Characterization of Incidental Pathogenic Germline Findings Detected via ctDNA among Patients with Non-Small Cell Lung Cancer in a Predominantly Hispanic/Latinx Population
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernandez-Martinez, J.-M.; Rosell, R.; Arrieta, O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit. Rev. Oncol./Hematol. 2023, 188, 104058. [Google Scholar] [CrossRef]
- McKay, J.D.; Hung, R.J.; Han, Y.; Zong, X.; Carreras-Torres, R.; Christiani, D.C.; Caporaso, N.E.; Johansson, M.; Xiao, X.; Li, Y.; et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat. Genet. 2017, 49, 1126–1132. [Google Scholar] [CrossRef]
- Sorscher, S. Germline Testing of Patients with Non-small Cell Lung Cancers Demonstrating Incidentally Uncovered BRCA2 Apparent Pathogenic Germline Variants. Clin. Lung Cancer 2022, 23, e405–e407. [Google Scholar] [CrossRef]
- Benusiglio, P.R.; Fallet, V.; Sanchis-Borja, M.; Coulet, F.; Cadranel, J. Lung cancer is also a hereditary disease. Eur. Respir. Rev. 2021, 30, 210045. [Google Scholar] [CrossRef]
- Amadou, A.; Waddington Achatz, M.I.; Hainaut, P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: Temporal phases of Li–Fraumeni syndrome. Curr. Opin. Oncol. 2018, 30, 23–29. [Google Scholar] [CrossRef]
- Caron, O.; Frebourg, T.; Benusiglio, P.R.; Foulon, S.; Brugieres, L. Lung Adenocarcinoma as Part of the Li-Fraumeni Syndrome Spectrum: Preliminary Data of the LIFSCREEN Randomized Clinical Trial. JAMA Oncol. 2017, 3, 1736–1737. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Pecot, C.V.; Tran, H.T.; DeVito, V.J.; Tang, X.M.; Heymach, J.V.; Luthra, R.; Wistuba, I.I.; Zuo, Z.; Tsao, A.S. Germline Mutation of T790M and Dual/Multiple EGFR Mutations in Patients with Lung Adenocarcinoma. Clin. Lung Cancer 2016, 17, e5–e11. [Google Scholar] [CrossRef] [PubMed]
- de Alencar, V.T.L.; Formiga, M.N.; de Lima, V.C.C. Inherited lung cancer: A review. Ecancermedicalscience 2020, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.A.; Arcila, M.E.; Fleischut, M.H.; Stadler, Z.; Ladanyi, M.; Berger, M.F.; Robson, M.; Riely, G.J. Germline EGFR T790M mutation found in multiple members of a familial cohort. J. Thorac. Oncol. 2014, 9, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Kim, J.-H.; Kim, S.K.; Ha, S.-J.; Mok, T.S.; Mitsudomi, T.; Cho, B.C. Lung cancer in never smokers: Change of a mindset in the molecular era. Lung Cancer 2011, 72, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, F.; Martins, R.; Sorscher, S.; Bzura, A.; Dudbridge, F.; Fennell, D.A. Family Matters: Germline Testing in Thoracic Cancers. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389956. [Google Scholar] [CrossRef]
- Srinivasan, P.; Bandlamudi, C.; Jonsson, P.; Kemel, Y.; Chavan, S.S.; Richards, A.L.; Penson, A.V.; Bielski, C.M.; Fong, C.; Syed, A.; et al. The context-specific role of germline pathogenicity in tumorigenesis. Nat. Genet. 2021, 53, 1577–1585. [Google Scholar] [CrossRef]
- Oxnard, G.R.; Chen, R.; Pharr, J.C.; Koeller, D.R.; Bertram, A.A.; Dahlberg, S.E.; Rainville, I.; Shane-Carson, K.; Taylor, K.A.; Sable-Hunt, A.; et al. Germline EGFR Mutations and Familial Lung Cancer. J. Clin. Oncol. 2023, 41, 5274–5284. [Google Scholar] [CrossRef]
- Sorscher, S.; LoPiccolo, J.; Chen, E.; Heald, B.; Michalski, S.T.; Nielsen, S.M.; Nussbaum, R.L.; Martins, R.G.; Esplin, E.D. Landscape of pathogenic germline variants in patients with lung cancer. J. Clin. Oncol. 2022, 40, 388570. [Google Scholar] [CrossRef]
- Joanne Jeter, M.; Sommer Hayden, L.C.G.C. ASCO-SEP; ASCO Education: Alexandria, VA, USA, 2023; Chapter 6; pp. 1–55. [Google Scholar]
- Offit, K.; Kohut, K.; Clagett, B.; Wadsworth, E.A.; Lafaro, K.J.; Cummings, S.; White, M.; Sagi, M.; Bernstein, D.; Davis, J.G. Cancer genetic testing and assisted reproduction. J. Clin. Oncol. 2006, 24, 4775–4782. [Google Scholar] [CrossRef]
- Lincoln, S.E.; Nussbaum, R.L.; Kurian, A.W.; Nielsen, S.M.; Das, K.; Michalski, S.; Yang, S.; Ngo, N.; Blanco, A.; Esplin, E.D. Yield and Utility of Germline Testing Following Tumor Sequencing in Patients with Cancer. JAMA Netw. Open 2020, 3, e2019452. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.A.O.; Achatz, M.I.; Hurtado, M.; Sanabria-Salas, M.C.; Sullcahuaman, Y.; Chávarri-Guerra, Y.; Dutil, J.; Nielsen, S.M.; Esplin, E.D.; Michalski, S.T.; et al. Germline Pathogenic Variant Prevalence Among Latin American and US Hispanic Individuals Undergoing Testing for Hereditary Breast and Ovarian Cancer: A Cross-Sectional Study. JCO Glob. Oncol. 2022, 8, e2200104. [Google Scholar] [CrossRef] [PubMed]
- Cerrato-Izaguirre, D.; Chirino, Y.I.; García-Cuellar, C.M.; Santibáñez-Andrade, M.; Prada, D.; Hernández-Guerrero, A.; Larraga, O.A.; Camacho, J.; Sánchez-Pérez, Y. Mutational landscape of gastric adenocarcinoma in Latin America: A genetic approach for precision medicine. Genes Dis. 2022, 9, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Raez, L.E.; Cardona, A.F.; Arrieta, O.; Lopes, G. Lung Cancer Disparities in Hispanics: Molecular Diagnosis and Use of Immunotherapy. JCO Glob. Oncol. 2020, 6, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Odegaard, J.I.; Vincent, J.J.; Mortimer, S.; Vowles, J.V.; Ulrich, B.C.; Banks, K.C.; Fairclough, S.R.; Zill, O.A.; Sikora, M.; Mokhtari, R.; et al. Validation of a Plasma-Based Comprehensive Cancer Genotyping Assay Utilizing Orthogonal Tissue- and Plasma-Based Methodologies. Clin. Cancer Res. 2018, 24, 3539–3549. [Google Scholar] [CrossRef]
- Lanman, R.B.; Mortimer, S.A.; Zill, O.A.; Sebisanovic, D.; Lopez, R.; Blau, S.; Collisson, E.A.; Divers, S.G.; Hoon, D.S.B.; Kopetz, E.S.; et al. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PLoS ONE 2015, 10, e0140712. [Google Scholar] [CrossRef]
- Hu, Y.; Alden, R.S.; Odegaard, J.I.; Fairclough, S.R.; Chen, R.; Heng, J.; Feeney, N.; Nagy, R.J.; Shah, J.; Ulrich, B.; et al. Discrimination of Germline EGFR T790M Mutations in Plasma Cell-Free DNA Allows Study of Prevalence Across 31,414 Cancer Patients. Clin. Cancer Res. 2017, 23, 7351–7359. [Google Scholar] [CrossRef]
- Slavin, T.P.; Banks, K.C.; Chudova, D.; Oxnard, G.R.; Odegaard, J.I.; Nagy, R.J.; Tsang, K.W.K.; Neuhausen, S.L.; Gray, S.W.; Cristofanilli, M.; et al. Identification of Incidental Germline Mutations in Patients with Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing. J. Clin. Oncol. 2018, 36, 3459–3465. [Google Scholar] [CrossRef]
- Vidula, N.; Rich, T.A.; Sartor, O.; Yen, J.; Hardin, A.; Nance, T.; Lilly, M.B.; Nezami, M.A.; Patel, S.P.; Carneiro, B.A.; et al. Routine Plasma-Based Genotyping to Comprehensively Detect Germline, Somatic, and Reversion BRCA Mutations among Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020, 26, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Oak, N.; Network, T.A.; Cherniack, A.D.; Mashl, R.J.; Hirsch, F.R.; Ding, L.; Beroukhim, R.; Gümüş, Z.H.; Plon, S.E.; Huang, K.-L. Ancestry-specific predisposing germline variants in cancer. Genome Med. 2020, 12, 51. [Google Scholar] [CrossRef]
- Liu, M.; Niu, X.; Liu, H.; Chen, J. Germline EGFR mutations in lung cancer (Review). Oncol. Lett. 2023, 26, 282. [Google Scholar] [CrossRef]
- Ramamurthy, C.; Stutz, E.W.; Goros, M.; Gelfond, J.; Johnson-Pais, T.L.; Thompson, I.M.; Leach, R.J.; Liss, M.A. Hereditary Cancer Gene Variants in Hispanic Men with a Personal or Family History of Prostate Cancer. Clin. Genitourin. Cancer 2022, 20, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bandlamudi, C.; Hellmann, M.D.; Kemel, Y.; Drill, E.; Rizvi, H.; Tkachuk, K.; Khurram, A.; Walsh, M.F.; Zauderer, M.G.; et al. Germline Pathogenic Variants Impact Clinicopathology of Advanced Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Longo, M.; Novello, S. Nonsmall cell lung cancer in never smokers. Curr. Opin. Oncol. 2009, 21, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Smolle, E.; Pichler, M. Non-Smoking-Associated Lung Cancer: A distinct Entity in Terms of Tumor Biology, Patient Characteristics and Impact of Hereditary Cancer Predisposition. Cancers 2019, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, M.; Ding, X.-J.; Cao, Y. Familial risk for lung cancer. Oncol. Lett. 2017, 13, 535–542. [Google Scholar] [CrossRef]
- Edmondson, S.; von Itzstein, M.S.; Reys, B.; Mayer, M.; Gagan, J.; Gerber, D.E. Distinct NSCLC EGFR Variants in a Family with Li-Fraumeni Syndrome: Case Report. JTO Clin. Res. Rep. 2022, 3, 100368. [Google Scholar] [CrossRef]
- Michalarea, V.; Calcasola, M.; Cane, P.; Tobal, K.; Izatt, L.; Spicer, J. EGFR-mutated lung cancer in Li-Fraumeni syndrome. Lung Cancer 2014, 85, 485–487. [Google Scholar] [CrossRef]
- Mezquita, L.; Jové, M.; Nadal, E.; Kfoury, M.; Morán, T.; Ricordel, C.; Dhooge, M.; Tlemsani, C.; Léna, H.; Teulé, A.; et al. High Prevalence of Somatic Oncogenic Driver Alterations in Patients with NSCLC and Li-Fraumeni Syndrome. J. Thorac. Oncol. 2020, 15, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, E.; Gelatti, A.C.; Araujo, L.H.; Baldotto, C.; Mathias, C.; Zukin, M.; Werutsky, G.; Pacheco, P.; Gomes, R.; de Castro, G., Jr.; et al. Comprehensive genomic profiling of Brazilian non-small cell lung cancer patients (GBOT 0118/LACOG0418). Thorac. Cancer 2021, 12, 580–587. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Suo, P.; Gong, Y.; Qu, B.; Peng, X.; Xiao, W.; Li, Y.; Chen, Y.; Zeng, Z.; et al. The contribution of hereditary cancer-related germline mutations to lung cancer susceptibility. Transl. Lung Cancer Res. 2020, 9, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, Y.; Wang, L.; Cui, F.; Zhang, L.; Xiong, J.; Peng, H. Characteristics of BRCA1/2 pathogenic germline mutations in chinese NSCLC patients and a comparison with HBOC. Hered. Cancer Clin Pract. 2021, 19, 16. [Google Scholar] [CrossRef]
- Huang, K.L.; Mashl, R.J.; Wu, Y.; Ritter, D.I.; Wang, J.; Oh, C.; Paczkowska, M.; Reynolds, S.; Wyczalkowski, M.A.; Oak, N.; et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 2018, 173, 355–370.e14. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Xie, M.; Wendl, M.C.; Wang, J.; McLellan, M.D.; Leiserson, M.D.M.; Huang, K.-L.; Wyczalkowski, M.A.; Jayasinghe, R.; Banerjee, T.; et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat. Commun. 2015, 6, 10086. [Google Scholar] [CrossRef]
- Selvan, M.E.; Zauderer, M.G.; Rudin, C.M.; Jones, S.; Mukherjee, S.; Offit, K.; Onel, K.; Rennert, G.; Velculescu, V.E.; Lipkin, S.M.; et al. Inherited Rare, Deleterious Variants in ATM Increase Lung Adenocarcinoma Risk. J. Thorac. Oncol. 2020, 15, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Parry, E.M.; Gable, D.L.; Stanley, S.E.; Khalil, S.E.; Antonescu, V.; Florea, L.; Armanios, M. Germline Mutations in DNA Repair Genes in Lung Adenocarcinoma. J. Thorac. Oncol. 2017, 12, 1673–1678. [Google Scholar] [CrossRef]
- Tung, N.; Dougherty, K.C.; Gatof, E.S.; DeLeonardis, K.; Hogan, L.; Tukachinsky, H.; Gornstein, E.; Oxnard, G.R.; McGregor, K.; Keller, R.B. Potential pathogenic germline variant reporting from tumor comprehensive genomic profiling complements classic approaches to germline testing. NPJ Precis. Oncol. 2023, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Kuzbari, Z.; Bandlamudi, C.; Loveday, C.; Garrett, A.; Mehine, M.; George, A.; Hanson, H.; Snape, K.; Kulkarni, A.; Allen, S.; et al. Germline-focused analysis of tumour-detected variants in 49,264 cancer patients: ESMO Precision Medicine Working Group recommendations. Ann. Oncol. 2023, 34, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Paluch-Shimon, S.; Evron, E. Targeting DNA repair in breast cancer. Breast 2019, 47, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Besse, B.; Leary, A.; Bièche, I.; Job, B.; Lacroix, L.; Auguste, A.; Mauduit, M.; Audigier-Valette, C.; Raimbourg, J.; et al. Somatic and Germline BRCA 1 and 2 Mutations in Advanced NSCLC From the SAFIR02-Lung Trial. JTO Clin. Res. Rep. 2020, 1, 100068. [Google Scholar] [CrossRef] [PubMed]
- Fennell, D.A.; Porter, C.; Lester, J.; Danson, S.; Blackhall, F.; Nicolson, M.; Nixon, L.; Gardner, G.; White, A.; Griffiths, G.; et al. Olaparib maintenance versus placebo monotherapy in patients with advanced non-small cell lung cancer (PIN): A multicentre, randomised, controlled, phase 2 trial. EClinicalMedicine 2022, 52, 101595. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Lee, Y.C.; Li, C.Y.; Lee, Y.L.; Chen, B.L. BRCA1 and BRCA2 Gene Mutations and Lung Cancer Sisk: A Meta-Analysis. Medicina 2020, 56, 212. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, D.; Li, Y.; Li, L.; Wang, Y.; Chen, P.; Xu, S.; Pu, X.; Zhu, W.; Deng, P.; et al. Prevalence and clinical significance of pathogenic germline BRCA1/2 mutations in Chinese non-small cell lung cancer patients. Cancer Biol. Med. 2019, 16, 556–564. [Google Scholar] [CrossRef]
- Kadouri, L.; Rottenberg, Y.; Zick, A.; Hamburger, T.; Lipson, D.; Peretz, T.; Nechushtan, H. Homologous recombination in lung cancer, germline and somatic mutations, clinical and phenotype characterization. Lung Cancer 2019, 137, 48–51. [Google Scholar] [CrossRef]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef]
- Husain, H.; Pavlick, D.C.; Fendler, B.J.; Madison, R.W.; Decker, B.; Gjoerup, O.; Parachoniak, C.A.; McLaughlin-Drubin, M.; Erlich, R.L.; Schrock, A.B.; et al. Tumor Fraction Correlates with Detection of Actionable Variants Across > 23,000 Circulating Tumor DNA Samples. JCO Precis Oncol. 2022, 6, e2200261. [Google Scholar] [CrossRef]
- Pascual, J.; Attard, G.; Bidard, F.-C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.; Montagut, C.; et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef]
- Keller, L.; Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 2019, 19, 553–567. [Google Scholar] [CrossRef]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef]
- Lerro, C.C.; Bradley, M.C.; Forshee, R.A.; Rivera, D.R. The Bar Is High: Evaluating Fit-for-Use Oncology Real-World Data for Regulatory Decision Making. JCO Clin. Cancer Inform. 2024, 8, e2300261. [Google Scholar] [CrossRef] [PubMed]
- 2023 Demographics. Summary Data for County: Miami-Dade 2023. Available online: https://www.miamidadematters.org/demographicdata (accessed on 12 November 2023).
- Pinheiro, P.S.; Callahan, K.E.; Koru-Sengul, T.; Ransdell, J.; Bouzoubaa, L.; Brown, C.P.; Kobetz, E. Risk of Cancer Death among White, Black, and Hispanic Populations in South Florida. Prev. Chronic Dis. 2019, 16, E83. [Google Scholar] [CrossRef]
- Berchuck, J.E.; Boiarsky, D.; Silver, R.; Sunkara, R.; McClure, H.M.; Tsai, H.K.; Siegmund, S.; Tewari, A.K.; Nowak, J.A.; Lindeman, N.I.; et al. Addition of Germline Testing to Tumor-Only Sequencing Improves Detection of Pathogenic Germline Variants in Men with Advanced Prostate Cancer. JCO Precis. Oncol. 2022, 6, e2200329. [Google Scholar] [CrossRef] [PubMed]
- Raez, L.E.; Cardona, A.F.; Lopes, G.; Arrieta, O. Challenges in Genetic Testing and Treatment Outcomes among Hispanics with Lung Cancer. JCO Oncol. Pract. 2022, 18, 374–377. [Google Scholar] [CrossRef] [PubMed]
Total (%) | iPGVs (%) | |
---|---|---|
Race | ||
American Indian/Alaska Native | 1 (0.11%) | 0 |
Asian | 21 (2.39%) | 0 |
Black | 79 (9.00%) | 2 (9.52%) |
Multiple | 5 (0.60%) | 0 |
White | 759 (86.45%) | 19 (90.48%) |
Unknown | 11 (1.25%) | 0 |
Other | 2 (0.23%) | 0 |
Ethnicity | ||
Hispanic/Latinx | 433 (49.32%) | 11 (52.38%) |
Ashkenazi Jewish | 63 (7.18%) | 4 (19.05%) |
Hispanic/Latinx and Ashkenazi Jewish | 4 (0.46%) | 0 |
Not Hispanic/Latinx or Ashkenazi Jewish | 364 (41.46%) | 6 (28.57%) |
Unknown | 14 (1.59%) | 0 |
Total | 878 (100%) | 21 (100%) |
Total iPGVs | n = 21 (%) |
---|---|
ATM | 10 (47.6%) |
A1299fs | 1 (10%) |
E1751fs | 1 (10%) |
K468fs | 1 (10%) |
R1882 | 1 (10%) |
R2832C | 1 (10%) |
R3008C | 1 (10%) |
Q1970 | 1 (10%) |
Splice Site SNV | 3 (30%) |
BRCA2 | 8 (38.1%) |
E1308 | 1 (12.5%) |
K1530 | 1 (12.5%) |
N257fs | 1 (12.5%) |
Q2042 | 1 (12.5%) |
Q2943fs | 1 (12.5%) |
S142I | 1 (12.5%) |
S1882 | 1 (12.5%) |
T1707fs | 1 (12.5%) |
BRCA1 | 3 (14.3%) |
K894fs | 1 (33.3%) |
L392fs | 1 (33.3%) |
T276fs | 1 (33.3%) |
Total Alterations in Targetable Genes | 9 (24.9% total) |
EGFR | 6 (28.6% total) |
EGFR L858 | 1 (16.7%) |
EGFR exon 19 deletion | 1 (16.7%) |
EGFR exon 20 insertion | 1 (16.7%) |
EGFR other | 3 (50%) |
BRAF V600E | 1 (4.8% total) |
BRAF V600E | 1 (100%) |
KRAS | 2 (9.5% total) |
KRAS G12V | 1 (50%) |
KRAS L19F | 1 (50%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallabhaneni, E.; Kareff, S.A.; Barnett, R.M.; Drusbosky, L.M.; Dalal, S.; Raez, L.E.; Santos, E.S.; Albrecht, F.; Cusnir, M.; Rodriguez, E. Characterization of Incidental Pathogenic Germline Findings Detected via ctDNA among Patients with Non-Small Cell Lung Cancer in a Predominantly Hispanic/Latinx Population. Cancers 2024, 16, 1150. https://doi.org/10.3390/cancers16061150
Vallabhaneni E, Kareff SA, Barnett RM, Drusbosky LM, Dalal S, Raez LE, Santos ES, Albrecht F, Cusnir M, Rodriguez E. Characterization of Incidental Pathogenic Germline Findings Detected via ctDNA among Patients with Non-Small Cell Lung Cancer in a Predominantly Hispanic/Latinx Population. Cancers. 2024; 16(6):1150. https://doi.org/10.3390/cancers16061150
Chicago/Turabian StyleVallabhaneni, Esha, Samuel A. Kareff, Reagan M. Barnett, Leylah M. Drusbosky, Shivani Dalal, Luis E. Raez, Edgardo S. Santos, Federico Albrecht, Mike Cusnir, and Estelamari Rodriguez. 2024. "Characterization of Incidental Pathogenic Germline Findings Detected via ctDNA among Patients with Non-Small Cell Lung Cancer in a Predominantly Hispanic/Latinx Population" Cancers 16, no. 6: 1150. https://doi.org/10.3390/cancers16061150
APA StyleVallabhaneni, E., Kareff, S. A., Barnett, R. M., Drusbosky, L. M., Dalal, S., Raez, L. E., Santos, E. S., Albrecht, F., Cusnir, M., & Rodriguez, E. (2024). Characterization of Incidental Pathogenic Germline Findings Detected via ctDNA among Patients with Non-Small Cell Lung Cancer in a Predominantly Hispanic/Latinx Population. Cancers, 16(6), 1150. https://doi.org/10.3390/cancers16061150