Molecular Diagnosis, Clinical Trial Representation, and Precision Medicine in Minority Patients with Oncogene-Driven Lung Cancer
Simple Summary
Abstract
1. Introduction
Genomic Alteration | White or Caucasian | Black or African American | Hispanic or Latino | Asian |
---|---|---|---|---|
EGFR mutations: Exon 19 Deletion Exon 21 L858R | 10–20% [13,14,15,16] | 5–17% [13,14,15,16,17] | 22–26% [18,19] | 40–55% [13,14,15,20] |
EGFR mutations: Exon 20 Insertion | 1–2% [21] | 1–2% [22] | 2–3% [21,22,23] | 1–4% [21,22,24] |
KRAS mutations | 26–33% [25,26] | 15–27% [13,26] | 9–19% [18,23] | 11–12% [25,26] |
KRAS G12C mutation | 13–15.5% [26,27] | 10–11% [26,28] | 7–8% [18] | 3–4% [26,27] |
ALK rearrangement | 6–7% [25,29] | 1–4% [26,30,31] | 5–6% [12,18] | 5–6% [25,32] |
ROS1 rearrangement | 1–2% [26,33,34] | 2–3% [26] | 2% [18] | 2–4% [35,36] |
MET Exon 14 Skipping Alteration | 2–5% [26,37] | 3–4% [26,37] | 3% [18,26] | 1–9% [37,38] |
RET rearrangement | 1–3% [26,39] | 1–2% [26] | 2% [18] | 1–3% [26,40] |
ERBB2 mutation | 1–2% [25,26] | <1% [16,26] | 3% [18] | 2–3% [26] |
BRAF V600E mutation | 3–5% [41,42] | <1% [16] | 2% [18] | 1–2% [43] |
NTRK rearrangement | <1% [26] | <1% [26] | 1% [18,26] | <1% [26] |
NRG1 fusion | 0–1% [44] | NR * | NR * | 0–1% [44] |
2. Molecular Diagnosis in Minority Patients: Access to Screening, NGS Testing, and Treatment
3. Treatment of Minority Patients with Oncogene Drivers: The Lack of Representation in Landmark Clinical Trials
3.1. EGFR Mutations
Genomic Alteration | Treatment | Key Trials (Phase, n) | Racial/Ethnic Breakdown (%) | OS (%)/mOS | PFS (mo) | Other Endpoints | Ref | |||
---|---|---|---|---|---|---|---|---|---|---|
Black | Hispanic | Asian | White | |||||||
EGFR Exon 19 deletion and Exon 21 L858R | Osimertinib | FLAURA (III, 556) | - | - | 62 | 36 | 3 years OS 28 (Osi) vs. 9 (GE) | 18.9 (Osi) vs. 10.2 (GE) | ORR 80% (Osi) vs. 76% (GE) | [69] |
Osi ± C | FLAURA2 (III, 557) | <1 | - | 64 | 28 | 2 years OS 79 (Osi + C) vs. 73 (Osi) | 25.5 (Osi + C) vs. 16.7 (Osi) | ORR 92% (Osi + C) vs. 83% (Osi) | [3] | |
Osimertinib | ADAURA (III, 682) | - | - | 64 | - | 5 years OS 88 (Osi) vs. 78 (P) | NE | DFS 65.8 (Osi) vs. 28.1 (P) | [71,72,73] | |
Osimertinib | LAURA (III, 216) | - | - | 81 | - | NR (interim) | 39.1 (Osi) vs. 5.6 (placebo) | ORR 57% (Osi) vs. 33% (P) DoR 36.9 mo (Osi) vs. 6.5 mo (P) | [74] | |
Ami + Laz | MARIPOSA (III, 858) | <1 | - | 58 | 38 | 2 years OS 74 (Ami + Laz) vs. 69 (Osi) | 23.7 (Ami + Laz) vs. 16.6 (Osi) | ORR 86% (Ami + Laz) vs. 85% (Osi) | [70] | |
Ami + C ± Laz | MARIPOSA-2 (III, 657) | - | - | 48 | 48 | NR (interim) | 6.3 (Ami + C) vs. 8.3 (Ami + Laz + C) vs. 4.2 (C) | ORR 64% (Ami + C) vs. 63% (Ami + Laz + C) vs. 36% (C) | [5] | |
EGFR Exon 20 insertion | Amivantamab | CRYSALIS (I, 158) | <1 | - | 56 | 35 | 22.8 mo (Ami) | 8.3 (Ami) | ORR 40%, DOR 11.1 mo | [75] |
PAPILLON (III, 308) | <0.01 | - | 60 | 35 | 2 years OS 72 (Ami + C) vs. 54 (C) | 11.4 mo (Ami + C) vs. 6.7 (C) | ORR 73% (Ami + C) vs. 47% (C) | [76] | ||
KRAS G12C mutation | Sotorosib | CodeBreaK 100 (I/II, 126) | 2 | - | 15 | 82 | 12.5 mo | 6.3 | ORR 41% | [77] |
CodeBreaK 200 (III, 345) | <0.01 | - | 12 | 83 | 10.6 mo (Soto) vs. 11.3 mo (Dt) | 5.6 (Soto) vs. 4.5 (Dt) | ORR 28.1% (Soto) vs. 13.2% (Dt) | [78] | ||
Adagrasib | KRYSTAL-1 (I/II, 116) | 8 | - | 4 | 84 | 12.6 mo (interim) | 6.5 | ORR 42.9% | [79] | |
ALK rearrangement | Alectinib | ALEX (III, 303) | - | - | 46 | - | NR (interim for both groups) | 34.8 (Alec) vs. 10.9 (Cri) | ORR 82.9% (Alec) vs. 75.5% (Cri) | [80] |
ALINA (III, 257) | <0.01 | - | 56 | 42 | NR (interim) | DFS NR (Alec) vs. 41.3 mo (C) | 3y-DFS 88.7% (Alec) vs. 54% (C) | [4] | ||
Brigatinib | ALTA-1L (III, 275) | - | - | 39 | - | 4 years OS 66 (Bri) vs. 60 (Cri) | 24 (Bri) vs. 11 (Cri) | ORR 71% (Bri) vs. 60% (Cri) | [81,82] | |
Lorlatinib | CROWN (III, 296) | <0.01 | - | 44 | 49 | NR (second interim) | NR (Lor) vs. 9.1 (Cri) | ORR 81% (Lor) vs. 63% (Cri) | [83,84] | |
ROS1 rearrangement | Entrectinib | ALKA-372-001 (I, 1) STARTRK-1 (I, 2) STARTRK-2 (II, 51) | - | - | 13 | 80 | 21 mo | 11.2 | ORR 57%, DOR 10.4 mo | [85] |
Repotrectinib | TRIDENT-1 (I/II, 127) | - | - | 59 | 34 | NE (TN), 25.1 mo (PT) | 35.7 (TN), 9 (PT) | ORR 79% (TN), 38% (PT) DOR 34.1 mo (TN), 14.8 mo (PT) | [86] | |
MET Exon 14 skipping mutation | Capmatinib | GEOMETRY mono-1 (II, 160) | - | - | 19 | 77 | NR (expansion cohort) | 12.4 (TN) 5.4 (PT) | ORR 68% (TN), 41% (PT) DOR 12.6 mo (TN), 9.7 mo (PT) | [87,88] |
Tepotinib | VISION (II, 99) | - | - | 21 | 75 | NR (interim) | 8.5 | ORR 46%, DOR 11.1 mo | [89] | |
RET rearrangement | Selperactinib | LIBRETTO -001 (I/II, 316) | <1 | - | 41 | 49 | 3 years OS 66 (TN), 57 (PT) | 22 (TN), 26.2 (PT) | ORR 82.6% (TN), 61.5% (PT) | [90,91] |
Pralsetinib | ARROW (I/II, 233) * | - | - | 39 | 52 | NR (interim) | 10.9-NR (TN) vs. 12.8–16.5 (PT) | ORR 68–79% (TN), 59–73% (PT) | [92] | |
BRAF V600E mutation | Dabrafenib/Trametinib | NCT01336634 (II, 93) | 3 | - | 8 | 85 | 5 years OS 22 (TN), 19 (PT) | 10.8 (TN), 10.2 (PT) | ORR 63.9% (TN), 68.4% (PT) | [93] |
Encorafenib/Binimetinib | PHAROS (II, 98) | 3 | - | 7 | 88 | NE | NE (TN), 9.3 (PT) | ORR 75% (TN), 46% (PT) | [94] | |
ERBB2 mutation | T-Dxd | DESTINY-Lung 01 (II, 91) | 1 | - | 34 | 44 | 17.8 mo | 8.2 | ORR 55%; DOR 9.3 mo | [95] |
Mutation | Treatment | Racial/Ethnic Background | ORR | OS (95% CI) | PFS (95% CI) | Ref |
---|---|---|---|---|---|---|
EGFR Exon 19 Deletion and Exon 21 L858R | erlotinib, gefitinib, afatinib | Black 36% Non-Black 64% | Blacks 63.6% Non-Black 76.0% | 2-year survival rates: Black 33.3% Non-Black 61.3% | NA | [17] |
EGFR TKIs | Hispanic 100% | 60.5% (52.10–69.09) | 32 mo (12.4–20.6 mo) | 15.9 mo (12.4–20.6 mo) | [23] | |
Osimertinib | Hispanic 100% | NA | NA | 14.4 mo (95% CI 12.4–18.2 mo) | [19] | |
EGFR Exon 20 Insertion | C 54% IO 15% EGFR Targeted Therapy 12% Surgery 24% | White 63% Asian 3.1% Black 9% Hispanic 2% | NA | 23.8 mo in the entire group 17 mo in Stage IV patients | NA | [22] |
C 52.7% C + Bev 11.8% C+ Pem 4.3% 1G TKIs 21.5% Osi 3.2% Afatinib 3.2% Exon20 inh 5.2% | Hispanic 100% | NA | C + Bev 18 vs. 14.5 mo (HR = 0.57, 0.36–0.90) 1 G TKIs 16.36 vs. C 14.5 mo (HR = 0.49, 0.25–0.98) Osi 19.4 vs. C 14.5 mo (HR = 0.13; 0.02–0.82) Exon20 inhibitors 25.6 vs. C 15 mo (HR = 0.26, 0.06–1.07) | C + Bev 5.35 vs. C 4.8 mo (HR = 0.47; 0.24–0.89) TKIs 6.6 vs. C 4.8 mo (HR = 0.36, 0.21–0.61) C + Pem 5.53 vs. C 4.8 mo (HR = 0.25, 0.06–1.01) | [96] | |
KRAS G12C mutation | sotorasib v docetaxel | White 71% Black 11% | NA | ≥2L Setting sotorasib 10.2 mo (8–14.6 mo) docetaxel 7.2 mo (5.1–10.6 mo) | NA | [97] |
sotorasib | White 77% Black 19% Hispanic 2% | 34% | 12 mo (10.2–16.5) | 6 mo (4.3–8.1) | [98] | |
sotorasib | White 81% Asian 4% Black 6% Hispanic 3% | 28% | 12.6 months (8.3 mo—NA) | 5.3 months (3.6–6.6 mo) | [99] | |
ALK Rearrangements | alectinib 59.8% crizotinib 40.2% | White 45.3% Asian 30.8% Black 2.6% | NA | alectinib 54.1 mo crizotinib 45.8 mo | alectinib 29.3 mo crizotinib 10.4 mo | [100] |
alectinib 30.4% crizotinib 69.6% | alectinib White 60.3% Asian 14.9% Black 4.3% Hispanic 3.5% crizotinib White 65.9% Asian 5.4% Black 6.3% Hispanic 5.8% | alectinib 78.7% (71–85.2) crizotinib 48.9% (42.4–55.6) | alectinib NR (29.2-NR) crizotinib 23 mo (17–33.5) | alectinib 24.5 mo (15.8-NR) crizotinib 12 mo (9.3–14.4) | [101] | |
ROS1 Rearrangements | entrectinib, crizotinib | entrectinib White 49% Asian 44% Black 4% Hispanic 1% crizotinib White 54% Asian 9% Black 12% Hispanic 17% | NA | entrectinib NR crizotinib 18.5 mo (15.1–47.2 mo) | entrectinib 16.8 mo (12–26.3 mo) crizotinib 8.2 mo (6.5–9.9 mo) | [102] |
MET Exon 14 Skipping Mutation | capmatinib 50.9% IO 14.3% C 14.6% C + IO 15% | White 49.1% Black 26.8% Hispanic 9.4% | capmatinib 73.4% IO 68.6% C 52% C + Io 54.8% | capmatinib NE IO NE (14.3 mo-NE) C 17.6 mo (10.9 mo-NE) C + IO 29.9 months (20.2–32.1 mo) | capmatinib NE IO 12.6 mo (11.1 mo-NE) C 10.1 mo (5.9 mo-NE) C + IO 12 months (9–12.6 mo) | [103] |
capmatinib | White 79.4% Asian 7.4% Black 13.2% Hispanic 19.1% | (1 + 2L) 85.3% (74.6–92.7) 1L 90.9% (80.1–97.0) 2L 61.5% (31.6–86.1) | 1L 14.1 mo (13.9 mo-NE) | Any line 14.5 mo (14.1 mo-NE) 1L 14.1 mo (10.1 mo-NE) | [104] | |
RET Rearrangements | selpercatinib | Asian 10% Non-Asian 90% | Any line 68% 1L 69% ≥2L 68% | NA | Any line 15.6 mo (8.8–22.4 mo) 1L 15.6 mo ≥ 2L 12.2 mo | [105] |
3.2. KRAS Mutations
3.3. ALK Rearrangements
3.4. Other Targetable Mutations
4. Impact of Racial and Socioeconomic Disparities on NSCLC Outcomes
5. Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALK | anaplastic lymphoma kinase |
BRAF V600E | b-raf proto-oncogene, serine/threonine kinase (V600E mutation) |
CNS | central nervous system |
EGFR | epidermal growth factor receptor |
ERBB2 (HER2) | erbb2 receptor tyrosine kinase 2 (human epidermal growth factor receptor 2) |
HR | hazard ratio |
ILD | interstitial lung disease |
KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog |
LCS | lung cancer screening |
MEK | mitogen activate protein kinase enzymes |
MET | Mesenchymal–Epithelial transition factor |
NGS | next generation sequencing |
NLST | national lung screening trial |
NRG1 | neuregulin-1 |
NTRK | neurotrophic tyrosine receptor kinase |
NSCLC | non-small cell lung cancer |
ORR | objective response rate |
OS | overall survival |
PDC | platinum doublet chemotherapy |
PFS | progression-free survival |
ROS1 | c-ros oncogene 1 |
T-Dxd | traztuzumab deruxtecan |
TKI | tyrosine kinase inhibitor |
TNM | tumor, node, metastasis |
TRK | tyrosine receptor kinase |
References
- Bandi, P.; Travis, W.D.; Siegel, R.L.; Freedman, N.D.; Jemal, A.; Smith, R.A.; Kratzer, T.B. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar] [CrossRef]
- Hutchinson, K.E.; Pao, W. Chipping away at the lung cancer genome. Nat. Med. 2012, 18, 349–351. [Google Scholar] [CrossRef]
- Lee, C.K.; Kobayashi, K.; Fan, Y.; Ahmed, S.; Planchard, D.; Kim, S.-W.; Yanagitani, N.; Sugawara, S.; Andrasina, I.; Laktionov, K.; et al. Osimertinib with or without Chemotherapy in EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2023, 389, 1935–1948. [Google Scholar] [CrossRef]
- Wu, Y.L.; Dziadziuszko, R.; Ahn, J.S.; Barlesi, F.; Nishio, M.; Lee, D.H.; Solomon, B.J. Alectinib in Resected ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 1265–1276. [Google Scholar] [CrossRef]
- Xie, J.; Cobo, M.; Sun, T.; Owen, S.; Salinas, J.; Tan, J.-L.; Girard, N.; MacKean, M.; Tomasini, P.; Azuma, K.; et al. Amivantamab plus chemotherapy with and without lazertinib in EGFR-mutant advanced NSCLC after disease progression on osimertinib: Primary results from the phase III MARIPOSA-2 study. Ann. Oncol. 2023, 35, 77–90. [Google Scholar] [CrossRef]
- Yang, J.J.; Rackauskas, M.; Yoon, H.-S.; Mehta, H.J.; Karanth, S.; Wheeler, M.; Divaker, J.; Braithwaite, D.; Ratcliffe, M.; Blair, M. Participation in Non-small Cell Lung Cancer Clinical Trials in the United States by Race/Ethnicity. Clin. Lung Cancer 2024, 26, 52–57.e2. [Google Scholar] [CrossRef]
- Schwartz, A.G.; Gadgeel, S.M.; Wozniak, A.J.; Malysa, A.; Sukari, A.; Cote, M.L.; Murphy, V.; Bepler, G. Frequency of anaplastic lymphoma kinase (ALK) positive tumors among African American non-small cell lung cancer (NSCLC) patients. J. Clin. Oncol. 2012, 30, 7593. [Google Scholar] [CrossRef]
- Harrison, S.; Judd, J.; Chin, S.; Ragin, C. Disparities in Lung Cancer Treatment. Curr. Oncol. Rep. 2022, 24, 241–248. [Google Scholar] [CrossRef]
- Tramontano, A.C.; Sheehan, D.F.; Palazzo, L.L.; Kong, C.Y. Disparities and Trends in Genetic Testing and Erlotinib Treatment among Metastatic Non–Small Cell Lung Cancer Patients. Cancer Epidemiol. Biomark. Prev. 2019, 28, 926–934. [Google Scholar] [CrossRef]
- Husain, A.; Segal, J.; Cursio, J.; Choudhury, N.J.; Ritterhouse, L.; Patel, J.D.; Eghtesad, M.; Kadri, S. Fewer actionable mutations but higher tumor mutational burden characterizes NSCLC in black patients at an urban academic medical center. Oncotarget 2019, 10, 5817–5823. [Google Scholar] [CrossRef]
- Dyson, G.; Lonardo, F.; Gadgeel, S.; Craig, D.; Lusk, C.M.; Purrington, K.; Watza, D.; Ratliff, V.; Bepler, G.; Wenzlaff, A.S.; et al. Profiling the Mutational Landscape in Known Driver Genes and Novel Genes in African American Non–Small Cell Lung Cancer Patients. Clin. Cancer Res. 2019, 25, 4300–4308. [Google Scholar] [CrossRef]
- Avorn, J.; Kesselheim, A.S.; Roberts, T.J. Variation in Use of Lung Cancer Targeted Therapies Across State Medicaid Programs, 2020–2021. JAMA Netw. Open 2023, 6, e2252562. [Google Scholar] [CrossRef]
- Bunn, P.A.; Johnson, B.E.; Ramalingam, S.S.; Kim, S.; Owonikoko, T.K.; Garon, E.B.; Behera, M.; Berry, L.; Rossi, M.; Steuer, C.E.; et al. Role of race in oncogenic driver prevalence and outcomes in lung adenocarcinoma: Results from the Lung Cancer Mutation Consortium. Cancer 2015, 122, 766–772. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Tang, J.-L.; Fu, X.-H.; Yuan, J.-Q.; Wang, K.-F.; Threapleton, D.; Zhang, Y.-L.; Han, X.-R.; Mao, C. The prevalence of EGFR mutation in patients with non-small cell lung cancer: A systematic review and meta-analysis. Oncotarget 2016, 7, 78985–78993. [Google Scholar] [CrossRef]
- Gadgeel, S.; Chao, C.; Abu Rous, F.; Jaeger, E.; Teslow, E.; Stoppler, M.C.; Potguari, B.; Gutta, R. Racial Diversity and Co-Mutational Analysis of Biologically Relevant Alterations in EGFR Mutant Lung Cancers. Clin. Lung Cancer 2025, 26, 307–313.e7. [Google Scholar] [CrossRef]
- Schwartz, A.G.; Zhang, J.; Natarajan, T.G.; Coombes, K.; Gonzalez, A.; Eisenberg, R.; Timmers, C.; Liu, T.; Lammers, P.E.; Carbone, D.P.; et al. Somatic Mutation Spectrum of Non–Small-Cell Lung Cancer in African Americans: A Pooled Analysis. J. Thorac. Oncol. 2015, 10, 1430–1436. [Google Scholar] [CrossRef]
- Hosgood, H.D.; Halmos, B.; Perez-Soler, R.; Cheng, H.; Yang, Y.; Ye, K.; Deng, L.; Su, C.; Sharma, J. Survival Disparities in Black Patients With EGFR-mutated Non–small-cell Lung Cancer. Clin. Lung Cancer 2020, 21, 177–185. [Google Scholar] [CrossRef]
- Montoya, L.; Vargas, M.P.; Castañeda-González, J.P.; Parra-Medina, R.; Gómez-Gómez, M.P.; Cabezas, D.C. Prevalence of oncogenic driver mutations in Hispanics/Latin patients with lung cancer. A systematic review and meta-analysis. Lung Cancer 2023, 185, 107378. [Google Scholar] [CrossRef]
- Arrieta, O.; Vargas, C.; Raez, L.; Rolfo, C.; Malapelle, U.; Zatarain-Barrón, Z.L.; Rosell, R.; Cuello, M.; Otero, J.; Burotto, M.; et al. Mechanisms of Resistance to First-Line Osimertinib in Hispanic Patients With EGFR Mutant Non-Small Cell Lung Cancer (FRESTON-CLICaP). Clin. Lung Cancer 2022, 23, 522–531. [Google Scholar] [CrossRef]
- A Bunn, P.; Hirsch, F.R. EGFR testing in lung cancer is ready for prime time. Lancet Oncol. 2009, 10, 432–433. [Google Scholar] [CrossRef]
- Arcila, M.E.; Nafa, K.; Chaft, J.E.; Rekhtman, N.; Lau, C.; Reva, B.A.; Ladanyi, M. EGFR exon 20 insertion mutations in lung adenocarcinomas: Prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013, 12, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Belani, C.P.; Wynes, M.W.; Switchenko, J.; Behera, M.; Jiang, R.; Ramalingam, S.S.; Scagliotti, G.V.; Bunn, B.; Huang, Z. Natural History and Real-World Treatment Outcomes for Patients With NSCLC Having EGFR Exon 20 Insertion Mutation: An International Association for the Study of Lung Cancer–American Society of Clinical Oncology CancerLinQ Study. JTO Clin. Res. Rep. 2023, 5, 100592. [Google Scholar] [CrossRef]
- Vargas, C.; Bramuglia, G.; Cuello, M.; Otero, J.; Powazniak, Y.; Sánchez-Reyes, R.; Trigo, M.; Carranza, H.; Cardona, A.F.; Amieva-Rivera, E.; et al. Updated Frequency of EGFR and KRAS Mutations in NonSmall-Cell Lung Cancer in Latin America: The Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). J. Thorac. Oncol. 2015, 10, 838–843. [Google Scholar] [CrossRef]
- Li, T.; Emich, H.; Mahadevia, P.; Stapleton, N.; Burnett, H.; Carroll, C. Epidemiological and clinical burden of EGFR Exon 20 insertion in advanced non-small cell lung cancer: A systematic literature review. PLoS ONE 2021, 16, e0247620. [Google Scholar] [CrossRef]
- Dearden, S.; Blowers, D.; Stevens, J.; Wu, Y.-L. Mutation incidence and coincidence in non small-cell lung cancer: Meta-analyses by ethnicity and histology (mutMap). Ann. Oncol. 2013, 24, 2371–2376. [Google Scholar] [CrossRef]
- Shi, H.; Chen, R.; Manochakian, R.; Seegobin, K.; Zhou, K.; Lou, Y.; Heng, F.; Zhao, Y.; Qin, H. Genomic landscape of lung adenocarcinomas in different races. Front. Oncol. 2022, 12, 946625. [Google Scholar] [CrossRef]
- Nassar, A.H.; Adib, E.; Kwiatkowski, D.J. Distribution of KRAS (G12C) Somatic Mutations across Race, Sex, and Cancer Type. N. Engl. J. Med. 2021, 384, 185–187. [Google Scholar] [CrossRef]
- Stubbs, H.; Settleman, J.; Clark, J.W.; Sequist, L.V.; Engelman, J.A.; Lynch, T.J.; Bang, Y.-J.; Varella-Garcia, M.; Shapiro, G.I.; Mino-Kenudson, M.; et al. Anaplastic Lymphoma Kinase Inhibition in Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2010, 363, 1693–1703. [Google Scholar] [CrossRef]
- Goldstein, M.A.; Huberman, M.S.; Kent, M.S.; Yamaguchi, N.; Canepa, H.M.; Kocher, O.N.; Boucher, D.H.; Majid, A.; VanderLaan, P.A.; Costa, D.B.; et al. Smoking status and self-reported race affect the frequency of clinically relevant oncogenic alterations in non-small-cell lung cancers at a United States-based academic medical practice. Lung Cancer 2013, 82, 31–37. [Google Scholar] [CrossRef]
- Lopes, G.; Rodriguez, E.; Pinheiro, P.S.; Liu, Q.; Medina, H.; Cranford, H.M.; Herna, S.J. Disparities in the prevalence of EGFR mutations and ALK rearrangements by racial-ethnic group in South Florida with a focus on Hispanic patients, 2011–2019. J. Clin. Oncol. 2024, 42, e20528. [Google Scholar] [CrossRef]
- Lopes, G.; Tamariz, L.; Paul, Y.; Iyer, S.; Saul, E.E.; da Silva, L.L.; Costa, P.A. Prevalence of Targetable Mutations in Black Patients With Lung Cancer: A Systematic Review and Meta-Analysis. JCO Oncol. Pract. 2021, 17, e629–e636. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Yang, J.-J.; Chen, Z.-H.; Guo, W.-B.; Tian, H.-X.; Wang, Z.; Wu, Y.-L. Clinical characteristics and sequence complexity of anaplastic lymphoma kinase gene fusions in Chinese lung cancer patients. Lung Cancer 2017, 114, 90–95. [Google Scholar] [CrossRef]
- Brustugun, O.T.; Lund-Iversen, M.; Suhrke, P.; Moe, J.O.; Eide, I.J.Z.; Dyrbekk, A.P.H.; Warsame, A.A.; Ludahl, M.O. Evaluation of ROS1 expression and rearrangements in a large cohort of early-stage lung cancer. Diagn. Pathol. 2023, 18, 70. [Google Scholar] [CrossRef]
- Wojas-Krawczyk, K.; Jasielski, P.; Krawczyk, P.; Jankowski, T.; Wójcik-Superczyńska, M.; Reszka, K.; Milanowski, J. Ocena rearanżacji genu ROS1 przy pomocy fluorescencyjnej hybrydyzacji in situ w niedrobnokomórkowym raku płuca. Oncol. Clin. Pract. 2020, 16, 270–275. [Google Scholar] [CrossRef]
- Fan, L.; Manegold, C.; Su, C.; Schmid-Bindert, G.; Zhou, C.; Zheng, L.; Cai, W.; Li, X.; Fei, K. ROS1 fusions in Chinese patients with non-small-cell lung cancer. Ann. Oncol. 2013, 24, 1822–1827. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, J.; Qiu, X.; Fu, S.; Mu, D.; Wu, C.; Ma, L.; Xi, Y.; Zhang, Q.; Zhang, J.; et al. Prevalence of ROS1 fusion in Chinese patients with non-small cell lung cancer. Thorac. Cancer 2018, 10, 47–53. [Google Scholar] [CrossRef]
- Cortot, A.B.; Chen, Z.; Heeg, B.; Campden, R.I.; Pfeiffer, B.M.; Vioix, H.; Mazieres, J. MET Exon 14 Skipping in NSCLC: A Systematic Literature Review of Epidemiology, Clinical Characteristics, and Outcomes. Clin. Lung Cancer 2023, 24, 483–497. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Xu, Q.; Lizaso, A.; Xiang, J.; Mao, X.; Han-Zhang, H.; Zhang, Y.; Yu, X.; Lin, L.; et al. Characterization of MET exon 14 alteration and association with clinical outcomes of crizotinib in Chinese lung cancers. Lung Cancer 2020, 148, 113–121. [Google Scholar] [CrossRef]
- Wagenius, G.; Johansson, M.; Bergman, B.; Botling, J.; Lewensohn, R.; Hussein, A.; Staaf, J.; Monsef, N.; Lamberg, K.; Planck, M.; et al. FP16.04 A Nationwide Population-Based Mapping of Mutations and Gene Fusions in Lung Cancer Among Never-Smokers. J. Thorac. Oncol. 2021, 16, S974. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, H.; Li, C.; Luo, X.; Pan, Y.; Ye, T.; Sun, Y.; Garfield, D.; Lu, Y.; Pao, W.; et al. RET Fusions Define a Unique Molecular and Clinicopathologic Subtype of Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2012, 30, 4352–4359. [Google Scholar] [CrossRef]
- Bennett, P.; Lim, G.H.T.; Poskitt, B.; Balbi, K.J.; Moore, D.A. Prevalence and breakdown of non-small cell lung cancer BRAF driver mutations in a large UK cohort. Lung Cancer 2022, 173, 71–74. [Google Scholar] [CrossRef]
- Felicioni, L.; Buttitta, F.; Sciarrotta, M.G.; Malatesta, S.; Guetti, L.; Mucilli, F.; Chella, A.; Marchetti, A.; Pullara, C.; Viola, P. Clinical Features and Outcome of Patients With Non–Small-Cell Lung Cancer Harboring BRAF Mutations. J. Clin. Oncol. 2011, 29, 3574–3579. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Jia, B.; Wang, Y.; Jin, X.; Liu, X.; Zhao, Y.; Wang, Z.; Zhuo, M.; Yan, J.; et al. Prevalence, genetic variations and clinical outcomes of BRAF-V600 mutated advanced NSCLC in China: A retrospective real-world multi-centre study. EBioMedicine 2025, 114, 105652. [Google Scholar] [CrossRef]
- Mehra, R.; Liu, S.V.; Oliveira, J.; Lopes, A.R.; Adamo, V.; Scilla, K.; Russo, A.; Rolfo, C. NTRK and NRG1 gene fusions in advanced non-small cell lung cancer (NSCLC). Precis. Cancer Med. 2020, 3, 14. [Google Scholar] [CrossRef]
- Juon, H.-S.; Kane, G.C.; Evans, N.R.; Barta, J.A.; Shusted, C.S. Analysis of Lung Cancer Screening by Race After USPSTF Expansion of Screening Eligibility in 2021. JAMA Netw. Open 2022, 5, e2217578. [Google Scholar] [CrossRef]
- Holford, T.R.; Meza, R.; Levy, D.T. Comparison of Smoking History Patterns Among African American and White Cohorts in the United States Born 1890 to 1990. Nicotine Tob. Res. 2016, 18, S16–S29. [Google Scholar] [CrossRef]
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef]
- de Koning, H.J.; van Der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Oudkerk, M. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Egede, L.E.; Silvestri, G.A.; Payne, E.; Halbert, C.H.; Gebregziabher, M.; Tanner, N.T. Racial Differences in Outcomes within the National Lung Screening Trial. Implications for Widespread Implementation. Am. J. Respir. Crit. Care Med. 2015, 192, 200–208. [Google Scholar] [CrossRef]
- Tanner, N.T.; Winn, R.A.; Smith, R.; Wisnivesky, J.P.; Wiener, R.S.; Henderson, L.M.; Crothers, K.; Sakoda, L.C.; Aldrich, M.C.; Rivera, M.P.; et al. Addressing Disparities in Lung Cancer Screening Eligibility and Healthcare Access. An Official American Thoracic Society Statement. Am. J. Respir. Crit. Care Med. 2020, 202, e95–e112. [Google Scholar] [CrossRef]
- Chen, X.; Lund, J.L.; Reuland, D.S.; Rivera, M.P.; Su, I.-H.; Henderson, L.M.; Pak, J. Prevalence of Lung Cancer Screening in the US, 2022. JAMA Netw. Open 2024, 7, e243190. [Google Scholar] [CrossRef]
- Lopez-Olivo, M.A.; Maki, K.G.; Choi, N.J.; Hoffman, R.M.; Shih, Y.C.T.; Lowenstein, L.M.; Volk, R.J. Patient Adherence to Screening for Lung Cancer in the US: A Systematic Review and Meta-analysis. JAMA Netw Open 2020, 3, e2025102. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, J.; Lam, S.; Darling, G.; Stewart, E.L.; Cheung, S.; Xu, W.; Aggarwal, R.; Lam, A.C.; Liu, G. Predictors of participant nonadherence in lung cancer screening programs: A systematic review and meta-analysis. Lung Cancer 2020, 146, 134–144. [Google Scholar] [CrossRef]
- Racial and Ethnic Disparities: American Lung Association. Available online: https://www.lung.org/research/state-of-lung-cancer/racial-and-ethnic-disparities (accessed on 10 May 2025).
- Bhaskar, L.; Verma, H.K.; Suri, C.; Swarnkar, S. Non-Coding RNA as a Biomarker in Lung Cancer. Non-Coding RNA 2024, 10, 50. [Google Scholar] [CrossRef]
- Stergiopoulos, S.; Fleury, M.E.; Lofgren, K.T.; Meyer, C.S.; Flores, C.; Sheinson, D.M.; Adams, D.V.; Wong, W.B. Trends in Use of Next-Generation Sequencing in Patients With Solid Tumors by Race and Ethnicity After Implementation of the Medicare National Coverage Determination. JAMA Netw. Open 2021, 4, e2138219. [Google Scholar] [CrossRef]
- Soulos, P.R.; Gross, C.P.; Longtine, J.A.; Agarwala, V.; Chiang, A.C.; Herbst, R.S.; Sorg, R.A.; Adelson, K.B.; Abernethy, A.P.; Tang, D.; et al. Association of Broad-Based Genomic Sequencing With Survival Among Patients With Advanced Non–Small Cell Lung Cancer in the Community Oncology Setting. JAMA 2018, 320, 469–477. [Google Scholar] [CrossRef]
- Su, E.W.; Patel, M.; Bruno, D.S.; Li, X.; Hess, L.M. Disparities in Biomarker Testing and Clinical Trial Enrollment Among Patients With Lung, Breast, or Colorectal Cancers in the United States. JCO Precis. Oncol. 2022, 6, e2100427. [Google Scholar] [CrossRef]
- Gray, S.W.; Phillips, K.A.; Ragavan, M.V.; Blakely, C.M.; Kumar, A.; Douglas, M.P.; Chen, C. Private Payer and Medicare Coverage Policies for Use of Circulating Tumor DNA Tests in Cancer Diagnostics and Treatment. J. Natl. Compr. Cancer Netw. 2023, 21, 609–616.e4. [Google Scholar] [CrossRef]
- Dumanois, R.; Alme, E.B.; Leiman, L.C.; Carter, G.C.; Martin, N.; Febbo, P.G.; Kiernan, E.; Allo, M.; Essig, A.; Kubler, C.B.; et al. Recommendations for the Equitable and Widespread Implementation of Liquid Biopsy for Cancer Care. JCO Precis. Oncol. 2024, 8, e2300382. [Google Scholar] [CrossRef]
- To, K.K.W.; Fong, W.; Cho, W.C.S. Immunotherapy in Treating EGFR-Mutant Lung Cancer: Current Challenges and New Strategies. Front. Oncol. 2021, 11, 635007. [Google Scholar] [CrossRef]
- Ezer, N.; Mhango, G.; Bagiella, E.; Goodman, E.; Flores, R.; Wisnivesky, J.P. Racial Disparities in Resection of Early Stage Non-Small Cell Lung Cancer: Variability Among Surgeons. Med Care 2020, 58, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Kneuertz, P.J.; Abdel-Rasoul, M.; Merritt, R.E.; D’SOuza, D.M. Racial Disparities in Overall Survival and Surgical Treatment for Early Stage Lung Cancer by Facility Type. Clin. Lung Cancer 2021, 22, e691–e698. [Google Scholar] [CrossRef]
- Cancer Facts & Figures for African American/Black People 2022–2024. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-facts-and-figures-for-african-americans/2022-2024-cff-aa.pdf (accessed on 10 May 2025).
- Policy and Global Affairs. Committee on Improving the Representation of Women and Underrepresented Minorities in Clinical Trials and Research. In Improving Representation in Clinical Trials and Research; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- Cancer Statistics: Esophageal Cancer, 2025. Available online: https://www.cancer.org/cancer/types/esophagus-cancer/about/key-statistics.html (accessed on 10 May 2025).
- MacLennan, G.T.; Cramer, H.M.; E Alexander, R.; Cummings, O.W.; Davidson, D.D.; Zhang, S.; Montironi, R.; Lopez-Beltran, A.; Cheng, L. Molecular pathology of lung cancer: Key to personalized medicine. Mod. Pathol. 2012, 25, 347–369. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Alatorre-Alexander, J.; Besse, B.; Sethi, S.; Chang, G.-C.; Lee, S.-H.; Prabhash, K.; Girard, N.; Ou, S.-H.I.; Lee, K.-H.; Felip, E.; et al. Amivantamab plus Lazertinib in Previously Untreated EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2024, 391, 1486–1498. [Google Scholar] [CrossRef]
- Wu, Y.L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Herbst, R.S. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
- Grohe, C.; Kim, S.-W.; Shepherd, F.A.; Majem, M.; Huang, X.; Mukhametshina, G.; John, T.; Bolanos, A.; Stachowiak, M.; de Marinis, F.; et al. Adjuvant Osimertinib for Resected EGFR-Mutated Stage IB-IIIA Non–Small-Cell Lung Cancer: Updated Results From the Phase III Randomized ADAURA Trial. J. Clin. Oncol. 2023, 41, 1830–1840. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Poole, L.; Herbst, R.S.; Su, W.-C.; Shepherd, F.A.; Majem, M.; Dechaphunkul, A.; Lee, K.H.; Grohé, C.; Kato, T.; et al. Overall Survival with Osimertinib in Resected EGFR-Mutated NSCLC. N. Engl. J. Med. 2023, 389, 137–147. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Cobo, M.; Sriuranpong, V.; Wang, C.-L.; Inoue, T.; Yang, J.C.-H.; Huang, X.; Kato, T.; Özgüroğlu, M.; Soparattanapaisarn, N.; et al. Osimertinib after Chemoradiotherapy in Stage III EGFR-Mutated NSCLC. N. Engl. J. Med. 2024, 391, 585–597. [Google Scholar] [CrossRef]
- Haura, E.B.; Girard, N.; Thayu, M.; Lee, J.-S.; Kim, S.-W.; Yang, T.-Y.; Viteri, S.; Haddish-Berhane, N.; Xie, J.; Roshak, A.; et al. Amivantamab in EGFR Exon 20 Insertion–Mutated Non–Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef]
- Cho, B.C.; Popat, S.; Park, K.; Girard, N.; Paz-Ares, L.; Felip, E.; Zhou, C.; Kim, S.-W.; Shreeve, S.M.; Boyer, M.; et al. Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions. N. Engl. J. Med. 2023, 389, 2039–2051. [Google Scholar] [CrossRef]
- Snyder, W.; Sacher, A.G.; Hindoyan, A.; Skoulidis, F.; Dooms, C.; Tomasini, P.; Velcheti, V.; Jones, S.; Hong, D.S.; Addeo, A.; et al. Long-Term Outcomes and Molecular Correlates of Sotorasib Efficacy in Patients With Pretreated KRAS G12C-Mutated Non–Small-Cell Lung Cancer: 2-Year Analysis of CodeBreaK 100. J. Clin. Oncol. 2023, 41, 3311–3317. [Google Scholar] [CrossRef]
- de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.M.C.; Mountzios, G.; Pless, M.; Paz-Ares, L. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: A randomised, open-label, phase 3 trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef]
- Janne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.H.I.; Pacheco, J.M.; Spira, A.I. Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRAS(G12C) Mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.W.; Ou, S.H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Lee, J.S.; Popat, S. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Felip, E.; Delmonte, A.; Gettinger, S.N.; Han, J.-Y.; Lee, K.H.; Kim, H.R.; Spira, A.; Califano, R.; Zhang, P.; et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor–Naive ALK-Positive Non–Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J. Clin. Oncol. 2020, 38, 3592–3603. [Google Scholar] [CrossRef]
- Liu, G.; Goto, Y.; Mok, T.; Felip, E.; Mazieres, J.; Shaw, A.T.; Solomon, B.J.; Polli, A.; Thurm, H.; Bauer, T.M.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Messina, R.; Polli, A.; Paolini, J.; Thomaidou, D.; de Marinis, F.; Felip, E.; Mazieres, J.; Liu, G.; Soo, R.A.; Wu, Y.-L.; et al. Lorlatinib Versus Crizotinib in Patients With Advanced ALK-Positive Non–Small Cell Lung Cancer: 5-Year Outcomes From the Phase III CROWN Study. J. Clin. Oncol. 2024, 42, 3400–3409. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Drilon, A.; Camidge, D.R.; Lin, J.J.; Kim, S.W.; Solomon, B.J.; Dziadziuszko, R.; Cho, B.C. Repotrectinib in ROS1 Fusion-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2024, 390, 118–131. [Google Scholar] [CrossRef]
- Smit, E.F.; Vansteenkiste, J.; Yovine, A.; Reguart, N.; Groen, H.J.M.; Akerley, W.; Seto, T.; Souquet, P.-J.; Heist, R.S.; Han, J.-Y.; et al. Capmatinib in MET exon 14-mutated non-small-cell lung cancer: Final results from the open-label, phase 2 GEOMETRY mono-1 trial. Lancet Oncol. 2024, 25, 1357–1370. [Google Scholar] [CrossRef]
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.; Heist, R.S. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
- Goto, K.; Han, H.; Park, K.; Zhou, C.; Solomon, B.; Wolf, J.; Novello, S.; Arriola, E.; Soldatenkova, V.; Payakachat, N.; et al. First-Line Selpercatinib or Chemotherapy and Pembrolizumab in RET Fusion–Positive NSCLC. N. Engl. J. Med. 2023, 389, 1839–1850. [Google Scholar] [CrossRef]
- Gautschi, O.; Park, K.; Solomon, B.J.; Tomasini, P.; Loong, H.H.; De Braud, F.; Drilon, A. Selpercatinib in RET Fusion-Positive Non-Small Cell Lung Cancer: Final Safety and Efficacy, Including Overall Survival, From the LIBRETTO-001 Phase I/II Trial. J. Clin. Oncol. 2025, 43, JCO2402076. [Google Scholar] [CrossRef]
- Curigliano, G.; Besse, B.; Cassier, P.A.; Cho, B.C.; Lopes, G.; Thomas, M.; Doebele, R.C.; Garralda, E.; Liu, S.V.; Turner, C.D.; et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021, 22, 959–969. [Google Scholar] [CrossRef]
- Besse, B.; Groen, H.J.; Tan, M.; Johnson, B.E.; Santarpia, L.; Mazieres, J.; Planchard, D.; Quoix, E.; Souquet, P.-J.; Kelly, R.J.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients With BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef]
- Riely, G.J.; Smit, E.F.; Ahn, M.J.; Felip, E.; Ramalingam, S.S.; Tsao, A.; Johnson, B.E. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients With BRAF(V600)-Mutant Metastatic Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2023, 41, 3700–3711. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Jänne, P.A. Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. N. Engl. J. Med 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Rojas, L.; Corrales, L.; Freitas, H.; Arrieta, O.; Aliaga, C.; Cruz, G.; Carracedo, C.; Motta, R.; Bacon, L.; Raez, L.; et al. EP12.01-61 Clinical Features, Outcomes, and Biology of EGFR exon 20 Insertions in a Cohort of Hispanic Patients with Non-small Cell Lung Cancer. J. Thorac. Oncol. 2023, 18, S666. [Google Scholar] [CrossRef]
- Kent, S.T.; Balasubramanian, A.; Spira, A.; Brookhart, M.A.; Younan, D.; Johnson, M.; Mesa-Frias, M. Real-world comparative effectiveness of sotorasib versus docetaxel in second line and beyond among patients with advanced non-small cell lung cancer (NSCLC). Lung Cancer 2024, 197, 107960. [Google Scholar] [CrossRef]
- Ramnath, N.; Dowell, J.E.; Tseng, C.-L.; Kelley, M.J.; Lin, C.; Zhou, K.I. Brief Report: Real-World Efficacy and Safety of Sotorasib in U.S. Veterans with KRAS G12C-Mutated NSCLC. JTO Clin. Res. Rep. 2024, 5, 100670. [Google Scholar] [CrossRef]
- Iqbal, A.; Santini, F.C.; Li, B.T.; Arbour, K.C.; Lito, P.; Riely, G.J.; Ladanyi, M.; Yang, S.-R.; Sabari, J.K.; Shen, R.; et al. Clinical and Genomic Features of Response and Toxicity to Sotorasib in a Real-World Cohort of Patients With Advanced KRAS G12C-Mutant Non–Small Cell Lung Cancer. JCO Precis. Oncol. 2023, 7, e2300030. [Google Scholar] [CrossRef]
- Wang, M.; Datta, D.; Lin, C.-W.; Bazhenova, L.; Ogale, S.; Sussell, J.; Butte, A.J.; Slatter, S.; Rudrapatna, V.A. ALK Inhibitor Treatment Patterns and Outcomes in Real-World Patients with ALK-Positive Non-Small-Cell Lung Cancer: A Retrospective Cohort Study. Target. Oncol. 2023, 18, 571–583. [Google Scholar] [CrossRef]
- Polito, L.; Archer, V.; Trinh, H.; Hilton, M.; Pal, N.; Lin, J.J.; Smoljanović, V.; Zhang, Q.; Kurtsikidze, N.; Krebs, M.G. Real-World Comparative Effectiveness of First-Line Alectinib Versus Crizotinib in Patients With Advanced ALK-Positive NSCLC With or Without Baseline Central Nervous System Metastases. JTO Clin. Res. Rep. 2023, 4, 100483. [Google Scholar] [CrossRef]
- Trinh, H.; Martina, R.; Martinec, M.; Crane, G.; Perez, L.; Riehl, T.; Krebs, M.G.; Doebele, R.C.; Meropol, N.J.; Wong, W.B. Comparative effectiveness analysis between entrectinib clinical trial and crizotinib real-world data in ROS1+ NSCLC. J. Comp. Eff. Res. 2021, 10, 1271–1282. [Google Scholar] [CrossRef]
- Saliba, T.; Caro, N.; Davis, K.L.; Furqan, M.; Rombi, J.; Cai, B.; Karanth, S.; Goyal, R.K. Effectiveness of standard treatments in non-small-cell lung cancer with METexon14 skipping mutation: A real-world study. Futur. Oncol. 2024, 20, 1553–1563. [Google Scholar] [CrossRef]
- A Price, M.; Caro, N.; Davis, K.L.; Cai, B.; Ansquer, V.D.; Goyal, R.K.; Paik, P.K.; Saliba, T.R. Real-world outcomes in non-small-cell lung cancer patients with MET Exon 14 skipping mutation and brain metastases treated with capmatinib. Futur. Oncol. 2023, 19, 217–228. [Google Scholar] [CrossRef]
- Di Maio, M.; Wermke, M.; Schumacher, M.; Addeo, A.; Banerji, S.; Clarke, S.; Duruisseaux, M.; Absenger, G.; Wöll, E.; Pall, G.; et al. Selpercatinib in RET fusion-positive non-small-cell lung cancer (SIREN): A retrospective analysis of patients treated through an access program. Ther. Adv. Med. Oncol. 2021, 13, 17588359211019675. [Google Scholar] [CrossRef]
- Johnson, B.E.; Jackman, D.M.; Nishino, M.; Lo, P.C.; Oxnard, G.R.; Lindeman, N.I.; Jänne, P.A.; Butaney, M.; Dahlberg, S.E. Natural History and Molecular Characteristics of Lung Cancers Harboring EGFR Exon 20 Insertions. J. Thorac. Oncol. 2013, 8, 179–184. [Google Scholar] [CrossRef]
- Tsongalis, G.J.; Amos, C.I.; Tafe, L.J.; Biernacka, A.; Gutmann, E.J.; Black, C.C.; Peterson, J.D.; Tsongalis, P.D.; Liu, X.; de Abreu, F.B. The potential utility of re-mining results of somatic mutation testing: KRAS status in lung adenocarcinoma. Cancer Genet. 2016, 209, 195–198. [Google Scholar] [CrossRef]
- Tang, S.; Beaver, J.A.; Nakajima, E.C.; Akinboro, O.; Pazdur, R.; Mishra-Kalyani, P.S.; Vallejo, J.J.; Larkins, E.A.; Drezner, N.L.; Singh, H.; et al. Outcomes of first-line immune checkpoint inhibitors with or without chemotherapy according to KRAS mutational status and PD-L1 expression in patients with advanced NSCLC: FDA pooled analysis. J. Clin. Oncol. 2022, 40, 9001. [Google Scholar] [CrossRef]
- Einhorn, L.; Bunn, P.A.; De Marinis, F.; Gervais, R.; Shepherd, F.A.; Pless, M.; Manegold, C.; Gatzemeier, U.; Paoletti, P.; Szondy, K.; et al. Randomized Phase III Trial of Pemetrexed Versus Docetaxel in Patients With Non–Small-Cell Lung Cancer Previously Treated With Chemotherapy. J. Clin. Oncol. 2004, 22, 1589–1597. [Google Scholar] [CrossRef]
- Prabhash, K.; Park, K.; Dakhil, S.; Thomas, M.; Kim, J.-H.; Gorbunova, V.; Yurasov, S.; Bidoli, P.; Syrigos, K.N.; Goksel, T.; et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. Lancet 2014, 384, 665–673. [Google Scholar] [CrossRef]
- Dancey, J.; Vincent, M.; Levitan, N.; Burkes, R.; Berille, J.; Gralla, R.; Mattson, K.; Coughlin, S.; Gressot, L.; Shepherd, F.A.; et al. Prospective Randomized Trial of Docetaxel Versus Best Supportive Care in Patients With Non–Small-Cell Lung Cancer Previously Treated With Platinum-Based Chemotherapy. J. Clin. Oncol. 2000, 18, 2095–2103. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Govindan, R. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Felip, E.; Gregorc, V.; Russo, G.L.; Linardou, H.; Duruisseaux, M.; Yao, W.; Barlesi, F.; Mok, T.S.K.; Jotte, R.M.; et al. KRYSTAL-12: Phase 3 study of adagrasib versus docetaxel in patients with previously treated advanced/metastatic non-small cell lung cancer (NSCLC) harboring a KRASG12C mutation. J. Clin. Oncol. 2024, 42, LBA8509. [Google Scholar] [CrossRef]
- Ruf, T.; Rosell, R.; Dziadziuszko, R.; Mok, T.; Kim, D.-W.; Ahn, J.; Hilton, M.; Gadgeel, S.; Camidge, D.; Pérol, M.; et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann. Oncol. 2020, 31, 1056–1064. [Google Scholar] [CrossRef]
- Liu, G.; Jassem, J.; Polli, A.; Thurm, H.; Penkov, K.; Peltz, G.; Calella, A.M.; Mok, T.; Wu, Y.-L.; Arrieta, O.; et al. Post Hoc Analysis of Lorlatinib Intracranial Efficacy and Safety in Patients With ALK-Positive Advanced Non–Small-Cell Lung Cancer From the Phase III CROWN Study. J. Clin. Oncol. 2022, 40, 3593–3602. [Google Scholar] [CrossRef]
- Chee, C.E.; Cho, B.C.; Goto, K.; Chiu, C.-H.; Garrido, P.; Massarelli, E.; Heinzmann, S.; Osborne, S.; Bordogna, W.; John, T.; et al. Updated efficacy and safety of entrectinib in patients (pts) with locally advanced/metastatic NTRK fusion-positive (fp) non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41, 9047. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Bai, J.; Lu, C.; Chen, H.-J.; Chen, X.-F.; Dong, X.-R.; Wang, Y.-N.; An, G.-L.; Yang, S.-Y.; Shan, J.-L.; et al. Association of genetic and immuno-characteristics with clinical outcomes in patients with RET-rearranged non-small cell lung cancer: A retrospective multicenter study. J. Hematol. Oncol. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.; Loong, H.H.; Johnson, M.; Gainor, J.; Subbiah, V. Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Westeel, V.; Rosell, R.; Besse, B.; Barlesi, F.; Dansin, E.; Fournel, P.; Monnet, I.; Beau-Faller, M.; Gautschi, O.; Früh, M.; et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: Results from the European EUHER2 cohort. Ann. Oncol. 2015, 27, 281–286. [Google Scholar] [CrossRef]
- Guisier, F.; Dubos-Arvis, C.; Viñas, F.; Doubre, H.; Ricordel, C.; Ropert, S.; Bylicki, O. Efficacy and Safety of Anti-PD-1 Immunotherapy in Patients With Advanced NSCLC With BRAF, HER2, or MET Mutations or RET Translocation: GFPC 01-2018. J. Thorac. Oncol. 2020, 15, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, P.; Chmielewska, I.; Milanowski, J.; Grenda, A.; Kieszko, R.; Gil, M.; Stencel, K.; Wójcik-Superczyńska, M.; Jankowski, T. Exploring immunotherapy efficacy in non-small cell lung cancer patients with BRAF mutations: A case series and literature review. Transl. Lung Cancer Res. 2024, 13, 2491–2499. [Google Scholar] [CrossRef]
- Combination of Toripalimab and Neoadjuvant Chemoradiotherapy in Esophageal Cancer. Available online: https://clinicaltrials.gov/study/NCT04006041 (accessed on 10 May 2025).
- Spina, M.; De Carlo, E.; Bearz, A.; Stanzione, B.; Del Conte, A.; Bertoli, E.; Bortolot, M.; Torresan, S. Navigating Therapeutic Challenges in BRAF-Mutated NSCLC: Non-V600 Mutations, Immunotherapy, and Overcoming Resistance. Int. J. Mol. Sci. 2024, 25, 12972. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Y.; Zhang, H.; Yan, N.; Guo, S.; Li, X.; Xu, L. Efficacy of chemo-immunotherapy in metastatic BRAF-mutated lung cancer: A single-center retrospective data. Front. Oncol. 2024, 14, 1353491. [Google Scholar] [CrossRef]
- E Johnson, B.; Usari, T.; Alcasid, A.; Felip, E.; Ahn, M.-J.; Ramalingam, S.S.; Wilner, K.D.; Smit, E.F.; Tsao, A.S.; Wissel, P.S.; et al. Encorafenib Plus Binimetinib in Patients with BRAF V600-Mutant Non-Small Cell Lung Cancer: Phase II PHAROS Study Design. Futur. Oncol. 2021, 18, 781–791. [Google Scholar] [CrossRef]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Souquet, P.-J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, J.; Novello, S.; et al. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 2016, 17, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M., Jr.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Chiarion Sileni, V.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, L.; Chella, A.; Cappelli, S.; Carrozzi, L.; Massa, V.; Petrini, I.; Sbrana, A. Dabrafenib-trametinib in BRAF V600-mutated non-small-cell lung cancer: A single center real world experience. Futur. Oncol. 2024, 20, 1745–1751. [Google Scholar] [CrossRef]
- Leyvraz, S.; Kummar, S.; Tan, D.S.-W.; Dubashi, B.; Kp, H.; Drilon, A.E.; Shen, L.; Mussi, C.E.; Lin, J.J.; Moreno, V.; et al. Long-term efficacy and safety of larotrectinib in patients with TRK fusion lung cancer. J. Clin. Oncol. 2024, 42, 8570. [Google Scholar] [CrossRef]
- Cadranel, J.; Jones, M.; Cheema, P.; Solca, F.; Liu, S.; Duruisseaux, M.; Heining, C.; Cseh, A.; Schlenk, R.; Tolba, K.; et al. NRG1 fusion-driven tumors: Biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann. Oncol. 2020, 31, 1693–1703. [Google Scholar] [CrossRef]
- Schram, A.M.; Goto, K.; Kim, D.W.; Macarulla, T.; Hollebecque, A.; O’Reilly, E.M.; Drilon, A. Efficacy of Zenocutuzumab in NRG1 Fusion-Positive Cancer. N. Engl. J. Med. 2025, 392, 566–576. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025. [Google Scholar] [CrossRef]
- Jones, C.C.; Mercaldo, S.F.; Blume, J.D.; Wenzlaff, A.S.; Schwartz, A.G.; Chen, H.; Deppen, S.A.; Bush, W.; Crawford, D.; Chanock, S.J.; et al. Racial Disparities in Lung Cancer Survival: The Contribution of Stage, Treatment, and Ancestry. J. Thorac. Oncol. 2018, 13, 1464–1473. [Google Scholar] [CrossRef]
- Chen, B.; Chen, J.; Zhang, H.; Alduais, Y.; Fan, F. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Medicine 2023, 102, e32899. [Google Scholar] [CrossRef]
- Oprea-Ilies, G.; Flenaugh, E.L.; Singh, S.; Singh, R.; Mir, H.; Brock, B.A. Social and Biological Determinants in Lung Cancer Disparity. Cancers 2024, 16, 612. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.M. Lung cancer health disparities. Carcinogenesis 2018, 39, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Malcoe, L.H.; Laurent, S.E.; Richardson, J.; Lynch, E.E.; Meier, H.C.; Mitchell, B.C. The legacy of structural racism: Associations between historic redlining, current mortgage lending, and health. SSM Popul. Heal. 2021, 14, 100793. [Google Scholar] [CrossRef]
- McIntire, R.; Juon, H.-S.; Barta, J.A.; Rojulpote, M.; Hong, A.; Pimpinelli, M. Racial disparities in occupational risks and lung cancer incidence: Analysis of the National Lung Screening Trial. Prev. Med. 2021, 143, 106355. [Google Scholar] [CrossRef]
- Krieger, N.; Chen, J.T.; Waterman, P.D.; Arcaya, M.; Wright, E.; Huntley, E.R. Cancer Stage at Diagnosis, Historical Redlining, and Current Neighborhood Characteristics: Breast, Cervical, Lung, and Colorectal Cancers, Massachusetts, 2001–2015. Am. J. Epidemiol. 2020, 189, 1065–1075. [Google Scholar] [CrossRef]
- Holland, M.; Rangachari, P.; Yousafi, S. Barriers to Recruitment and Retention Among Underrepresented Populations in Cancer Clinical Trials: A Qualitative Study of the Perspectives of Clinical Trial Research Coordinating Staff at a Cancer Center. J. Health Leadersh. 2024, 16, 427–441. [Google Scholar] [CrossRef]
- Ison, M.G.; Jedraszko, A.M.; Herzog, K.A.; Golbeck, E.; McColley, S.A.; Barrera, L.; Guzman, Z.R.; Hays, P.T.; Heffernan, M.E.; D’aQuila, R.T. Barriers and facilitators to recruitment of underrepresented research participants: Perspectives of clinical research coordinators. J. Clin. Transl. Sci. 2023, 7, e193. [Google Scholar] [CrossRef]
- Bolen, S.; Ford, J.G.; Gibbons, M.C.; Wilson, R.F.; Tanpitukpongse, T.P.; Howerton, M.W.; Lai, G.Y.; Baffi, C.; Powe, N.R.; Tilburt, J.; et al. Barriers to recruiting underrepresented populations to cancer clinical trials: A systematic review. Cancer 2007, 112, 228–242. [Google Scholar] [CrossRef]
- Conducting Clinical-Trials Decentralized Elements. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/conducting-clinical-trials-decentralized-elements (accessed on 10 May 2025).
- Hong, K.; Nipp, R.D.; Paskett, E.D. Overcoming Barriers to Clinical Trial Enrollment. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 105–114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatt, A.; Yone, N.; Lalla, M.; Jeon, H.; Cheng, H. Molecular Diagnosis, Clinical Trial Representation, and Precision Medicine in Minority Patients with Oncogene-Driven Lung Cancer. Cancers 2025, 17, 1950. https://doi.org/10.3390/cancers17121950
Bhatt A, Yone N, Lalla M, Jeon H, Cheng H. Molecular Diagnosis, Clinical Trial Representation, and Precision Medicine in Minority Patients with Oncogene-Driven Lung Cancer. Cancers. 2025; 17(12):1950. https://doi.org/10.3390/cancers17121950
Chicago/Turabian StyleBhatt, Ahan, Nang Yone, Mumtu Lalla, Hyein Jeon, and Haiying Cheng. 2025. "Molecular Diagnosis, Clinical Trial Representation, and Precision Medicine in Minority Patients with Oncogene-Driven Lung Cancer" Cancers 17, no. 12: 1950. https://doi.org/10.3390/cancers17121950
APA StyleBhatt, A., Yone, N., Lalla, M., Jeon, H., & Cheng, H. (2025). Molecular Diagnosis, Clinical Trial Representation, and Precision Medicine in Minority Patients with Oncogene-Driven Lung Cancer. Cancers, 17(12), 1950. https://doi.org/10.3390/cancers17121950