Supplement Use and Increased Risks of Cancer: Unveiling the Other Side of the Coin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Vitamins
3.1. Vitamin A
3.2. Group B Vitamins
3.3. Vitamin E
4. Mineral Supplements
4.1. Calcium
4.2. Selenium
4.3. Zinc
5. Probiotics
6. Miscellaneous
6.1. Omega-3 Fatty Acids/Fish Oil Supplements
6.2. Nicotinamide Supplements
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crimmins, E.M. Lifespan and Healthspan: Past, Present, and Promise. Gerontologist 2015, 55, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Moskalev, A.A.; Aliper, A.M.; Smit-McBride, Z.; Buzdin, A.; Zhavoronkov, A. Genetics and epigenetics of aging and longevity. Cell Cycle 2014, 13, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Carlos-Reyes, Á.; López-González, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.A.; Astudillo-de la Vega, H.; de la Cruz, O.N.H.; López-Camarillo, C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Hardy, T.M.; Tollefsbol, T.O. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics 2011, 3, 503–518. [Google Scholar] [CrossRef]
- Reimers, C.D.; Knapp, G.; Reimers, A.K. Does physical activity increase life expectancy? A review of the literature. J. Aging Res. 2012, 2012, 243958. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.I.S.; Kaur, G. Nutrition, Food and Diet in Health and Longevity: We Eat What We Are. Nutrients 2022, 14, 5376. [Google Scholar] [CrossRef] [PubMed]
- Barrero, M.J.; Cejas, P.; Long, H.W.; de Molina, A.R. Nutritional Epigenetics in Cancer. Adv. Nutr. 2022, 13, 1748–1761. [Google Scholar] [CrossRef]
- Silver, W.L.; Perez, T.; Mayer, A.; Jones, A.R. The role of soil in the contribution of food and feed. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2021, 376, 20200181. [Google Scholar] [CrossRef]
- Cadwallader, A.B.; Council On, S.; Public Health, A. Which Features of Dietary Supplement Industry, Product Trends, and Regulation Deserve Physicians’ Attention? AMA J. Ethics 2022, 24, E410-418. [Google Scholar]
- Iye, R.; Okuhara, T.; Okada, H.; Yokota, R.; Kiuchi, T. A Content Analysis of Video Advertisements for Dietary Supplements in Japan. Healthcare 2021, 9, 742. [Google Scholar] [CrossRef]
- Rudzińska, A.; Juchaniuk, P.; Oberda, J.; Wiśniewska, J.; Wojdan, W.; Szklener, K.; Mańdziuk, S. Phytochemicals in Cancer Treatment and Cancer Prevention-Review on Epidemiological Data and Clinical Trials. Nutrients 2023, 15, 1896. [Google Scholar] [CrossRef]
- Mondul, A.M.; Watters, J.L.; Männistö, S.; Weinstein, S.J.; Snyder, K.; Virtamo, J.; Albanes, D. Serum Retinol and Risk of Prostate Cancer. Am. J. Epidemiol. 2011, 173, 813–821. [Google Scholar] [CrossRef]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L., Jr.; Valanis, B.; Williams, J.H., Jr.; et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J. Natl. Cancer Inst. 1996, 88, 1550–1559. [Google Scholar] [CrossRef]
- Klein, E.A.; Thompson, I.M.; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; et al. Vitamin E and the Risk of Prostate Cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011, 306, 1549–1556. [Google Scholar] [CrossRef]
- Brasky, T.M.; White, E.; Chen, C.L. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. J. Clin. Oncol. 2017, 35, 3440–3448. [Google Scholar] [CrossRef]
- Hirsch, S.; Sanchez, H.; Albala, C.; de la Maza, M.P.; Barrera, G.; Leiva, L.; Bunout, D. Colon cancer in Chile before and after the start of the flour fortification program with folic acid. Eur. J. Gastroenterol. Hepatol. 2009, 21, 436–439. [Google Scholar] [CrossRef]
- Chen, F.; Du, M.; Blumberg, J.B.; Ho Chui, K.K.; Ruan, M.; Rogers, G.; Shan, Z.; Zeng, L.; Zhang, F.F. Association Among Dietary Supplement Use, Nutrient Intake, and Mortality Among U.S. Adults: A Cohort Study. Ann. Intern. Med. 2019, 170, 604–613. [Google Scholar] [CrossRef]
- Kenfield, S.A.; Van Blarigan, E.L.; DuPre, N.; Stampfer, M.J.; Giovannucci, E.L.; Chan, J.M. Selenium supplementation and prostate cancer mortality. J. Natl. Cancer Inst. 2015, 107, 360. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, M.; Mucci, L.A.; Giovannucci, E.L. Zinc supplement use and risk of aggressive prostate cancer: A 30-year follow-up study. Eur. J. Epidemiol. 2022, 37, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Brasky, T.M.; Darke, A.K.; Song, X.; Tangen, C.M.; Goodman, P.J.; Thompson, I.M.; Meyskens, F.L., Jr.; Goodman, G.E.; Minasian, L.M.; Parnes, H.L.; et al. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J. Natl. Cancer Inst. 2013, 105, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, A.; Wahba, A.A.; El-Tonsy, M.; Zewail, A.A.; Shams Eldin, M. Recurrent respiratory infections and vitamin A levels: A link? It is cross-sectional. Medicine 2022, 101, e30108. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Niles, R.M. Recent advances in the use of vitamin A (retinoids) in the prevention and treatment of cancer. Nutrition 2000, 16, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Meyskens, F.L., Jr.; Omenn, G.S.; Valanis, B.; Williams, J.H., Jr. The Beta-Carotene and Retinol Efficacy Trial: Incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J. Natl. Cancer Inst. 2004, 96, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Boros, L.G. Population thiamine status and varying cancer rates between western, Asian and African countries. Anticancer Res. 2000, 20, 2245–2248. [Google Scholar] [PubMed]
- Liu, S.; Monks, N.R.; Hanes, J.W.; Begley, T.P.; Yu, H.; Moscow, J.A. Sensitivity of breast cancer cell lines to recombinant thiaminase I. Cancer Chemother. Pharmacol. 2010, 66, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Comín-Anduix, B.; Boren, J.; Martinez, S.; Moro, C.; Centelles, J.J.; Trebukhina, R.; Petushok, N.; Lee, W.N.; Boros, L.G.; Cascante, M. The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur. J. Biochem. 2001, 268, 4177–4182. [Google Scholar] [CrossRef]
- Daily, A.; Liu, S.; Bhatnagar, S.; Karabakhtsian, R.G.; Moscow, J.A. Low-thiamine diet increases mammary tumor latency in FVB/N-Tg(MMTVneu) mice. Int. J. Vitam. Nutr. Res. 2012, 82, 298–302. [Google Scholar] [CrossRef]
- Surjana, D.; Halliday, G.M.; Damian, D.L. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids 2010, 2010, 157591. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Luo, P.; Zeng, Z.; Wang, H.; Malafa, M.; Suh, N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol. Carcinog. 2020, 59, 365–389. [Google Scholar] [CrossRef]
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009, 301, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Zhukouskaya, V.V.; Bardet, C. Editorial: Calcium: An Overview from Physiology to Pathological Mineralization. Front. Endocrinol. 2022, 13, 932019. [Google Scholar] [CrossRef]
- Kieliszek, M.; Bano, I. Selenium as an important factor in various disease states—A review. EXCLI J. 2022, 21, 948–966. [Google Scholar]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Quigley, E.M. Gut bacteria in health and disease. Gastroenterol. Hepatol. 2013, 9, 560–569. [Google Scholar]
- Liu, Y.; Baba, Y.; Ishimoto, T.; Gu, X.; Zhang, J.; Nomoto, D.; Okadome, K.; Baba, H.; Qiu, P. Gut microbiome in gastrointestinal cancer: A friend or foe? Int. J. Biol. Sci. 2022, 18, 4101–4117. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef]
- Hezaveh, K.; Shinde, R.S.; Klötgen, A.; Halaby, M.J.; Lamorte, S.; Ciudad, M.T.; Quevedo, R.; Neufeld, L.; Liu, Z.Q.; Jin, R.; et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 2022, 55, 324–340.e8. [Google Scholar] [CrossRef]
- Wang, Z.; Snyder, M.; Kenison, J.E.; Yang, K.; Lara, B.; Lydell, E.; Bennani, K.; Novikov, O.; Federico, A.; Monti, S.; et al. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int. J. Mol. Sci. 2020, 22, 387. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.K. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Mol. Cells 2021, 44, 356–362. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 2018, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Allen, N.E.; Appleby, P.N.; Overvad, K.; Aardestrup, I.V.; Johnsen, N.F.; Tjønneland, A.; Linseisen, J.; Kaaks, R.; Boeing, H.; et al. Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2008, 88, 1353–1363. [Google Scholar] [CrossRef]
- Männistö, S.; Pietinen, P.; Virtanen, M.J.; Salminen, I.; Albanes, D.; Giovannucci, E.; Virtamo, J. Fatty acids and risk of prostate cancer in a nested case-control study in male smokers. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1422–1428. [Google Scholar]
- Harvei, S.; Bjerve, K.S.; Tretli, S.; Jellum, E.; Robsahm, T.E.; Vatten, L. Prediagnostic level of fatty acids in serum phospholipids: Omega-3 and omega-6 fatty acids and the risk of prostate cancer. Int. J. Cancer 1997, 71, 545–551. [Google Scholar] [CrossRef]
- Braidy, N.; Liu, Y. NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis. Exp. Gerontol. 2020, 132, 110831. [Google Scholar] [CrossRef]
- Odoh, C.K.; Guo, X.; Arnone, J.T.; Wang, X.; Zhao, Z.K. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022, 23, 169–199. [Google Scholar] [CrossRef]
- Shay, J.W. Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov. 2016, 6, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Demarest, T.G.; Babbar, M.; Okur, M.N.; Dan, X.; Croteau, D.L.; Fakouri, N.B.; Mattson, M.P.; Bohr, V.A. NAD+ Metabolism in Aging and Cancer. Annu. Rev. Cancer Biol. 2019, 3, 105–130. [Google Scholar] [CrossRef]
- Kim, S.Y. Cancer Energy Metabolism: Shutting Power off Cancer Factory. Biomol. Ther. 2018, 26, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Milholland, B.; Auton, A.; Suh, Y.; Vijg, J. Age-related somatic mutations in the cancer genome. Oncotarget 2015, 6, 24627–24635. [Google Scholar] [CrossRef] [PubMed]
- Navas, L.E.; Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct. Target. Ther. 2021, 6, 2. [Google Scholar] [CrossRef]
- Maric, T.; Bazhin, A.; Khodakivskyi, P.; Mikhaylov, G.; Solodnikova, E.; Yevtodiyenko, A.; Giordano Attianese, G.M.P.; Coukos, G.; Irving, M.; Joffraud, M.; et al. A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD+ metabolism. Biosens. Bioelectron. 2023, 220, 114826. [Google Scholar] [CrossRef]
- Chang, C.J.; Yang, Y.H.; Chen, P.C.; Peng, H.Y.; Lu, Y.C.; Song, S.R.; Yang, H.Y. Stomach Cancer and Exposure to Talc Powder without Asbestos via Chinese Herbal Medicine: A Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 717. [Google Scholar] [CrossRef]
Clinical Trials | |||||||
---|---|---|---|---|---|---|---|
Study | Randomized and Blinded? | Allocation Concealment | Baseline Group Similarities | Dropout Rate | Intervention Control | Adherence Assurance | Sample Size and Power Reported |
Mondul et al. [12] | Yes | Yes | Yes | NR | Yes | Yes | Yes |
Omenn et al. [13] | Yes | Yes | Yes | NR | Yes | Yes | Yes |
Klein et al. [14] | Yes | Yes | Yes | NR | Yes | Yes | Yes |
Cohorts/Cross-Sectional Studies | |||||||
Study | Clear Objective and Study Population | Sample Size and Power Reported | Sufficient Follow-Up Period | Leveling of Exposure | Exposure Measured before Outcome | Multiple Exposure Assessments | Confounding Variables Considered |
Brasky et al. [15] | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Hirsch et al. [16] | Yes | NR | NA | CD | NA | No | Yes |
Chen et al. [17] | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Kefield et al. [18] | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Zhang et al. [19] | Yes | Yes | Yes | Yes | Yes | Yes | NR |
Nutrient | Study Design | Study Population | Follow Up | Supplement Intake | Risk of Cancer (p < 0.05) | Ref. |
---|---|---|---|---|---|---|
Vitamin A | Double Blind RCT | 29,133 White males between 1985 and 1988 | 5–8 years | (1) α-tocopherol 50 mg/day), (2) β-carotene (20 mg/day), (3) both supplements, (4) placebo | Higher serum retinol at baseline led to higher risk of PCA incidence. HR = 1.19 (95% CI: 1.03–1.36) | [12] |
Sustained high exposure to serum retinol led to greatest risk of PCA incidence. HR = 1.31 (95% CI: 1.08–1.59) | ||||||
Vitamin A | Double Blind RCT | 18,314 Men and women, high risk for lung cancer | 24 months | (1) combination of 30 mg beta-carotene and 25,000 IU vitamin A daily, (2) placebo | Beta-carotene and Vit A supp. resulted in excess lung CA incidence. HR = 1.36 (95% CI: 1.07–1.73) | [13] |
Beta-carotene and vit A resulted in excess lung CA mortality. HR = 1.59 (95% CI: 1.13–2.23) | ||||||
Vitamin B6 | Cohort Study | 77,118 Men and women, 50 to 76 years between 2000 and 2002 | 6 years | 10 years average daily dose (mg/d) (1) non-user, (2) 0.4–1.4, (3) 1.4–3.0, (4) 3.0–20, (5) >20 | Higher risk of lung CA after 10 y Vit B6 supp. HR = 1.82 (95% CI: 1.25–2.65) | [15] |
Vitamin B9 | Population-Based Study | Cancer discharge trends in Chile, 1992–1996 vs. 2001–2004 (before and after flour folic acid fortification) | N/A | Average consumption of 185 g of flour containing 410 μg folic acid | B9 supp. program resulted in additional risk of colon cancer HR = 2.9 (99% CI: 2.86–3.25) | [16] |
Vitamin B12 | Cohort Study | 77,118 participants 50–76 years, between 2000 and 2002 | 6 years | 10 years average daily dose (µg/d) (1) non-user, (2) 0.1–5.00, (3) 5.01–25.00, (4) 25.01–55.00, (5) >55.00 | Higher risk of lung CA after 10 y Vit B12 supp. HR = 1.98 (95% CI: 1.32–2.97) | [15] |
Vitamin E | Double Blind RCT | 35,533 men between 2001 and 2004 | 7–12 years | (1) Oral selenium (200 μg/d, (2) Vitamin E (400 IU/d), (3) both agents, (4) placebos | Increased risk of PCA Development with Vit E supp. HR = 1.17 (99% CI: 1.004–1.36) | [14] |
Selenium | Prospective Cohort Study | 4459 men, 40–75 years initially diagnosed with non-metastatic prostate cancer | 7.8 years | Selenium supplement μg/day: (1) non-user (2) 1–24 (3) 25–139 (4) >140 | Increased PCA mortality, highest of >140 μg/day selenium supp. HR = 2.60 (95% CI: 1.44–4.70) | [18] |
Zinc | Prospective Cohort Study | 47,240 men, 40–75 years between 1986 and 2016 | 28.3 years | Zinc (mg/d): (1) non-user, (2) 1–24, (3) 25–74, (4) ≥75 | >75 mg/day zinc supp led to increased risk of aggressive PCA. HR = 1.80 (95% CI: 1.19–2.73) | [19] |
>15 years zinc supp led to increased risk of PCA mortality. HR = 1.91 (95% CI: 1.28–2.85) | ||||||
Omega-3 | Case Cohort Design Nested within SELECT trial | 834 men with PCA and 1393 men selected randomly at baseline | 4.5 years | (1) Oral selenium (200 μg/d, (2) Vitamin E (400 IU/d), (3) both agents, (4) placebos | Higher PCA risk in men with high Omega-3 serum level. HR = 1.43 (95% CI: 1.09–1.88) | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbari, P.; Yazdanpanah, O.; Benjamin, D.J.; Rezazadeh Kalebasty, A. Supplement Use and Increased Risks of Cancer: Unveiling the Other Side of the Coin. Cancers 2024, 16, 880. https://doi.org/10.3390/cancers16050880
Jabbari P, Yazdanpanah O, Benjamin DJ, Rezazadeh Kalebasty A. Supplement Use and Increased Risks of Cancer: Unveiling the Other Side of the Coin. Cancers. 2024; 16(5):880. https://doi.org/10.3390/cancers16050880
Chicago/Turabian StyleJabbari, Parnian, Omid Yazdanpanah, David J. Benjamin, and Arash Rezazadeh Kalebasty. 2024. "Supplement Use and Increased Risks of Cancer: Unveiling the Other Side of the Coin" Cancers 16, no. 5: 880. https://doi.org/10.3390/cancers16050880
APA StyleJabbari, P., Yazdanpanah, O., Benjamin, D. J., & Rezazadeh Kalebasty, A. (2024). Supplement Use and Increased Risks of Cancer: Unveiling the Other Side of the Coin. Cancers, 16(5), 880. https://doi.org/10.3390/cancers16050880