The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Evolution of the Treatment for RMS and Recent Clinical Trials
2.1. Brief History of RMS Treatment
2.2. Introduction of Other Marketed Drugs into Clinical Trial Combinations
3. Contributing Factors That Reduce Drug Efficacy
3.1. Pharmacodynamics- and Pharmacokinetics-Related Critical Insight Observations
3.2. Drug-Metabolising Enzyme (DME) Expression and Activity
3.2.1. CYP-Mediated Drug Metabolism in RMS Patients
3.2.2. Aldehyde Dehydrogenases: Do They Play a Role in RMS Responses to Treatment?
4. Discussion and Future Directions
4.1. Pharmacokinetic Considerations and DME Ontogeny
4.2. The Impact of Drug Resistance Mechanisms on RMS
4.3. Exploitation of Genetic and Epigenetic Vulnerabilities for Therapeutic Intervention in RMS
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALDH | Aldehyde Dehydrogenase |
ARMS | Alveolar rhabdomyosarcoma |
COG | Children’s Oncology Group |
CSC | Cancer stem cells |
CYP | Cytochrome P450 |
CWS | Cooperative Weichteilsarkomen Studie |
DME | Drug-metabolising enzymes |
EFS | Event-free Survival |
EpSSG | European Paediatric Soft Tissue Sarcoma Study Group |
ERMS | Embryonal rhabdomyosarcoma |
FNRMS | Fusion-positive rhabdomyosarcoma |
FPRMS | Fusion-negative rhabdomyosarcoma |
IRSG | Intergroup Rhabdomyosarcoma Study Group |
IVA | Ifosfamide + vincristine + actinomycin D |
PRMS | Pleomorphic rhabdomyosarcoma |
RMS | Rhabdomyosarcoma |
SIOP-MMT | International Society of Paediatric Oncology–Malignant Mesenchymal Tumour Committee |
STS | Soft tissue sarcoma |
STSC | Soft Tissue Sarcoma Committee |
TME | Tumour microenvironment |
VAC | Vincristine + actinomycin D + cyclophosphamide |
References
- Grufferman, S.; Schwartz, A.G.; Ruymann, F.B. Maurer HM Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 1993, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Grufferman, S.; Ruymann, F.; Ognjanovic, S.; Erhardt, E.B.; Maurer, H.M. Prenatal X-ray Exposure and Rhabdomyosarcoma in Children: A Report from the Children’s Oncology Group. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Parham, D.M.; Barr, F.G. Classification of Rhabdomyosarcoma and Its Molecular Basis. Adv. Anat. Pathol. 2013, 20, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, R.; Fuchs, J.; Rodeberg, D. Rhabdomyosarcoma. Semin. Pediatr. Surg. 2016, 25, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Ognjanovic, S.; Linabery, A.M.; Charbonneau, B.; Ross, J.A. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer 2009, 115, 4218–4226. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, J.M.; Perino, G. Non-germ-cell or teratomatous malignant tumors showing additional rhabdomyoblastic differentiation, with emphasis on the malignant Triton tumor. Semin. Diagn. Pathol. 1994, 11, 69–81. [Google Scholar] [PubMed]
- Kerin, Ú.; Wolohan, C.; Cooke, K. Rhabdomyosarcoma: An overview and nursing considerations. Br. J. Nurs. 2018, 27, 328–332. [Google Scholar] [CrossRef]
- Mandell, L.; Ghavimi, F.; Laquaglia, M.; Exelby, P. Prognostic significance of regional lymph node involvement in childhood extremity rhabdomyosarcoma. Med. Pediatr. Oncol. 1990, 18, 466–471. [Google Scholar] [CrossRef]
- Rudzinski, E.R.; Anderson, J.R.; Chi, Y.Y.; Gastier-Foster, J.M.; Astbury, C.; Barr, F.G.; Skapek, S.X.; Hawkins, D.S.; Weigel, B.J.; Pappo, A.; et al. Histology, fusion status, and outcome in metastatic rhabdomyosarcoma: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2017, 64, e26645. [Google Scholar] [CrossRef]
- Missiaglia, E.; Williamson, D.; Chisholm, J.; Wirapati, P.; Pierron, G.; Petel, F.; Concordet, J.P.; Thway, K.; Oberlin, O.; Pritchard-Jones, K.; et al. PAX3/FOXO1 Fusion Gene Status Is the Key Prognostic Molecular Marker in Rhabdomyosarcoma and Significantly Improves Current Risk Stratification. J. Clin. Oncol. 2012, 30, 1670–1677. [Google Scholar] [CrossRef]
- Williamson, D.; Missiaglia, E.; de Reyniès, A.; Pierron, G.; Thuille, B.; Palenzuela, G.; Thway, K.; Orbach, D.; Laé, M.; Fréneaux, P.; et al. Fusion Gene–Negative Alveolar Rhabdomyosarcoma Is Clinically and Molecularly Indistinguishable from Embryonal Rhabdomyosarcoma. J. Clin. Oncol. 2010, 28, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
- Bennicelli, J.L.; Advani, S.; Schäfer, B.W.; Barr, F.G. PAX3 and PAX7 exhibit conserved cis-acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma. Oncogene 1999, 18, 4348–4356. [Google Scholar] [CrossRef]
- Ruiz-Mesa, C.; Goldberg, J.M.; Coronado Munoz, A.J.; Dumont, S.N.; Trent, J.C. Rhabdomyosarcoma in Adults: New Perspectives on Therapy. Curr. Treat. Options Oncol. 2015, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Dileo, P.; Casanova, M.; Bertulli, R.; Meazza, C.; Gandola, L.; Navarria, P.; Collini, P.; Gronchi, A.; Olmi, P.; Fossati-Bellani, F.; et al. Rhabdomyosarcoma in adults. A retrospective analysis of 171 patients treated at a single institution. Cancer 2003, 98, 571–580. [Google Scholar]
- Wolfe, J.; Orellana, L.; Ullrich, C.; Cook, E.F.; Kang, T.I.; Rosenberg, A.; Geyer, R.; Feudtner, C.; Dussel, V. Symptoms and Distress in Children with Advanced Cancer: Prospective Patient-Reported Outcomes From the PediQUEST Study. J. Clin. Oncol. 2015, 33, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Arndt, C.A.S.; Bisogno, G.; Koscielniak, E. Fifty years of rhabdomyosarcoma studies on both sides of the pond and lessons learned. Cancer Treat. Rev. 2018, 68, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.M. Fifteen years of irinotecan therapy for pediatric sarcoma: Where to next? Clin. Sarcoma Res. 2015, 5, 20. [Google Scholar] [CrossRef]
- Kurucu, N.; Sari, N.; Ilhan, I.E. Irinotecan and temozolamide treatment for relapsed Ewing sarcoma: A single-center experience and review of the literature. Pediatr. Hematol. Oncol. 2015, 32, 50–59. [Google Scholar] [CrossRef]
- Wang, B.C.; Xiao, B.Y.; Lin, G.H. Irinotecan plus temozolomide in relapsed Ewing sarcoma: An integrated analysis of retrospective studies. BMC Cancer 2022, 22, 349. [Google Scholar] [CrossRef]
- Wagner, L.M.; McAllister, N.; Goldsby, R.E.; Rausen, A.R.; McNall-Knapp, R.Y.; McCarville, M.B.; Albritton, K. Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr. Blood Cancer 2007, 48, 132–139. [Google Scholar] [CrossRef]
- Casey, D.A.; Wexler, L.H.; Merchant, M.S.; Chou, A.J.; Merola, P.R.; Price, A.P.; Meyers, P.A. Irinotecan and temozolomide for Ewing sarcoma: The Memorial Sloan-Kettering experience. Pediatr. Blood Cancer 2009, 53, 1029–1034. [Google Scholar] [CrossRef]
- Bisogno, G.; Riccardi, R.; Ruggiero, A.; Arcamone, G.; Prete, A.; Surico, G.; Provenzi, M.; Bertolini, P.; Paolucci, P.; Carli, M. Phase II study of a protracted irinotecan schedule in children with refractory or recurrent soft tissue sarcoma. Cancer 2006, 106, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Vassal, G.; Couanet, D.; Stockdale, E.; Geoffray, A.; Geoerger, B.; Orbach, D.; Pichon, F.; Gentet, J.C.; Picton, S.; Bergeron, C.; et al. Phase II trial of irinotecan in children with relapsed or refractory rhabdomyosarcoma: A joint study of the French Society of Pediatric Oncology and the United Kingdom Children’s Cancer Study Group. J. Clin. Oncol. 2007, 25, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Dharmarajan, K.V.; Wexler, L.H.; Wolden, S.L. Concurrent radiation with irinotecan and carboplatin in intermediate- and high-risk rhabdomyosarcoma: A report on toxicity and efficacy from a prospective pilot phase II study. Pediatr. Blood Cancer 2013, 60, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, L.; Lyden, E.R.; Breitfeld, P.P.; Walterhouse, D.O.; Donaldson, S.S.; Paidas, C.N.; Parham, D.M.; Anderson, J.R.; Meyer, W.H.; Hawkins, D.S. Randomized phase II window trial of two schedules of irinotecan with vincristine in patients with first relapse or progression of rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2010, 28, 4658–4663. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, D.S.; Chi, Y.Y.; Anderson, J.R.; Tian, J.; Arndt, C.A.S.; Bomgaars, L.; Donaldson, S.S.; Hayes-Jordan, A.; Mascarenhas, L.; Mccarville, M.B.; et al. Addition of vincristine and irinotecan to vincristine, dactinomycin, and cyclophosphamide does not improve outcome for intermediate-risk rhabdomyosarcoma: A report from the children’s oncology group. J. Clin. Oncol. 2018, 36, 2770–2777. [Google Scholar] [CrossRef] [PubMed]
- Casey, D.L.; Chi, Y.; Donaldson, S.S.; Hawkins, D.S.; Tian, J.; Arndt, C.A.; Rodeberg, D.A.; Routh, J.C.; Lautz, T.B.; Gupta, A.A.; et al. Increased Local Failure for Patients with Intermediate-Risk Rhabdomyosarcoma on ARST0531: A Report from the Children’s Oncology Group. Cancer 2019, 125, 3242–3248. [Google Scholar] [CrossRef]
- Setty, B.A.; Stanek, J.R.; Mascarenhas, L.; Miller, A.; Okcu, F.; Nicholls, L.; Lysecki, D.; Gupta, A.A.; Transplantation, M.; Angeles, L.; et al. Vincristine, irinotecan, and temozolomide in children and adolescents with relapsed rhabdomyosarcoma. Pediatr. Blood Cancer 2018, 65, e26728. [Google Scholar] [CrossRef]
- Defachelles, A.S.; Bogart, E.; Casanova, M.; Merks, J.H.M.; Bisogno, G.; Calareso, G.; Melcon, S.G.; Gatz, S.A.; Le Deley, M.C.; McHugh, K.; et al. Randomized Phase II Trial of Vincristine-Irinotecan with or Without Temozolomide, in Children and Adults With Relapsed or Refractory Rhabdomyosarcoma: A European Paediatric Soft Tissue Sarcoma Study Group and Innovative Therapies for Children With Cancer. J. Clin. Oncol. 2021, 39, 2979–2990. [Google Scholar] [CrossRef]
- Malempati, S.; Weigel, B.J.; Chi, Y.Y.; Tian, J.; Anderson, J.R.; Parham, D.M.; Teot, L.A.; Rodeberg, D.A.; Yock, T.I.; Shulkin, B.L.; et al. The addition of cixutumumab or temozolomide to intensive multiagent chemotherapy is feasible but does not improve outcome for patients with metastatic rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer 2019, 125, 290–297. [Google Scholar] [CrossRef]
- Malempati, S.; Weigel, B.; Anderson, J.R.; Parham, D.; Teot, L.A.; Rodeberg, D.A.; Yock, T.I.; Shulkin, B.L.; Hawkins, D.S. Early results from Children’s Oncology Group (COG) ARST08P1: Pilot studies of cixutumumab or temozolomide with intensive multiagent chemotherapy for patients with metastatic rhabdomyosarcoma (RMS). J. Clin. Oncol. 2015, 33, 10015. [Google Scholar] [CrossRef]
- Geoerger, B.; Kieran, M.W.; Grupp, S.; Perek, D.; Clancy, J.; Krygowski, M.; Ananthakrishnan, R.; Boni, J.P.; Berkenblit, A.; Spunt, S.L. Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur. J. Cancer 2012, 48, 253–262. [Google Scholar] [CrossRef]
- Mascarenhas, L.; Chi, Y.-Y.; Hingorani, P.; Anderson, J.R.; Lyden, E.R.; Rodeberg, D.A.; Indelicato, D.J.; Kao, S.C.; Dasgupta, R.; Spunt, S.L.; et al. Randomized Phase II Trial of Bevacizumab or Temsirolimus in Combination with Chemotherapy for First Relapse Rhabdomyosarcoma: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2019, 37, 2866–2874. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, S.; Qumseya, A.; Xue, W.; Harrison, D.J.; Rudzinski, E.R.; Wolden, S.L.; Dasgupta, R.; Venkatramani, R.; Gupta, A.A. Feasibility of combining temsirolimus to vincristine, dactinomycin, cyclophosphamide, and vincristine and irinotecan chemotherapy for children with intermediate-risk rhabdomyosarcoma: A report from Children’s Oncology Group. Pediatr. Blood Cancer 2023, 70, e30436. [Google Scholar] [CrossRef] [PubMed]
- Pappo, A.S.; Vassal, G.; Crowley, J.J.; Bolejack, V.; Hogendoorn, P.C.W.; Chugh, R.; Ladanyi, M.; Grippo, J.F.; Dall, G.; Staddon, A.P.; et al. A Phase 2 Trial of R1507, a Monoclonal Antibody to the Insulin-Like Growth Factor-1 Receptor (IGF-1R), in Patients with Recurrent or Refractory Rhabdomyosarcoma, Osteosarcoma, Synovial Sarcoma, and Other Soft Tissue Sarcomas: Results of a Sarcoma Alliance for Research Through Collaboration Study. Cancer 2014, 120, 2448. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Yeung, C.; Heske, C.; Mendoza, A.; Helman, L.J. IGF-1R Inhibition Activates a YES/SFK Bypass Resistance Pathway: Rational Basis for Co-Targeting IGF-1R and Yes/SFK Kinase in Rhabdomyosarcoma. Neoplasia 2015, 17, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Akshintala, S.; Sundby, R.T.; Bernstein, D.; Glod, J.W.; Kaplan, R.N.; Yohe, M.E.; Gross, A.M.; Derdak, J.; Lei, H.; Pan, A.; et al. Phase I trial of Ganitumab plus Dasatinib to Cotarget the Insulin-Like Growth Factor 1 Receptor and Src Family Kinase YES in Rhabdomyosarcoma. Clin. Cancer Res. 2023, 29, 3329–3339. [Google Scholar] [CrossRef] [PubMed]
- Allen-Rhoades, W.; Lupo, P.J.; Scheurer, M.E.; Chi, Y.Y.; Kuttesch, J.F.; Venkatramani, R.; Meyer, W.H.; Mascarenhas, L. Alveolar rhabdomyosarcoma has superior response rates to vinorelbine compared to embryonal rhabdomyosarcoma in patients with relapsed/refractory disease: A meta-analysis. Cancer Med. 2023, 12, 10222. [Google Scholar] [CrossRef]
- Veal, G.J.; Hartford, C.M.; Stewart, C.F. Clinical pharmacology in the adolescent oncology patient. J. Clin. Oncol. 2010, 28, 4790–4799. [Google Scholar] [CrossRef]
- Shaw, I.C. Mesna and oxazaphosphorine cancer chemotherapy. Cancer Treat. Rev. 1987, 13, 359–364. [Google Scholar] [CrossRef]
- Dechant, K.L.; Brogden, R.N.; Pilkington, T.; Faulds, D. Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 1991, 42, 428–467. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, M.E.; Huitema, A.D.; Rodenhuis, S.; Beijnen, J.H. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 2005, 44, 1135–1164. [Google Scholar] [CrossRef] [PubMed]
- Groninger, E.; Boer, T.M.; Koopmans, P.; Uges, D.; Haematology, P. Pharmacokinetics of Vincristine Monotherapy in Childhood Acute Lymphoblastic Leukemia. Pediatr. Res. 2002, 52, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Gidding, C.E.M.; Meeuwsen-De Boer, G.J.; Kamps, W.A.; De Graaf, S.S.N.; Koopmans, P.; Uges, D.R.A. Vincristine pharmacokinetics after repetitive dosing in children. Cancer Chemother. Pharmacol. 1999, 44, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Frost, B.M.; Lönnerholm, G.; Koopmans, P.; Abrahamsson, J.; Behrendtz, M.; Castor, A.; Forestier, E.; Uges, D.R.A.; De Graaf, S.S.N. Vincristine in childhood leukaemia: No pharmacokinetic rationale for dose reduction in adolescents. Acta Paediatr. Int. J. Paediatr. 2003, 92, 551–557. [Google Scholar] [CrossRef]
- Weiss, A.R.; Harrison, D.J. Soft Tissue Sarcomas in Adolescents and Young Adults. J. Clin. Oncol. 2023, 42, 6. [Google Scholar] [CrossRef]
- Gupta, A.A.; Anderson, J.R.; Pappo, A.S.; Spunt, S.L.; Dasgupta, R.; Indelicato, D.J.; Hawkins, D.S. Patterns of chemotherapy-induced toxicities in younger children and adolescents with rhabdomyosarcoma: A report from the Children’s Oncology Group Soft Tissue Sarcoma Committee. Cancer 2012, 118, 1130–1137. [Google Scholar] [CrossRef]
- Kim, H.Y.; Veal, G.J.; Zhou, F.; Boddy, A.V. The role of solute carrier (SLC) transporters in actinomycin D pharmacokinetics in paediatric cancer patients. Eur. J. Clin. Pharmacol. 2018, 74, 1575–1584. [Google Scholar] [CrossRef]
- Schaiquevich, P.; Panetta, J.C.; Iacono, L.C.; Freeman, B.B.; Santana, V.M.; Gajjar, A.; Stewart, C.F. Population pharmacokinetic analysis of topotecan in pediatric cancer patients. Clin. Cancer Res. 2007, 13, 6703–6711. [Google Scholar] [CrossRef]
- Buck, M.L. The cytochrome P450 enzyme system and its effect on drug metabolism. Pediatr. Pharmacother. 1997, 3, 211–216. [Google Scholar]
- Fruci, D.; Cho, W.C.S.; Romania, P.; Nobili, V.; Locatelli, F.; Alisi, A. Drug Transporters and Multiple Drug Resistance in Pediatric Solid Tumors. Curr. Drug Metab. 2016, 17, 308–316. [Google Scholar] [CrossRef] [PubMed]
- De Wildt, S.N.; Tibboel, D.; Leeder, J.S. Drug metabolism for the paediatrician. Arch. Dis. Child. Educ. Pract. Ed. 2014, 99, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.N.; Tucker, G.T.; Tanner, M.S.; Rostami-Hodjegan, A. Changes in liver volume from birth to adulthood: A meta-analysis. Liver Transplant. 2005, 11, 1481–1493. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; LeDuc, B.; Kerr, S.; Howe, D.; Williams, D.A. Identification of Human UGT2B7 as the Major Isoform Involved in the O-Glucuronidation of Chloramphenicol. Drug Metab. Dispos. 2010, 38, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; Vanhaesebrouck, S.; Verbesselt, R.; van den, A.J. In vivo glucuronidation activity of drugs in neonates: Extensive interindividual variability despite their young age. Ther. Drug Monit. 2009, 31, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, B.C.; Harris, N.; Mendoza, J.; Cao, Z.; Liehr, J.; Stehlin, J.S. Dependence of anticancer activity of camptothecins on maintaining their lactone function. Ann. N. Y. Acad. Sci. 2000, 922, 27–35. [Google Scholar] [CrossRef] [PubMed]
- de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin. Pharmacokinet. 2018, 57, 1229–1254. [Google Scholar] [CrossRef] [PubMed]
- Wierdl, M.; Tsurkan, L.; Hatfield, M.J.; Potter, P.M. Tumour-selective targeting of drug metabolizing enzymes to treat metastatic cancer. Br. J. Pharmacol. 2016, 3, 2811–2818. [Google Scholar] [CrossRef]
- Nelson, D.R. Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch. Biochem. Biophys. 2003, 409, 18–24. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- McGraw, J.; Waller, D. Cytochrome P450 variations in different ethnic populations. Expert Opin. Drug Metab. Toxicol. 2012, 8, 371–382. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 and Chemical Toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Preissner, S.C.; Hoffmann, M.F.; Preissner, R.; Dunkel, M.; Gewiess, A.; Preissner, S. Polymorphic Cytochrome P450 Enzymes (CYPs) and Their Role in Personalized Therapy. PLoS ONE 2013, 8, e82562. [Google Scholar] [CrossRef] [PubMed]
- de Montellano, P.R.O. Cytochrome P450-activated prodrugs. Future Med. Chem. 2014, 5, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006, 25, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.D.; Njar, V.C. Targeting Cytochrome P450 Enzymes: A New Approach in Anti_cancer Drug Development. Bioorg. Med. Chem. Lett. 2007, 15, 5047–5060. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.O.M.; Price, A.M.Y.; Virginia, E. The Effect of Cytochrome P450 Metabolism on Drug Response, Interactions, and Adverse Effects. Am. Fam. Physician 2007, 76, 391–396. [Google Scholar]
- Mittal, B.; Tulsyan, S.; Kumar, S.; Mittal, R.D.; Agarwal, G. Cytochrome P450 in Cancer Susceptibility and Treatment. Adv. Clin. Chem. 2015, 71, 77–139. [Google Scholar]
- Sneha, S.; Baker, S.C.; Green, A.; Storr, S.; Aiyappa, R.; Martin, S.; Pors, K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021, 9, 290. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Q.; Yung Chan, S.; Chuen Li, S.; Zhou, S.; Duan, W.; Zhu, Y.-Z. Metabolism and Transport of Oxazaphosphorines and the Clinical Implications. Drug Metab. Rev. 2005, 37, 611–703. [Google Scholar] [CrossRef] [PubMed]
- Chugh, R.; Wagner, T.; Griffith, K.A.; Taylor, J.M.G.; Thomas, D.G.; Worden, F.P.; Leu, K.M.; Zalupski, M.M.; Baker, L.H. Assessment of ifosfamide pharmacokinetics, toxicity, and relation to CYP3A4 activity as measured by the erythromycin breath test in patients with sarcoma. Cancer 2007, 109, 2315–2322. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Yu, L.J.; Crespi, C.L.; Waxman, D.J. Development of a Substrate-Activity Based Approach to Identify the Major Human Liver P-450 Catalysts of Cyclophosphamide and Ifosfamide Activation Based on cDNA-expressed Activities and Liver Microsomal P-450 Profiles. Drug Metab. Dispos. 1999, 27, 655–666. [Google Scholar] [PubMed]
- Chang, T.K.; Weber, G.F.; Crespi, C.L.; Waxman, D.J. Differential Activation of Cyclophosphamide and Ifosphamide by Cytochromes P-450 2B and 3A in Human Liver Microsomes. Cancer Res. 1993, 53, 5629–5637. [Google Scholar] [PubMed]
- Kim, S.; Choi, H.J.; Jo, C.H.; Park, J.S.; Kwon, T.H.; Kim, G.H. Cyclophosphamide-induced vasopressin-independent activation of aquaporin-2 in the rat kidney. Am. J. Physiol. Ren. Physiol. 2015, 309, F474–F483. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, D.; Kuang, Q.; Liu, G.; Xu, W. Association between UGT1A1*28 Polymorphisms and Clinical Outcomes of Irinotecan-Based Chemotherapies in Colorectal Cancer: A Meta-Analysis in Caucasians. PLoS ONE 2013, 8, e58489. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, É.; Bélanger, A.-S.; Harvey, M.; Couture, F.; Jonker, D.; Innocenti, F.; Cecchin, E.; Toffoli, G.; Guillemette, C. Refining the UGT1A Haplotype Associated with Irinotecan-Induced Hematological Toxicity in Metastatic Colorectal Cancer Patients Treated with 5-Fluorouracil/Irinotecan-Based Regimens. J. Pharmacol. Exp. Ther. 2013, 345, 95–101. [Google Scholar] [CrossRef]
- Smith, N.F.; Figg, W.D.; Sparreboom, A. Pharmacogenetics of irinotecan metabolism and transport: An update. Toxicol. Vitr. 2006, 20, 163–175. [Google Scholar] [CrossRef]
- Dennison, J.B.; Kulanthaivel, P.; Barbuch, R.J.; Renbarger, J.L.; Ehlhardt, W.J.; Hall, S.D. Selective metabolisn if vincristine in vitro by CYP3A5. Drug Metab. Dispos. 2006, 34, 1317–1327. [Google Scholar] [CrossRef]
- Yao, D.; Ding, S.; Burchell, B.; Wolf, C.R.; Friedberg, T. Detoxication of Vinca Alkaloids by Human P450 CYP3A4-mediated Metabolism: Implications for the Development of Drug Resistance. J. Pharmacol. Exp. Ther. 2000, 294, 387–395. [Google Scholar] [PubMed]
- van Eijk, M.; Boosman, R.J.; Schinkel, A.H.; Huitema, A.D.R.; Beijnen, J.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: Relevance for resistance to taxanes. Cancer Chemother. Pharmacol. 2019, 84, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhsh, F.; Bourbour, M.; Yaraki, M.T.; Bazzazan, S.; Bakhshandeh, H.; Ahangari Cohan, R.; Tan, Y.N. pH-Responsive PEGylated Niosomal Nanoparticles as an Active-Targeting Cyclophosphamide Delivery System for Gastric Cancer Therapy. Molecules 2022, 27, 5418. [Google Scholar] [CrossRef] [PubMed]
- Sahrayi, H.; Hosseini, E.; Karimifard, S.; Khayam, N.; Meybodi, S.M.; Amiri, S.; Bourbour, M.; Far, B.F.; Akbarzadeh, I.; Bhia, M.; et al. Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy: Synergic effect, augmentation of cytotoxicity, and apoptosis gene expression. Pharmaceuticals 2022, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Molina-Ortiz, D.; Camacho-Carranza, R.; González-Zamora, J.F.; Shalkow-Kalincovstein, J.; Cárdenas-Cardós, R.; Ností-Palacios, R.; Vences-Mejía, A. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma. PLoS ONE 2014, 9, e93261. [Google Scholar] [CrossRef]
- Stenstedt, K.; Hallstrom, M.; Johansson, I.; Ingelman-Sundberg, M.; Ragnhammar, P.; Edler, D. The Expression of CYP2W1: A Prognostic Marker in Colon Cancer. Anticancer Res. 2012, 32, 3869–3874. [Google Scholar] [PubMed]
- Gomez, A.; Nekvindova, J.; Travica, S.; Lee, M.Y.; Johansson, I.; Edler, D.; Mkrtchian, S.; Ingelman-Sundberg, M. Colorectal cancer-specific cytochrome P450 2W1: Intracellular localization, glycosylation, and catalytic activity. Mol. Pharmacol. 2010, 78, 1004–1011. [Google Scholar] [CrossRef]
- Karlgren, M.; Gomez, A.; Stark, K.; Svärd, J.; Rodriguez-Antona, C.; Oliw, E.; Bernal, M.L.; y Cajal, S.R.; Johansson, I.; Ingelman-Sundberg, M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun. 2006, 341, 451–458. [Google Scholar] [CrossRef]
- Sheldrake, H.M.; Travica, S.; Johansson, I.; Loadman, P.M.; Sutherland, M.; Elsalem, L.; Illingworth, N.; Cresswell, A.J.; Reuillon, T.; Shnyder, S.D.; et al. Re-engineering of the Duocarmycin Structural Architecture Enables Bioprecursor Development Targeting CYP1A1 and CYP2W1 for Biological Activity. J. Med. Chem. 2013, 56, 6273–6277. [Google Scholar] [CrossRef]
- Travica, S.; Pors, K.; Loadman, P.M.; Shnyder, S.D.; Johansson, I.; Alandas, M.N.; Sheldrake, H.M.; Mkrtchian, S.; Patterson, L.H.; Ingelman-Sundberg, M. Colon Cancer-Specific Cytochrome P450 2W1 Converts Duocarmycin Analogues into Potent Tumor Cytotoxins. Clin. Cancer Res. 2013, 19, 2952–2961. [Google Scholar] [CrossRef]
- Murray, G.I.; McKay, J.A.; Weaver, R.J.; Ewen, S.W.B.; Melvin, W.T.; Burke, M.D. Cytochrome P450 expression is a common molecular event in soft tissue sarcomas. J. Pathol. 1993, 171, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Zia, H.; Murray, G.I.; Vyhlidal, C.A.; Leeder, J.S.; Anwar, A.E.; Bui, M.M.; Ahmed, A.A. CYP3A isoforms in Ewing’s sarcoma tumours: An immunohistochemical study with clinical correlation. Int. J. Exp. Pathol. 2015, 96, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Imran, S.; Ferretti, P.; Vrzal, R. Different regulation of aryl hydrocarbon receptor-regulated genes in response to dioxin in undifferentiated and neuronally differentiated human neuroblastoma SH-SY5Y cells. Toxicol. Mech. Methods 2015, 25, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-Y.; Yu, I.-S.; Lin, Y.-C.; Chang, Y.-T.; Chen, C.-C.; Lin, K.-H.; Tseng, T.-H.; Kargren, M.; Tai, Y.-L.; Shen, T.-L.; et al. Activation of Aryl Hydrocarbon Receptor by Kynurenine Impairs Progression and Metastasis of Neuroblastoma. Cancer Res. 2019, 79, 5550–5562. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.H.; Farah, R.A.; Farhat, N.G.; Torbey, P.-H.N.; Ghandour, F.A.; Bejjani-Doueihy, N.A.; Dhaini, H.R. Association of CYP3A4/5 genotypes and expression with the survival of patients with neuroblastoma. Mol. Med. Rep. 2015, 11, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Dhaini, H.R.; Thomas, D.G.; Giordano, T.J.; Johnson, T.D.; Biermann, J.S.; Leu, K.; Hollenberg, P.F.; Baker, L.H. Cytochrome P450 CYP3A4/5 Expression as a Biomarker of Outcome in Osteosarcoma. J. Clin. Oncol. 2003, 21, 2481–2485. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Paolillo, A.; Tesser-Gamba, F.; Petrilli, A.S.; de Seixas Alves, M.T.; Filho, R.J.G.; de Oliveira, R.; de Toledo, S.R.C. CYP genes in osteosarcoma: Their role in tumorigenesis, pulmonary metastatic microenvironment and treatment response. Oncotarget 2017, 8, 38530–38540. [Google Scholar] [CrossRef] [PubMed]
- Nida, S.; Javid, B.; Akbar, M.; Idrees, S.; Adil, W.; Ahmad, G.B. Gene variants of CYP1A1 and CYP2D6 and the risk of childhood acute lymphoblastic leukaemia outcome of a case control study from Kashmir, India. Mol. Biol. Res. Commun. 2017, 6, 77–84. [Google Scholar]
- Jackson, B.; Brocker, C.; Thompson, D.C.; Black, W.; Vasiliou, K.; Nebert, D.W.; Vasiliou, V. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genom. 2011, 5, 283–303. [Google Scholar] [CrossRef]
- Vasiliou, V.; Nebert, D.W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum. Genom. 2005, 2, 138–143. [Google Scholar] [CrossRef]
- Sladek, N.E. Human aldehyde dehydrogenases: Potential pathological, pharmacological, and toxicological impact. J. Biochem. Mol. Toxicol. 2003, 17, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Al-Shamma, S.A.; Zaher, D.M.; Hersi, F.; Jayab, N.N.A.; Omar, H.A. Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci. 2023, 320, 121541. [Google Scholar] [CrossRef] [PubMed]
- Dinavahi, S.S.; Bazewicz, C.G.; Gowda, R.; Robertson, G.P. Aldehyde Dehydrogenase Inhibitors for Cancer Therapeutics. Trends Pharmacol. Sci. 2019, 40, 774–789. [Google Scholar] [CrossRef]
- Pors, K.; Moreb, J.S. Aldehyde dehydrogenases in cancer: An opportunity for biomarker and drug development? Drug Discov. Today 2014, 19, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Muralikrishnan, V.; Hurley, T.D.; Nephew, K.P. Targeting aldehyde dehydrogenases to eliminate cancer stem cells in gynecologic malignancies. Cancers 2020, 12, 961. [Google Scholar] [CrossRef] [PubMed]
- Alison, M.R.; Guppy, N.J.; Lim, S.M.; Nicholson, L.J. Finding cancer stem cells: Are aldehyde dehydrogenases fit for purpose? J. Pathol. 2010, 222, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Won, M.; Kim, J.H.; Jung, E.; Min, K.; Jangili, P.K.J. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem. Soc. Rev. 2020, 49, 7856–7878. [Google Scholar] [CrossRef]
- Ibrahim, A.I.M.; Sadiq, M.; Frame, F.M.; Maitland, N.J.; Pors, K. Expression and regulation of aldehyde dehydrogenases in prostate cancer. J. Cancer Metastasis Treat. 2018, 4, 44. [Google Scholar] [CrossRef]
- Muñiz, P.; Andrés-Zayas, C.; Carbonell, D.; Chicano, M.; Bailén, R.; Oarbeascoa, G.; Suárez-González, J.; Gómez Centurión, I.; Dorado, N.; Gallardo, D.; et al. Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation. Front. Immunol. 2022, 13, 1002959. [Google Scholar] [CrossRef]
- Helsby, N.A.; Yong, M.; van Kan, M.; de Zoysa, J.R.; Burns, K.E. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br. J. Clin. Pharmacol. 2019, 85, 1925. [Google Scholar] [CrossRef]
- Moreb, J.S.; Maccow, C.; Schweder, M.; Hecomovich, J. Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J. Pharmacol. Exp. Ther. 2000, 293, 390–396. [Google Scholar]
- Ho, K.K.; Mukhopadhyay, A.; Li, Y.F.; Mukhopadhyay, S.; Weiner, H. A point mutation produced a class 3 aldehyde dehydrogenase with increased protective ability against the killing effect of cyclophosphamide. Biochem. Pharmacol. 2008, 76, 690. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, B.; Georgiadis, T.M.; Fishel, M.L.; Hurley, T.D. Development of selective inhibitors for human aldehyde dehydrogenase 3A1 (ALDH3A1) for the enhancement of cyclophosphamide cytotoxicity. Chembiochem 2014, 15, 701. [Google Scholar] [CrossRef]
- Ibrahim, A.I.M.; Batlle, E.; Sneha, S.; Jiménez, R.; Pequerul, R.; Parés, X.; Rüngeler, T.; Jha, V.; Tuccinardi, T.; Sadiq, M.; et al. Expansion of the 4-(Diethylamino)benzaldehyde Scaffold to Explore the Impact on Aldehyde Dehydrogenase Activity and Antiproliferative Activity in Prostate Cancer. J. Med. Chem. 2022, 65, 3833–3848. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.A.; Styczewska, M.; Sokolewicz, E.M.; Kunc, M.; Gabrych, A.; Fatyga, A.; Izycka-Swieszewska, E.; Kazanowska, B.; Adamkiewicz-Drozynska, E.; Bien, E. Tumour expressions of hypoxic markers predict the response to neo-adjuvant chemotherapy in children with inoperable rhabdomyosarcoma. Biomarkers 2019, 24, 538–548. [Google Scholar] [CrossRef]
- Bernauer, C.; Man, Y.K.S.; Chisholm, J.C.; Lepicard, E.Y.; Robinson, S.P.; Shipley, J.M. Hypoxia and its therapeutic possibilities in paediatric cancers. Br. J. Cancer 2021, 124, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Castillo, S.P.; Galvez-Cancino, F.; Liu, J.; Pollard, S.M.; Quezada, S.A.; Yuan, Y. The tumour ecology of quiescence: Niches across scales of complexity. Semin. Cancer Biol. 2023, 92, 139–149. [Google Scholar] [CrossRef]
- Ju, F.; Atyah, M.M.; Horstmann, N.; Gul, S.; Vago, R.; Bruns, C.J.; Zhao, Y.; Dong, Q.Z.; Ren, N. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem. Cell Res. Ther. 2022, 13, 233. [Google Scholar] [CrossRef]
- Song, K.; Farzaneh, M. Signaling pathways governing breast cancer stem cells behavior. Stem. Cell Res. Ther. 2021, 12, 245. [Google Scholar] [CrossRef]
- Tsao, T.; Beretov, J.; Ni, J.; Bai, X.; Bucci, J.; Graham, P.; Li, Y. Cancer stem cells in prostate cancer radioresistance. Cancer Lett. 2019, 465, 94–104. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Zheng, X.; Wang, X.; Li, S.; Zhang, L.; Yang, Z.; Xia, Z. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum- free medium and chemoradiotherapy. Int. J. Biol. Sci. 2013, 9, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.M.; Lorkiewicz, P.K.; Sellers, K.; Moseley, H.N.; Higashi, R.M.; Lane, A.N. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 2012, 133, 366–391. [Google Scholar] [CrossRef] [PubMed]
- Hines, R.N.; Gail McCarver, D. The ontogeny of human drug-metabolizing enzymes: Phase I oxidative enzymes. J. Pharmacol. Exp. Ther. 2002, 300, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Gail McCarver, D.; Hines, R.N. The ontogeny of human drug-metabolizing enzymes: Phase II conjugation enzymes and regulatory mechanisms. J. Pharmacol. Exp. Ther. 2002, 300, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Zhou, Z.; Zhou, J.; Chen, S.Q. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genom. Proteom. Bioinforma 2016, 14, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Bisogno, G.; De Salvo, G.L.; Bergeron, C.; Gallego Melcón, S.; Merks, J.H.; Kelsey, A.; Martelli, H.; Minard-Colin, V.; Orbach, D.; Glosli, H.; et al. paediatric S. tissue sarcoma S.G. Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019, 20, 1566–1575. [Google Scholar] [CrossRef]
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Prim. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef]
- Topatana, W.; Juengpanich, S.; Li, S.; Cao, J.; Hu, J.; Lee, J.; Suliyanto, K.; Ma, D.; Zhang, B.; Chen, M.; et al. Advances in synthetic lethality for cancer therapy: Cellular mechanism and clinical translation. J. Hematol. Oncol. 2020, 13, 118. [Google Scholar] [CrossRef]
- Dyson, K.A.; Stover, B.D.; Grippin, A.; Mendez-Gomez, H.R.; Lagmay, J.; Mitchell, D.A.; Sayour, E.J. Emerging trends in immunotherapy for pediatric sarcomas. J. Hematol. Oncol. 2019, 12, 78. [Google Scholar] [CrossRef]
- Timpanaro, A.; Piccand, C.; Uldry, A.C.; Bode, P.K.; Dzhumashev, D.; Sala, R.; Heller, M.; Rössler, J.; Bernasconi, M. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. Int. J. Mol. Sci. 2023, 24, 2601. [Google Scholar] [CrossRef]
- Schöffski, P.; Wang, C.-C.; Schöffski, M.P.; Wozniak, A. Current role of topoisomerase I inhibitors for the treatment of mesenchymal malignancies and their potential future use as payload of sarcoma-specific antibody-drug conjugates. Oncol. Res. Treat. 2024, 47, 18–41. [Google Scholar] [CrossRef]
- Falconer, R.A.; Errington, R.J.; Shnyder, S.D.; Smith, P.J.; Patterson, L.H. Polysialyltransferase: A new target in metastatic cancer. Curr. Cancer Drug Targets 2012, 12, 925–939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picher, E.A.; Wahajuddin, M.; Barth, S.; Chisholm, J.; Shipley, J.; Pors, K. The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma. Cancers 2024, 16, 1012. https://doi.org/10.3390/cancers16051012
Picher EA, Wahajuddin M, Barth S, Chisholm J, Shipley J, Pors K. The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma. Cancers. 2024; 16(5):1012. https://doi.org/10.3390/cancers16051012
Chicago/Turabian StylePicher, Enric Arasanz, Muhammad Wahajuddin, Stefan Barth, Julia Chisholm, Janet Shipley, and Klaus Pors. 2024. "The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma" Cancers 16, no. 5: 1012. https://doi.org/10.3390/cancers16051012
APA StylePicher, E. A., Wahajuddin, M., Barth, S., Chisholm, J., Shipley, J., & Pors, K. (2024). The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma. Cancers, 16(5), 1012. https://doi.org/10.3390/cancers16051012