Synergistic Effects of Cryotherapy and Radiotherapy in Glioblastoma Treatment: Evidence from a Murine Model
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Ethical Considerations and Animal Model
2.3. Cryotherapy
2.4. Irradiation
2.5. Magnetic Resonance Imaging
2.6. Histology and Immunofluorescence Analysis
2.7. Statistical Analysis
3. Results
3.1. Tumor Monitoring Using Caliper Measurements and MRI: There Is an Impact of Combining Cryotherapy and Radiotherapy
3.2. Mice Survival: A Significantly Increased Survival Was Observed in CRYO-RT Group Compared to Other Treatment Groups
3.3. MRI Analysis: Prediction of Treatment Effectiveness
3.3.1. Tumor Heterogeneity
3.3.2. Evolution of Mean ADC Values
3.4. Histological Analysis: Confirmation of Complete Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Apparent Diffusion Coefficient |
CRYO | Cryotherapy |
CRYO-RT | Cryotherapy and radiotherapy |
CTRL | Control |
GBM | Glioblastoma |
GFAP | Glial fibrillary acid protein |
MRI | Magnetic Resonance Imaging |
RT | Radiotherapy |
T2WI | Transversal relaxation time-weighted axial images |
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Krigers, A.; Pinggera, D.; Demetz, M.; Kornberger, L.M.; Kerschbaumer, J.; Thome, C.; Freyschlag, C.F. The Routine Application of Tumor-Treating Fields in the Treatment of Glioblastoma WHO degrees IV. Front. Neurol. 2022, 13, 900377. [Google Scholar] [CrossRef]
- Hager, J.; Herrmann, E.; Kammerer, S.; Dinc, N.; Won, S.Y.; Senft, C.; Seifert, V.; Marquardt, G.; Quick-Weller, J. Impact of resection on overall survival of recurrent Glioblastoma in elderly patients. Clin. Neurol. Neurosurg. 2018, 174, 21–25. [Google Scholar] [CrossRef]
- Yazici, G.; Cengiz, M.; Ozyigit, G.; Eren, G.; Yildiz, F.; Akyol, F.; Gurkaynak, M.; Zorlu, F. Hypofractionated stereotactic reirradiation for recurrent glioblastoma. J. Neurooncol 2014, 120, 117–123. [Google Scholar] [CrossRef]
- McBain, C.; Lawrie, T.A.; Rogozinska, E.; Kernohan, A.; Robinson, T.; Jefferies, S. Treatment options for progression or recurrence of glioblastoma: A network meta-analysis. Cochrane Database Syst. Rev. 2021, 5, CD013579. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef] [PubMed]
- Metellus, P.; Coulibaly, B.; Nanni, I.; Fina, F.; Eudes, N.; Giorgi, R.; Barrie, M.; Chinot, O.; Fuentes, S.; Dufour, H.; et al. Prognostic impact of O6-methylguanine-DNA methyltransferase silencing in patients with recurrent glioblastoma multiforme who undergo surgery and carmustine wafer implantation: A prospective patient cohort. Cancer 2009, 115, 4783–4794. [Google Scholar] [CrossRef]
- Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; O’Rourke, D.M.; Tran, D.D.; Fink, K.L.; Nabors, L.B.; Li, G.; Bota, D.A.; Lukas, R.V.; et al. Rindopepimut with Bevacizumab for Patients with Relapsed EGFRvIII-Expressing Glioblastoma (ReACT): Results of a Double-Blind Randomized Phase II Trial. Clin. Cancer Res. 2020, 26, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, A.; Chauvet, D.; Reina, V.; Beccaria, K.; Leclerq, D.; McNichols, R.J.; Gowda, A.; Cornu, P.; Delattre, J.Y. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg. Med. 2012, 44, 361–368. [Google Scholar] [CrossRef]
- Morello, A.; Bianconi, A.; Rizzo, F.; Bellomo, J.; Meyer, A.C.; Garbossa, D.; Regli, L.; Cofano, F. Laser Interstitial Thermotherapy (LITT) in Recurrent Glioblastoma: What Window of Opportunity for This Treatment? Technol. Cancer Res. Treat. 2024, 23. [Google Scholar] [CrossRef]
- Tan, A.C.; Ashley, D.M.; Lopez, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Niyazi, M.; Andratschke, N.; Bendszus, M.; Chalmers, A.J.; Erridge, S.C.; Galldiks, N.; Lagerwaard, F.J.; Navarria, P.; Munck Af Rosenschold, P.; Ricardi, U.; et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 2023, 184, 109663. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Bou-Gharios, J.; Noel, G.; Burckel, H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol. 2024, 22, 278. [Google Scholar] [CrossRef]
- Andratschke, N.; Heusel, A.; Albert, N.L.; Alongi, F.; Baumert, B.G.; Belka, C.; Castellano, A.; Dhermain, F.; Erridge, S.C.; Grosu, A.-L.; et al. ESTRO/EANO recommendation on reirradiation of glioblastoma. Radiother. Oncol. 2025, 204, 110696. [Google Scholar] [CrossRef]
- Cazzato, R.L.; Garnon, J.; Ramamurthy, N.; Koch, G.; Tsoumakidou, G.; Caudrelier, J.; Arrigoni, F.; Zugaro, L.; Barile, A.; Masciocchi, C.; et al. Percutaneous image-guided cryoablation: Current applications and results in the oncologic field. Med. Oncol. 2016, 33, 140. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, R.L.; Auloge, P.; Dalili, D.; De Marini, P.; Di Marco, A.; Garnon, J.; Gangi, A. Percutaneous Image-Guided Cryoablation of Osteoblastoma. AJR Am. J. Roentgenol. 2019, 213, 1157–1162. [Google Scholar] [CrossRef]
- Cazzato, R.L.; Garnon, J.; Shaygi, B.; Tsoumakidou, G.; Caudrelier, J.; Koch, G.; Gangi, A. How to Perform a Routine Cryoablation Under MRI Guidance. Top. Magn. Reson. Imaging 2018, 27, 33–38. [Google Scholar] [CrossRef]
- Cebula, H.; Noel, G.; Garnon, J.; Todeschi, J.; Burckel, H.; de Mathelin, M.; Gangi, A.; Proust, F. The Cryo-immunologic effect: A therapeutic advance in the treatment of glioblastomas? Neurochirurgie 2020, 66, 455–460. [Google Scholar] [CrossRef]
- Sabel, M.S. Cryo-immunology: A review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 2009, 58, 1–11. [Google Scholar] [CrossRef]
- Gage, A.A.; Baust, J. Mechanisms of tissue injury in cryosurgery. Cryobiology 1998, 37, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. Fsl. Neuroimage 2012, 62, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Tournier, J.D.; Smith, R.; Raffelt, D.; Tabbara, R.; Dhollander, T.; Pietsch, M.; Christiaens, D.; Jeurissen, B.; Yeh, C.H.; Connelly, A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 2019, 202, 116137. [Google Scholar] [CrossRef]
- He, X.Z.; Wang, Q.F.; Han, S.; Wang, H.Q.; Ye, Y.Y.; Zhu, Z.Y.; Zhang, S.Z. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes. Drug Des. Devel Ther. 2015, 9, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, J.P.; Weissenberger, J.; Aguzzi, A. Distinct phases of cryogenic tissue damage in the cerebral cortex of wild-type and c-fos deficient mice. Neuropathol. Appl. Neurobiol. 1999, 25, 468–480. [Google Scholar] [CrossRef]
- Wu, Y.; Song, Y.; Wang, R.; Wang, T. Molecular mechanisms of tumor resistance to radiotherapy. Mol. Cancer 2023, 22, 96. [Google Scholar] [CrossRef]
- Ali, M.Y.; Oliva, C.R.; Noman, A.S.M.; Allen, B.G.; Goswami, P.C.; Zakharia, Y.; Monga, V.; Spitz, D.R.; Buatti, J.M.; Griguer, C.E. Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers 2020, 12, 2511. [Google Scholar] [CrossRef]
- Huang, K.M.; Peng, M.; Feng, Y.Q.; Huang, H.; Tu, H.J.; Luo, J.; Zhang, L.; Yuan, X.H.; Wang, L.C. Cryosurgery and rhTNF-alpha play synergistic effects on a rat cortex C6 glioma model. Cryobiology 2012, 64, 43–49. [Google Scholar] [CrossRef]
- Chung, W.J.; Chung, H.W.; Shin, M.J.; Lee, S.H.; Lee, M.H.; Lee, J.S.; Kim, M.J.; Lee, W.K. MRI to differentiate benign from malignant soft-tissue tumours of the extremities: A simplified systematic imaging approach using depth, size and heterogeneity of signal intensity. Br. J. Radiol. 2012, 85, e831–e836. [Google Scholar] [CrossRef]
- Hu, L.S.; Hawkins-Daarud, A.; Wang, L.; Li, J.; Swanson, K.R. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett. 2020, 477, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Booth, T.C.; Larkin, T.J.; Yuan, Y.; Kettunen, M.I.; Dawson, S.N.; Scoffings, D.; Canuto, H.C.; Vowler, S.L.; Kirschenlohr, H.; Hobson, M.P.; et al. Analysis of heterogeneity in T2-weighted MR images can differentiate pseudoprogression from progression in glioblastoma. PLoS ONE 2017, 12, e0176528. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.M.; Collins, D.J. Diffusion-weighted MRI in the body: Applications and challenges in oncology. AJR Am. J. Roentgenol. 2007, 188, 1622–1635. [Google Scholar] [CrossRef] [PubMed]
- Moffat, B.A.; Hall, D.E.; Stojanovska, J.; McConville, P.J.; Moody, J.B.; Chenevert, T.L.; Rehemtulla, A.; Ross, B.D. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. MAGMA 2004, 17, 249–259. [Google Scholar] [CrossRef]
- Fiordelisi, M.F.; Auletta, L.; Meomartino, L.; Basso, L.; Fatone, G.; Salvatore, M.; Mancini, M.; Greco, A. Preclinical Molecular Imaging for Precision Medicine in Breast Cancer Mouse Models. Contrast Media Mol. Imaging 2019, 2019, 8946729. [Google Scholar] [CrossRef]
- Yamasaki, F.; Sugiyama, K.; Ohtaki, M.; Takeshima, Y.; Abe, N.; Akiyama, Y.; Takaba, J.; Amatya, V.J.; Saito, T.; Kajiwara, Y.; et al. Glioblastoma treated with postoperative radio-chemotherapy: Prognostic value of apparent diffusion coefficient at MR imaging. Eur. J. Radiol. 2010, 73, 532–537. [Google Scholar] [CrossRef]
- Mallereau, C.H.; Baloglu, S.; Chibbaro, S.; Noblet, V.; Todeschi, J.; Noel, G.; Gangi, A.; De Mathelin, M.; Proust, F.; Cebula, H. Does interventional MRI-guided brain cryotherapy cause a blood-brain barrier disruption? Radiological analysis and perspectives. Neurosurg. Rev. 2022, 45, 1421–1429. [Google Scholar] [CrossRef]
- Beccaria, K.; Canney, M.; Bouchoux, G.; Desseaux, C.; Grill, J.; Heimberger, A.B.; Carpentier, A. Ultrasound-induced blood-brain barrier disruption for the treatment of gliomas and other primary CNS tumors. Cancer Lett. 2020, 479, 13–22. [Google Scholar] [CrossRef]
- Cebula, H.; Garnon, J.; Todeschi, J.; Noel, G.; Lhermitte, B.; Mallereau, C.H.; Chibbaro, S.; Burckel, H.; Schott, R.; de Mathelin, M.; et al. Interventional magnetic-resonance-guided cryotherapy combined with microsurgery for recurrent glioblastoma: An innovative treatment? Neurochirurgie 2022, 68, 267–272. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebula, H.; Po, C.; Mura, C.; Lhermitte, B.; Cazzato, R.L.; Rame, M.; Le Fèvre, C.; Todeschi, J.; Mallereau, C.-H.; Gangi, A.; et al. Synergistic Effects of Cryotherapy and Radiotherapy in Glioblastoma Treatment: Evidence from a Murine Model. Cancers 2025, 17, 1692. https://doi.org/10.3390/cancers17101692
Cebula H, Po C, Mura C, Lhermitte B, Cazzato RL, Rame M, Le Fèvre C, Todeschi J, Mallereau C-H, Gangi A, et al. Synergistic Effects of Cryotherapy and Radiotherapy in Glioblastoma Treatment: Evidence from a Murine Model. Cancers. 2025; 17(10):1692. https://doi.org/10.3390/cancers17101692
Chicago/Turabian StyleCebula, Hélène, Chrystelle Po, Carole Mura, Benoit Lhermitte, Roberto Luigi Cazzato, Marion Rame, Clara Le Fèvre, Julien Todeschi, Charles-Henry Mallereau, Afshin Gangi, and et al. 2025. "Synergistic Effects of Cryotherapy and Radiotherapy in Glioblastoma Treatment: Evidence from a Murine Model" Cancers 17, no. 10: 1692. https://doi.org/10.3390/cancers17101692
APA StyleCebula, H., Po, C., Mura, C., Lhermitte, B., Cazzato, R. L., Rame, M., Le Fèvre, C., Todeschi, J., Mallereau, C.-H., Gangi, A., Noël, G., de Mathelin, M., Proust, F., & Burckel, H. (2025). Synergistic Effects of Cryotherapy and Radiotherapy in Glioblastoma Treatment: Evidence from a Murine Model. Cancers, 17(10), 1692. https://doi.org/10.3390/cancers17101692