Baseline Radiomics as a Prognostic Tool for Clinical Benefit from Immune Checkpoint Inhibition in Inoperable NSCLC Without Activating Mutations
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Group
2.2. Image Acquisition
2.3. Feature Extraction
setting: normalize: true normalizeScale: 600 resampledPixelSpacing: [1, 1, 1] interpolator: 'sitkBSpline' voxelArrayShift: 1000 binWidth: 30.0 label: 2 imageType: Original: LoG: sigma: [1.0, 2.0, 3.0, 4.0, 5.0] binWidth: 15.0 Wavelet: binWidth: 8.0 Square: binWidth: 15 SquareRoot: binWidth: 25 Logarithm: binWidth: 50 Exponential: binWidth: 6 Gradient: binWidth: 14 featureClass: glcm: firstorder: shape2D: shape: glrlm: glszm: gldm: ngtdm:
2.4. Model Selection
2.5. Ensemble Modeling
2.6. Statistical Analysis
2.7. Validation
3. Results
3.1. Patient Characteristics
3.2. Experimental Design
3.3. Performance of Individual Models
3.4. Performance of Ensemble Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NLR | Neutrophil-to-Lymphocyte Ratio |
CR | Complete Response |
PR | Partial Response |
SD | Stable Disease |
PD | Progressive Disease |
RR | Response Rate |
DCR | Disease Control Rate |
CP | Clinical Parameters |
AUC | Area Under the Curve |
TP | True Positives |
TN | True Negatives |
MCC | Matthews Correlation Coefficient |
References
- Buono, M.; Russo, G.; Nardone, V.; Della Corte, C.M.; Natale, G.; Rubini, D.; Palumbo, L.; Scimone, C.; Ciani, G.; D’Onofrio, I.; et al. New perspectives on inoperable early-stage lung cancer management: Clinicians, physicists, and biologists unveil strategies and insights. J. Liq. Biopsy 2024, 5, 100153. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.; Sacchi de Camargo Correia, G.; Li, S.; Zhao, Y.; Manochakian, R.; Lou, Y. Emerging Immunotherapies for Advanced Non-Small-Cell Lung Cancer. Vaccines 2025, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- Kolarevic, D.; Tomasevic, Z.; Dzodic, R.; Kanjer, K.; Vukosavljevic, D.N.; Radulovic, M. Early prognosis of metastasis risk in inflammatory breast cancer by texture analysis of tumour microscopic images. Biomed. Microdevices 2015, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Speckter, H.; Radulovic, M.; Trivodaliev, K.; Vranes, V.; Joaquin, J.; Hernandez, W.; Mota, A.; Bido, J.; Hernandez, G.; Rivera, D.; et al. MRI radiomics in the prediction of the volumetric response in meningiomas after gamma knife radiosurgery. J. Neurooncol. 2022, 159, 281–291. [Google Scholar] [CrossRef]
- Ligero, M.; Gielen, B.; Navarro, V.; Cresta Morgado, P.; Prior, O.; Dienstmann, R.; Nuciforo, P.; Trebeschi, S.; Beets-Tan, R.; Sala, E.; et al. A whirl of radiomics-based biomarkers in cancer immunotherapy, why is large scale validation still lacking? NPJ Precis. Oncol. 2024, 8, 42. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Z.; Zhang, L.; Li, L.; Xu, W.; Su, Q. Prediction of pathological complete response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer using (18)F-FDG PET radiomics features of primary tumour and lymph nodes. BMC Cancer 2025, 25, 520. [Google Scholar] [CrossRef]
- Chen, X.; Meng, F.; Zhang, P.; Wang, L.; Yao, S.; An, C.; Li, H.; Zhang, D.; Li, H.; Li, J.; et al. Establishing a deep learning model that integrates pre- and mid-treatment computed tomography to predict treatment response for non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2025; in press. [Google Scholar] [CrossRef]
- Upadhaya, T.; Chetty, I.J.; McKenzie, E.M.; Bagher-Ebadian, H.; Atkins, K.M. Application of CT-based foundational artificial intelligence and radiomics models for prediction of survival for lung cancer patients treated on the NRG/RTOG 0617 clinical trial. BJR Open 2024, 6, tzae038. [Google Scholar] [CrossRef]
- Zandberg, D.P.; Zenkin, S.; Ak, M.; Mamindla, P.; Peddagangireddy, V.; Hsieh, R.; Anderson, J.L.; Delgoffe, G.M.; Menk, A.; Skinner, H.D.; et al. Evaluation of radiomics as a predictor of efficacy and the tumor immune microenvironment in anti-PD-1 mAb treated recurrent/metastatic squamous cell carcinoma of the head and neck patients. Head Neck 2025, 47, 129–138. [Google Scholar] [CrossRef]
- Peng, J.; Zou, D.; Zhang, X.; Ma, H.; Han, L.; Yao, B. A novel sub-regional radiomics model to predict immunotherapy response in non-small cell lung carcinoma. J. Transl. Med. 2024, 22, 87. [Google Scholar] [CrossRef]
- Liao, C.Y.; Chen, Y.M.; Wu, Y.T.; Chao, H.S.; Chiu, H.Y.; Wang, T.W.; Chen, J.R.; Shiao, T.H.; Lu, C.F. Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning. Cancer Imaging 2024, 24, 129. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Sundahl, N.; Hecht, M.; Putz, F.; Lancia, A.; Rouyar, A.; Milic, M.; Carre, A.; Battistella, E.; Alvarez Andres, E.; et al. Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells. J. Immunother. Cancer 2020, 8, e001429. [Google Scholar] [CrossRef] [PubMed]
- Clyne, M.; Offman, J.; Shanley, S.; Virgo, J.D.; Radulovic, M.; Wang, Y.; Ardern-Jones, A.; Eeles, R.; Hoffmann, E.; Yu, V.P. The G67E mutation in hMLH1 is associated with an unusual presentation of Lynch syndrome. Br. J. Cancer 2009, 100, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Wang, T.; Wang, Z.; Chu, X.; Hu, T.; Li, M.; Peng, W.; Feng, F.; Tong, T.; Gu, Y. Enhancing brain metastasis prediction in non-small cell lung cancer: A deep learning-based segmentation and CT radiomics-based ensemble learning model. Cancer Imaging 2024, 24, 1. [Google Scholar] [CrossRef]
- Yolchuyeva, S.; Giacomazzi, E.; Tonneau, M.; Lamaze, F.; Orain, M.; Coulombe, F.; Malo, J.; Belkaid, W.; Routy, B.; Joubert, P.; et al. Imaging-Based Biomarkers Predict Programmed Death-Ligand 1 and Survival Outcomes in Advanced NSCLC Treated With Nivolumab and Pembrolizumab: A Multi-Institutional Study. JTO Clin. Res. Rep. 2023, 4, 100602. [Google Scholar] [CrossRef]
- Tang, F.H.; Fong, Y.W.; Yung, S.H.; Wong, C.K.; Tu, C.L.; Chan, M.T. Radiomics-Clinical AI Model with Probability Weighted Strategy for Prognosis Prediction in Non-Small Cell Lung Cancer. Biomedicines 2023, 11, 2093. [Google Scholar] [CrossRef]
- Lin, S.; Ma, Z.; Yao, Y.; Huang, H.; Chen, W.; Tang, D.; Gao, W. Automatic machine learning accurately predicts the efficacy of immunotherapy for patients with inoperable advanced non-small cell lung cancer using a computed tomography-based radiomics model. Diagn. Interv. Radiol. 2025, 31, 130–140. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Rodrigues, A.; Rodrigues, N.; Santinha, J.; Lisitskaya, M.V.; Uysal, A.; Matos, C.; Domingues, I.; Papanikolaou, N. Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness. Sci. Rep. 2023, 13, 6206. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Zhang, Y.D.; Hou, Y.; Yan, X.; Wang, Y.; Zhou, M.; Yao, Y.F.; Yang, G. FeAture Explorer (FAE): A tool for developing and comparing radiomics models. PLoS ONE 2020, 15, e0237587. [Google Scholar] [CrossRef]
- Rodriguez-Abreu, D.; Powell, S.F.; Hochmair, M.J.; Gadgeel, S.; Esteban, E.; Felip, E.; Speranza, G.; De Angelis, F.; Domine, M.; Cheng, S.Y.; et al. Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: Protocol-specified final analysis from KEYNOTE-189. Ann. Oncol. 2021, 32, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Rajkovic, N.; Li, X.; Plataniotis, K.N.; Kanjer, K.; Radulovic, M.; Milosevic, N.T. The Pan-Cytokeratin Staining Intensity and Fractal Computational Analysis of Breast Tumor Malignant Growth Patterns Prognosticate the Occurrence of Distant Metastasis. Front. Oncol. 2018, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Castillo, T.J.; Starmans, M.P.A.; Arif, M.; Niessen, W.J.; Klein, S.; Bangma, C.H.; Schoots, I.G.; Veenland, J.F. A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade. Diagnostics 2021, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Shi, C.; Wang, C.; Shi, N.; Qiu, T.; Chen, W.; Shi, Y.; Wang, H. Imaging-Based Staging of Hepatic Fibrosis in Patients with Hepatitis B: A Dynamic Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI. Biomolecules 2021, 11, 307. [Google Scholar] [CrossRef]
- Saad, M.B.; Hong, L.; Aminu, M.; Vokes, N.I.; Chen, P.; Salehjahromi, M.; Qin, K.; Sujit, S.J.; Lu, X.; Young, E.; et al. Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: A retrospective study. Lancet Digit. Health 2023, 5, e404–e420. [Google Scholar] [CrossRef]
- Kim, G.; Moon, S.; Choi, J.H. Deep Learning with Multimodal Integration for Predicting Recurrence in Patients with Non-Small Cell Lung Cancer. Sensors 2022, 22, 6594. [Google Scholar] [CrossRef]
- Liu, C.; Gong, J.; Yu, H.; Liu, Q.; Wang, S.; Wang, J. A CT-Based Radiomics Approach to Predict Nivolumab Response in Advanced Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 544339. [Google Scholar] [CrossRef]
- Ren, Q.; Xiong, F.; Zhu, P.; Chang, X.; Wang, G.; He, N.; Jin, Q. Assessing the robustness of radiomics/deep learning approach in the identification of efficacy of anti-PD-1 treatment in advanced or metastatic non-small cell lung carcinoma patients. Front. Oncol. 2022, 12, 952749. [Google Scholar] [CrossRef]
- Bracci, S.; Dolciami, M.; Trobiani, C.; Izzo, A.; Pernazza, A.; D’Amati, G.; Manganaro, L.; Ricci, P. Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients. Radiol. Med. 2021, 126, 1425–1433. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Zhan, J.F.; Yuan, M.G.; Hou, F.; Jiang, G.; Wu, Z.J.; Dong, C. A CT-based radiomics signature for preoperative discrimination between high and low expression of programmed death ligand 1 in head and neck squamous cell carcinoma. Eur. J. Radiol. 2022, 146, 110093. [Google Scholar] [CrossRef]
- Fried, D.V.; Tucker, S.L.; Zhou, S.; Liao, Z.; Mawlawi, O.; Ibbott, G.; Court, L.E. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; She, Y.; Yang, Y.; Liu, X.; Chen, S.; Zhong, Y.; Deng, J.; Zhao, M.; Sun, X.; Xie, D.; et al. Radiomics for Survival Risk Stratification of Clinical and Pathologic Stage IA Pure-Solid Non-Small Cell Lung Cancer. Radiology 2022, 302, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Farina, B.; Guerra, A.D.R.; Bermejo-Pelaez, D.; Miras, C.P.; Peral, A.A.; Madueno, G.G.; Jaime, J.C.; Vilalta-Lacarra, A.; Perez, J.R.; Munoz-Barrutia, A.; et al. Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. J. Transl. Med. 2023, 21, 174. [Google Scholar] [CrossRef] [PubMed]
- Demircioglu, A. Reproducibility and interpretability in radiomics: A critical assessment. Diagn. Interv. Radiol. 2024. [Google Scholar] [CrossRef]
- Velazquez, E.R.; Parmar, C.; Jermoumi, M.; Mak, R.H.; van Baardwijk, A.; Fennessy, F.M.; Lewis, J.H.; De Ruysscher, D.; Kikinis, R.; Lambin, P.; et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci. Rep. 2013, 3, 3529. [Google Scholar] [CrossRef]
- Cama, I.; Guzmán, A.; Campi, C.; Piana, M.; Lekadir, K.; Garbarino, S.; Díaz, O. Segmentation variability and radiomics stability for predicting Triple-Negative Breast Cancer subtype using Magnetic Resonance Imaging. arXiv 2025, arXiv:2504.01692. [Google Scholar] [CrossRef]
All Included (n = 220) | OS ≥ 24 Months (n = 52) | OS < 24 Months (n = 168) | |
---|---|---|---|
Sex | |||
Male | 172 (78.5%) | 38 (73.1%) | 135 (80.4%) |
Female | 48 (21.5%) | 14 (26.9%) | 33 (19.6%) |
Mean age (min-max) | 63.3 (35–87) | 64.6 (38–82) | 62.9 (35–87) |
Smoking | |||
Yes | 102 (46.4%) | 31 (59.6%) | 71 (42.3%) |
No | 118 (53.6%) | 21 (40.4%) | 97 (57.7%) |
NLR | |||
≥3 | 109 (49.5%) | 25 (48.1%) | 84 (50%) |
Histology | |||
Adenocarcinoma | 109 (49.5%) | 29 (55.8%) | 80 (47.6%) |
Squamous cell cancer | 99 (45.0%) | 21 (40.4%) | 78 (46.4%) |
Large cell | 12 (5.5%) | 2 (3.8%) | 10 (6%) |
Stage | |||
IIIA | 33 (15.0%) | 9 (17.3%) | 24 (14.3%) |
IIIB | 28 (12.7%) | 6 (11.5%) | 22 (13.1%) |
IV | 159 (72.3%) | 37 (71.2%) | 122 (72.6%) |
Brain metastases | |||
Present | 16 (7.3%) | 6 (11.5%) | 10 (6.0%) |
Liver metastases | |||
Present | 17 (7.7%) | 2 (3.8%) | 14 (8.4%) |
All Included (n = 220) | OS ≥ 24 Months (n = 52) | OS < 24 Months (n = 168) | |
---|---|---|---|
Drug | |||
Atezolizumab | 102 (48.3%) | 19 (37.3%) | 83 (51.9%) |
Pembrolizumab | 77 (36.5%) | 20 (39.2%) | 57 (35.6%) |
Nivolumab | 17 (8.1%) | 3 (5.9%) | 14 (8.8%) |
Prolgolimab | 15 (7.1%) | 9 (17.6%) | 6 (3.8%) |
Best response | |||
CR | 3 (1.4%) | 0 (0%) | 3 (1.8%) |
PR | 26 (11.8%) | 12 (23.1%) | 14 (8.3%) |
SD | 47 (21.4%) | 9 (17.3%) | 38 (22.6%) |
PD | 110 (50.0%) | 27 (51.9%) | 83 (49.4%) |
Not assessed | 34 (15.4%) | 4 (7.7%) | 30 (17.9%) |
RR | 29 (15.6%) | 12 (25%) | 17 (12.3%) |
DCR | 76 (40.8%) | 21 (43.7%) | 55 (39.9%) |
Median PFS (months) [95% CI] | 8.2 [6.8–9.5] | 15.4 [11.9–18.9] | 6.97 [6.2–7.8] |
Median OS (months) [95% CI] | 22.0 [19.6–24.4] | 33.2 [30.7–35.7] | 14.5 [12.3–16.7] |
Features | AUC | AUC 95%CI | AUC p-Value | Accuracy | Balanced Accuracy | TP (%) | TN (%) | Low-Risk Count | High-Risk Count | MCC | F1 Score | Youden Index |
---|---|---|---|---|---|---|---|---|---|---|---|---|
24-month overall survival | ||||||||||||
CP | 0.671 | 0.525–0.818 | 0.043 | 0.76 | 0.60 | 41.7 | 83.1 | 59 | 12 | 0.23 | 0.37 | 0.20 |
RADIOMICS | 0.796 | 0.666–0.927 | 0.000 | 0.82 | 0.79 | 55.0 | 92.2 | 51 | 20 | 0.52 | 0.62 | 0.57 |
CP + RADIOMICS | 0.863 | 0.769–0.957 | 0.000 | 0.85 | 0.80 | 61.1 | 92.5 | 53 | 18 | 0.57 | 0.66 | 0.61 |
12-month progression-free survival | ||||||||||||
CP | 0.669 | 0.540–0.798 | 0.016 | 0.66 | 0.65 | 58.6 | 71.4 | 42 | 29 | 0.30 | 0.58 | 0.30 |
RADIOMICS | 0.727 | 0.625–0.862 | 0.001 | 0.67 | 0.69 | 57.9 | 78.8 | 33 | 38 | 0.37 | 0.65 | 0.38 |
CP + RADIOMICS | 0.739 | 0.627–0.847 | 0.001 | 0.73 | 0.71 | 72.7 | 73.5 | 49 | 22 | 0.43 | 0.63 | 0.41 |
6-month progression-free survival | ||||||||||||
CP | 0.675 | 0.542–0.812 | 0.015 | 0.73 | 0.63 | 78.6 | 53.3 | 15 | 56 | 0.29 | 0.822 | 0.26 |
RADIOMICS | 0.701 | 0.565–0.837 | 0.009 | 0.72 | 0.64 | 79.2 | 50.0 | 18 | 53 | 0.28 | 0.81 | 0.27 |
CP + RADIOMICS | 0.719 | 0.550–0.828 | 0.013 | 0.76 | 0.71 | 84.2 | 57.1 | 21 | 50 | 0.42 | 0.83 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiseenko, F.; Radulovic, M.; Tsvetkova, N.; Chernobrivceva, V.; Gabina, A.; Oganesian, A.; Makarkina, M.; Elsakova, E.; Krasavina, M.; Barsova, D.; et al. Baseline Radiomics as a Prognostic Tool for Clinical Benefit from Immune Checkpoint Inhibition in Inoperable NSCLC Without Activating Mutations. Cancers 2025, 17, 1790. https://doi.org/10.3390/cancers17111790
Moiseenko F, Radulovic M, Tsvetkova N, Chernobrivceva V, Gabina A, Oganesian A, Makarkina M, Elsakova E, Krasavina M, Barsova D, et al. Baseline Radiomics as a Prognostic Tool for Clinical Benefit from Immune Checkpoint Inhibition in Inoperable NSCLC Without Activating Mutations. Cancers. 2025; 17(11):1790. https://doi.org/10.3390/cancers17111790
Chicago/Turabian StyleMoiseenko, Fedor, Marko Radulovic, Nadezhda Tsvetkova, Vera Chernobrivceva, Albina Gabina, Any Oganesian, Maria Makarkina, Ekaterina Elsakova, Maria Krasavina, Daria Barsova, and et al. 2025. "Baseline Radiomics as a Prognostic Tool for Clinical Benefit from Immune Checkpoint Inhibition in Inoperable NSCLC Without Activating Mutations" Cancers 17, no. 11: 1790. https://doi.org/10.3390/cancers17111790
APA StyleMoiseenko, F., Radulovic, M., Tsvetkova, N., Chernobrivceva, V., Gabina, A., Oganesian, A., Makarkina, M., Elsakova, E., Krasavina, M., Barsova, D., Artemeva, E., Khenshtein, V., Levchenko, N., Chubenko, V., Egorenkov, V., Volkov, N., Bogdanov, A., & Moiseyenko, V. (2025). Baseline Radiomics as a Prognostic Tool for Clinical Benefit from Immune Checkpoint Inhibition in Inoperable NSCLC Without Activating Mutations. Cancers, 17(11), 1790. https://doi.org/10.3390/cancers17111790