R.P.; Struble, R.D.; Badgett, R.G. Lung Cancer Screening with Low-Dose CT: A Meta-Analysis. J. Gen. Intern. Med. 2020, 35, 3015–3025. [Google Scholar] [CrossRef]
- Field, J.K.; Vulkan, D.; Davies, M.P.A.; Baldwin, D.R.; Brain, K.E.; Devaraj, A.; Eisen, T.; Gosney, J.; Green, B.A.; Holemans, J.A.; et al. Lung Cancer Mortality Reduction by LDCT Screening: UKLS Randomised Trial Results and International Meta-Analysis. Lancet Reg. Health-Eur. 2021, 10, 100179. [Google Scholar] [CrossRef]
- Kang, H.R.; Cho, J.Y.; Lee, S.H.; Lee, Y.J.; Park, J.S.; Cho, Y.J.; Yoon, H.I.; Lee, K.W.; Lee, J.H.; Lee, C.T. Role of Low-Dose Computerized Tomography in Lung Cancer Screening among Never-Smokers. J. Thorac. Oncol. 2019, 14, 436–444. [Google Scholar] [CrossRef]
- Mascalchi, M.; Romei, C.; Marzi, C.; Diciotti, S.; Picozzi, G.; Pistelli, F.; Zappa, M.; Paci, E.; Carozzi, F.; Gorini, G.; et al. Pulmonary Emphysema and Coronary Artery Calcifications at Baseline LDCT and Long-Term Mortality in Smokers and Former Smokers of the ITALUNG Screening Trial. Eur. Radiol. 2023, 33, 3115–3123. [Google Scholar] [CrossRef]
- Jurevičienė, E.; Burneikaitė, G.; Dambrauskas, L.; Kasiulevičius, V.; Kazėnaitė, E.; Navickas, R.; Puronaitė, R.; Smailytė, G.; Visockienė, Ž.; Danila, E. Epidemiology of Chronic Obstructive Pulmonary Disease (COPD) Comorbidities in Lithuanian National Database: A Cluster Analysis. Int. J. Env. Environ. Res. Public Health 2022, 19, 970. [Google Scholar] [CrossRef]
- Ezponda, A.; Casanova, C.; Divo, M.; Marín-Oto, M.; Cabrera, C.; Marín, J.M.; Bastarrika, G.; Pinto-Plata, V.; Martin-Palmero, Á.; Polverino, F.; et al. Chest CT-Assessed Comorbidities and All-Cause Mortality Risk in COPD Patients in the BODE Cohort. Respirology 2022, 27, 286–293. [Google Scholar] [CrossRef]
- Dyer, D.S.; White, C.; Conley Thomson, C.; Gieske, M.R.; Kanne, J.P.; Chiles, C.; Parker, M.S.; Menchaca, M.; Wu, C.C.; Kazerooni, E.A. A Quick Reference Guide for Incidental Findings on Lung Cancer Screening CT Examinations. J. Am. Coll. Radiol. 2023, 20, 162–172. [Google Scholar] [CrossRef]
- Henderson, L.M.; Chiles, C.; Perera, P.; Durham, D.D.; Lamb, D.; Lane, L.M.; Rivera, M.P. Variability in Reporting of Incidental Findings Detected on Lung Cancer Screening. Ann. Am. Thorac. Soc. 2023, 20, 617–620. [Google Scholar] [CrossRef]
- Fabbro, M.; Hahn, K.; Novaes, O.; Ó’Grálaigh, M.; O’Mahony, J.F. Cost-Effectiveness Analyses of Lung Cancer Screening Using Low-Dose Computed Tomography: A Systematic Review Assessing Strategy Comparison and Risk Stratification. Pharmacoecon Open 2022, 6, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, U.; Sverzellati, N.; Sestini, S.; Silva, M.; Sabia, F.; Boeri, M.; Cantarutti, A.; Sozzi, G.; Corrao, G.; Marchianò, A. Ten-Year Results of the Multicentric Italian Lung Detection Trial Demonstrate the Safety and Efficacy of Biennial Lung Cancer Screening. Eur. J. Cancer 2019, 118, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.; Garcia, M.; Vidal, C.; Santiago, A.; Gnutti, G.; Gómez, D.; Trapero-Bertran, M.; Fu, M. Health and Economic Impact at a Population Level of Both Primary and Secondary Preventive Lung Cancer Interventions: A Model-Based Cost-Effectiveness Analysis. Lung Cancer 2021, 159, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Zhou, Y.; Zhang, Y.; Chen, H. Lung Cancer Screening Strategy for Non-High-Risk Individuals: A Narrative Review. Transl. Lung Cancer Res. 2021, 10, 452–461. [Google Scholar] [CrossRef]
- Barbosa, E.J.M.; Yang, R.; Hershman, M. Real-World Lung Cancer CT Screening Performance, Smoking Behavior, and Adherence to Recommendations: Lung-RADS Category and Smoking Status Predict Adherence. Am. J. Roentgenol. 2021, 216, 919–926. [Google Scholar] [CrossRef]
- Byrne, S.C.; Hammer, M.M. Use of Diagnostic CT and Patient Retention in a Lung Cancer Screening Program. J. Am. Coll. Radiol. 2022, 19, 47–52. [Google Scholar] [CrossRef]
- Lin, Y.; Fu, M.; Ding, R.; Inoue, K.; Jeon, C.Y.; Hsu, W.; Aberle, D.R.; Prosper, A.E. Patient Adherence to Lung CT Screening Reporting & Data System–Recommended Screening Intervals in the United States: A Systematic Review and Meta-Analysis. J. Thorac. Oncol. 2022, 17, 38–55. [Google Scholar] [CrossRef]
- Pagrindiniai Šalies Rodikliai—Oficialiosios Statistikos Portalas. Available online: https://osp.stat.gov.lt/pagrindiniai-salies-rodikliai (accessed on 27 February 2025).
- Zanon, M.; Pacini, G.S.; de Souza, V.V.S.; Marchiori, E.; Meirelles, G.S.P.; Szarf, G.; Torres, F.S.; Hochhegger, B. Early Detection of Lung Cancer Using Ultra-Low-Dose Computed Tomography in Coronary CT Angiography Scans among Patients with Suspected Coronary Heart Disease. Lung Cancer 2017, 114, 1–5. [Google Scholar] [CrossRef]
- Gaudio, C.; Petriello, G.; Pelliccia, F.; Tanzilli, A.; Bandiera, A.; Tanzilli, G.; Barillà, F.; Paravati, V.; Pellegrini, M.; Mangieri, E.; et al. A Novel Ultrafast-Low-Dose Computed Tomography Protocol Allows Concomitant Coronary Artery Evaluation and Lung Cancer Screening. BMC Cardiovasc. Disord. 2018, 18, 90. [Google Scholar] [CrossRef]
- Grenier, P.A.; Brun, A.L.; Mellot, F. The Potential Role of Artificial Intelligence in Lung Cancer Screening Using Low-Dose Computed Tomography. Diagnostics 2022, 12, 2435. [Google Scholar] [CrossRef]
- Rampinelli, C.; De Marco, P.; Origgi, D.; Maisonneuve, P.; Casiraghi, M.; Veronesi, G.; Spaggiari, L.; Bellomi, M. Exposure to Low Dose Computed Tomography for Lung Cancer Screening and Risk of Cancer: Secondary Analysis of Trial Data and Risk-Benefit Analysis. BMJ 2017, 356, j347. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.M.D.; Oeffinger, K.C.; Shih, T.Y.; Walter, L.C.; Church, T.R.; Fontham, E.T.H.; Elkin, E.B.; Etzioni, R.D.; Guerra, C.E.; Perkins, R.B.; et al. Screening for Lung Cancer: 2023 Guideline Update from the American Cancer Society. CA Cancer J. Clin. 2024, 74, 50–81. [Google Scholar] [CrossRef] [PubMed]
- Hecht, H.S.; Henschke, C.; Yankelevitz, D.; Fuster, V.; Narula, J. Combined Detection of Coronary Artery Disease and Lung Cancer. Eur. Heart J. 2014, 35, 2792–2796. [Google Scholar] [CrossRef] [PubMed]
- Gaudio, C.; Tanzilli, A.; Mei, M.; Moretti, A.; Barillà, F.; Varveri, A.; Paravati, V.; Tanzilli, G.; Ciccaglioni, A.; Strano, S.; et al. Concomitant Screening of Coronary Artery Disease and Lung Cancer with a New Ultrafast-Low-Dose Computed Tomography Protocol: A Pilot Randomised Trial. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Yip, R.; Jirapatnakul, A.; Hu, M.; Chen, X.; Han, D.; Ma, T.; Zhu, Y.; Salvatore, M.M.; Margolies, L.R.; Yankelevitz, D.F.; et al. Added Benefits of Early Detection of Other Diseases on Low-Dose CT Screening. Transl. Lung Cancer Res. 2021, 10, 1141–1153. [Google Scholar] [CrossRef]
- Chao, H.; Shan, H.; Homayounieh, F.; Singh, R.; Khera, R.D.; Guo, H.; Su, T.; Wang, G.; Kalra, M.K.; Yan, P. Deep Learning Predicts Cardiovascular Disease Risks from Lung Cancer Screening Low Dose Computed Tomography. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Cellina, M.; Cacioppa, L.M.; Cè, M.; Chiarpenello, V.; Costa, M.; Vincenzo, Z.; Pais, D.; Bausano, M.V.; Rossini, N.; Bruno, A.; et al. Artificial Intelligence in Lung Cancer Screening: The Future Is Now. Cancers 2023, 15, 4344. [Google Scholar] [CrossRef]
- Gandhi, Z.; Gurram, P.; Amgai, B.; Lekkala, S.P.; Lokhandwala, A.; Manne, S.; Mohammed, A.; Koshiya, H.; Dewaswala, N.; Desai, R.; et al. Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes. Cancers 2023, 15, 5236. [Google Scholar] [CrossRef]
Metric/Parameter | Value |
---|---|
Number of participants (LDCT performed) | 1014 |
Sex—male/female (%) | 528 (52.1%)/486 (47.9%) |
Age, years (mean ± SD) | 60.5 ± 5.2 |
Smoking status—yes/no/unknown (%) | 217 (21.4%)/795 (78.4%)/2 (0.2%) |
Smoking history (current smokers): | |
Traditional tobacco (pack—years, mean ± SD) | 23.63 ± 16.50 |
E-cigarettes (years, mean ± SD) | 4.5 ± 4.2 |
Metric/Parameter | Value |
---|---|
Invitation call duration, minutes (mean) | |
Men/Women | 4.1/4.4 |
Non-smokers/Smokers | 4.1/4.7 |
LDCT appointment duration | |
(check-in to check-out), minutes (mean) | 15 |
LDCT interpretation time, minutes (mean) | |
With AI assistance | 8 |
Without AI assistance | 10 |
Refusals | |
Number (% of invited) | 459 (23.9%) |
Men/Women * | 216 (47.1%)/243 (52.9%) |
Non-smokers/Smokers/Unknown ** | 8 (1.7%)/4 (0.9%)/447 (97.4%) |
Reasons for refusal | |
“Not interested” | 234 (50.9%) |
“Other” *** | 189 (41.2%) |
“Fear of radiation” | 9 (1.9%) |
“Fear of possible results” | 5 (1.1%) |
“No reason given” | 22 (4.8%) |
Category (Description) | Number (% of all 1014 participants) |
---|---|
2 (Benign) | 222 (21.9%) |
Non-smokers | 188 (84.7%) |
Smokers | 34 (15.3%) |
3 (Probably benign) | 31 (3.1%) |
Non-smokers | 21 (67.7%) |
Smokers | 10 (32.3%) |
4A (Suspicious) | 12 (1.2%) |
Non-smokers | 8 (66.7%) |
Smokers | 4 (33.3%) |
4B (Very Suspicious) | 1 (0.1%) |
Non-smokers | 0 |
Smokers | 1 (100%) |
4X (Highly Suspicious) | 1 (0.1%) |
Non-smokers | 0 |
Smokers | 1 (100%) |
In total | 267 (26.3%) |
Non-smokers | 217 (81.3%) |
Smokers | 50 (18.7%) |
Significant Incidental Finding | Number (% of all participants) |
---|---|
In the Lungs and Mediastinum | |
Consolidation | 8 (0.8%) |
Interstitial lung changes | 15 (1.5%) |
Emphysema | 16 (1.6%) |
Bronchiectasis | 14 (1.4%) |
Suspected active tuberculosis | 2 (0.2%) |
Pleural changes | 2 (0.2%) |
Diaphragmatic changes | 6 (0.6%) |
Mediastinal mass | 5 (0.5%) |
Mediastinal lymphadenopathy | 2 (0.2%) |
Other | 2 (0.2%) |
In Other Organs | |
Coronary artery calcification | 178 * (17.6%) |
Aortic valve calcification | 20 (2.0%) |
Aortic dilation | 9 (0.9%) |
Thyroid nodules | 4 (0.4%) |
Pericardial effusion | 1 (0.1%) |
Esophageal changes | 1 (0.1%) |
Breast lesions | 1 (0.1%) |
Lesions in parenchymal abdominal organs | 9 (0.9%) |
Bone changes | 5 (0.5%) |
Other | 5 (0.5%) |
Total | 305 (30.1%) |
New Significant Incidental Finding | Count (% of All Participants) |
---|---|
One finding * | 225 (22.2%) |
Two findings ** | 32 (3.2%) |
Three or more findings | 4 (0.4%) |
Referred to | Number of Participants (% of All Screened) |
---|---|
Pulmonologist (fast-track) | 3 (0.3%) |
Pulmonologist | 128 (12.6%) |
Cardiologist | 27 (2.7%) |
Abdominal surgeon | 5 (0.5%) |
Urologist | 1 (0.1%) |
Endocrinologist | 2 (0.2%) |
Other specialist | 12 (1.2%) |
Total referred to any specialist | 178 (17.6%) |
Parameter | Value, Median (Min; Max) |
---|---|
All participants | |
Weight (kg) | 82 (47; 158) |
Height (cm) | 171 (150; 198) |
Standard-sized participant * | |
CTDI (mGy) | 0.8 (0.6; 1.6) |
DLP (mGy·cm) | 33.6 (23.8; 63.7) |
Effective dose (mSv) | 0.5 (0.3; 0.9) |
Participants 50–80 kg | |
CTDI (mGy) | 0.8 (0.5; 2.6) |
DLP (mGy·cm) | 34.0 (20.3; 92.9) |
Effective dose (mSv) | 0.5 (0.3; 1.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danila, E.; Krynke, L.; Ciesiūnienė, A.; Žučenkienė, E.; Kantautas, M.; Gricienė, B.; Valančienė, D.; Zeleckienė, I.; Austrotienė, R.; Tarutytė, G.; et al. The Lithuanian Lung Cancer Screening Model: Results of a Pilot Study. Cancers 2025, 17, 1956. https://doi.org/10.3390/cancers17121956
Danila E, Krynke L, Ciesiūnienė A, Žučenkienė E, Kantautas M, Gricienė B, Valančienė D, Zeleckienė I, Austrotienė R, Tarutytė G, et al. The Lithuanian Lung Cancer Screening Model: Results of a Pilot Study. Cancers. 2025; 17(12):1956. https://doi.org/10.3390/cancers17121956
Chicago/Turabian StyleDanila, Edvardas, Leonid Krynke, Audronė Ciesiūnienė, Emilė Žučenkienė, Marius Kantautas, Birutė Gricienė, Dileta Valančienė, Ingrida Zeleckienė, Rasa Austrotienė, Gabrielė Tarutytė, and et al. 2025. "The Lithuanian Lung Cancer Screening Model: Results of a Pilot Study" Cancers 17, no. 12: 1956. https://doi.org/10.3390/cancers17121956
APA StyleDanila, E., Krynke, L., Ciesiūnienė, A., Žučenkienė, E., Kantautas, M., Gricienė, B., Valančienė, D., Zeleckienė, I., Austrotienė, R., Tarutytė, G., & Vencevičienė, L. (2025). The Lithuanian Lung Cancer Screening Model: Results of a Pilot Study. Cancers, 17(12), 1956. https://doi.org/10.3390/cancers17121956