Risk Prediction Models for Oral Cancer: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection of Included Studies
Screening Process
2.3. Data Extraction
3. Results
3.1. Study Selection
3.2. Model Development and Validation
3.3. Risk of Bias in Studies
3.4. Risk Factors
3.5. Model Performance
4. Discussion
4.1. Key Findings
4.2. Model Generalisability
4.3. Availability of Risk Factors
4.4. Recommendations
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Chapple, I.L.C.; Papapanou, P.N. Risk Assessment in Oral Health: A Concise Guide for Clinical Application; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-38647-4. [Google Scholar]
- García-Martín, J.M.; Varela-Centelles, P.; González, M.; Seoane-Romero, J.M.; Seoane, J.; García-Pola, M.J. Epidemiology of Oral Cancer. In Oral Cancer Detection: Novel Strategies and Clinical Impact; Panta, P., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 81–93. ISBN 978-3-319-61255-3. [Google Scholar]
- Sankaranarayanan, R.; Ramadas, K.; Amarasinghe, H.; Subramanian, S.; Johnson, N. Oral Cancer: Prevention, Early Detection, and Treatment. In Cancer: Disease Control Priorities, Third Edition (Volume 3); Gelband, H., Jha, P., Sankaranarayanan, R., Horton, S., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015; ISBN 978-1-4648-0349-9. [Google Scholar]
- Ren, Z.-H.; Hu, C.-Y.; He, H.-R.; Li, Y.-J.; Lyu, J. Global and Regional Burdens of Oral Cancer from 1990 to 2017: Results from the Global Burden of Disease Study. Cancer Commun. 2020, 40, 81–92. [Google Scholar] [CrossRef]
- van Dijk, B.A.C.; Brands, M.T.; Geurts, S.M.E.; Merkx, M.A.W.; Roodenburg, J.L.N. Trends in Oral Cavity Cancer Incidence, Mortality, Survival and Treatment in the Netherlands. Int. J. Cancer 2016, 139, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Thavarool, S.B.; Muttath, G.; Nayanar, S.; Duraisamy, K.; Bhat, P.; Shringarpure, K.; Nayak, P.; Tripathy, J.P.; Thaddeus, A.; Philip, S.; et al. Improved Survival among Oral Cancer Patients: Findings from a Retrospective Study at a Tertiary Care Cancer Centre in Rural Kerala, India. World J. Surg. Oncol. 2019, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Jäwert, F.; Nyman, J.; Olsson, E.; Adok, C.; Helmersson, M.; Öhman, J. Regular Clinical Follow-up of Oral Potentially Malignant Disorders Results in Improved Survival for Patients Who Develop Oral Cancer. Oral Oncol. 2021, 121, 105469. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Warnakulasuriya, S. Screening for Oral Cancer: Future Prospects, Research and Policy Development for Asia. Oral Oncol. 2020, 105, 104632. [Google Scholar] [CrossRef]
- Crossman, T.; Warburton, F.; Richards, M.A.; Smith, H.; Ramirez, A.; Forbes, L.J.L. Role of General Practice in the Diagnosis of Oral Cancer. Br. J. Oral Maxillofac. Surg. 2016, 54, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Ramadas, K.; Thara, S.; Muwonge, R.; Thomas, G.; Anju, G.; Mathew, B. Long Term Effect of Visual Screening on Oral Cancer Incidence and Mortality in a Randomized Trial in Kerala, India. Oral Oncol. 2013, 49, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Borggreven, P.A.; Aaronson, N.K.; Verdonck-de Leeuw, I.M.; Muller, M.J.; Heiligers, M.L.C.H.; de Bree, R.; Langendijk, J.A.; Leemans, C.R. Quality of Life after Surgical Treatment for Oral and Oropharyngeal Cancer: A Prospective Longitudinal Assessment of Patients Reconstructed by a Microvascular Flap. Oral Oncol. 2007, 43, 1034–1042. [Google Scholar] [CrossRef]
- Surveillance Research Program, National Cancer Institute. Cancer Stat Facts: Oral Cavity and Pharynx Cancer. Available online: https://seer.cancer.gov/statfacts/html/oralcav.html (accessed on 19 September 2023).
- Warnakulasuriya, S.; Kerr, A.R. Oral Cancer Screening: Past, Present, and Future. J. Dent. Res. 2021, 100, 1313–1320. [Google Scholar] [CrossRef]
- Speight, P.M.; Epstein, J.; Kujan, O.; Lingen, M.W.; Nagao, T.; Ranganathan, K.; Vargas, P. Screening for Oral Cancer—A Perspective from the Global Oral Cancer Forum. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, 680–687. [Google Scholar] [CrossRef]
- Brocklehurst, P.R.; Speight, P.M. Screening for Mouth Cancer: The Pros and Cons of a National Programme. Br. Dent. J. 2018, 225, 815–819. [Google Scholar] [CrossRef]
- Shrestha, A.D.; Vedsted, P.; Kallestrup, P.; Neupane, D. Prevalence and Incidence of Oral Cancer in Low- and Middle-Income Countries: A Scoping Review. Eur. J. Cancer Care 2020, 29, e13207. [Google Scholar] [CrossRef]
- UK National Screening Committee Criteria for Appraising the Viability, Effectiveness and Appropriateness of a Screening Programme. Available online: https://www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes/criteria-for-appraising-the-viability-effectiveness-and-appropriateness-of-a-screening-programme (accessed on 9 February 2022).
- D’Cruz, A.K.; Vaish, R. Risk-Based Oral Cancer Screening—Lessons to Be Learnt. Nat. Rev. Clin. Oncol. 2021, 18, 471–472. [Google Scholar] [CrossRef]
- Hung, L.-C.; Kung, P.-T.; Lung, C.-H.; Tsai, M.-H.; Liu, S.-A.; Chiu, L.-T.; Huang, K.-H.; Tsai, W.-C. Assessment of the Risk of Oral Cancer Incidence in A High-Risk Population and Establishment of A Predictive Model for Oral Cancer Incidence Using A Population-Based Cohort in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 665. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.-L.; Su, W.W.-Y.; Chen, S.L.-S.; Yen, A.M.-F.; Wang, C.-P.; Fann, J.C.-Y.; Chiu, S.Y.-H.; Lee, Y.-C.; Chiu, H.-M.; Chang, D.-C.; et al. Population-Based Screening Program for Reducing Oral Cancer Mortality in 2,334,299 Taiwanese Cigarette Smokers and/or Betel Quid Chewers. Cancer 2017, 123, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Park, Y. Predicting Cancer Risk: Practical Considerations in Developing and Validating a Cancer Risk Prediction Model. Curr. Epidemiol. Rep. 2015, 2, 197–204. [Google Scholar] [CrossRef]
- Colditz, G.A.; Wei, E.K. Risk Prediction Models: Applications in Cancer Prevention. Curr. Epidemiol. Rep. 2015, 2, 245–250. [Google Scholar] [CrossRef]
- Smith, C.D.L.; McMahon, A.D.; Ross, A.; Inman, G.J.; Conway, D.I. Risk Prediction Models for Head and Neck Cancer: A Rapid Review. Laryngoscope Investig. Otolaryngol. 2022, 7, 1893–1908. [Google Scholar] [CrossRef] [PubMed]
- Tapia, J.L.; Goldberg, L.J. The Challenges of Defining Oral Cancer: Analysis of an Ontological Approach. Head Neck Pathol. 2011, 5, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Ariyawardana, A.; Johnson, N.W. Trends of Lip, Oral Cavity and Oropharyngeal Cancers in Australia 1982–2008: Overall Good News but with Rising Rates in the Oropharynx. BMC Cancer 2013, 13, 333. [Google Scholar] [CrossRef]
- ICD-10 Version: 2010. Available online: https://icd.who.int/browse10/2010/en#/ (accessed on 3 July 2022).
- Bramer, W.M.; Giustini, D.; de Jonge, G.B.; Holland, L.; Bekhuis, T. De-Duplication of Database Search Results for Systematic Reviews in EndNote. J. Med. Libr. Assoc. 2016, 104, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Harrison, H.; Griffin, S.J.; Kuhn, I.; Usher-Smith, J.A. Software Tools to Support Title and Abstract Screening for Systematic Reviews in Healthcare: An Evaluation. BMC Med. Res. Methodol. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 1. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Antunes, J.L.F.; Toporcov, T.N.; Biazevic, M.G.; Boing, A.F.; Scully, C.; Petti, S. Joint and Independent Effects of Alcohol Drinking and Tobacco Smoking on Oral Cancer: A Large Case-Control Study. PLoS ONE 2013, 8, e68132. [Google Scholar] [CrossRef]
- Bao, X.; Yan, L.; Lin, J.; Chen, Q.; Chen, L.; Zhuang, Z.; Wang, R.; Hong, Y.; Qian, J.; Wang, J.; et al. Selenoprotein Genetic Variants May Modify the Association between Serum Selenium and Oral Cancer Risk. Oral Dis. 2020, 26, 1141–1148. [Google Scholar] [CrossRef]
- Chen, F.; Yan, L.; Lin, L.; Liu, F.; Qiu, Y.; Wang, J.; Wu, J.; Liu, F.; Huang, J.; Cai, L.; et al. Dietary Score and the Risk of Oral Cancer: A Case-Control Study in Southeast China. Oncotarget 2017, 8, 34610–34616. [Google Scholar] [CrossRef]
- Chen, F.; Lin, L.; Yan, L.; Liu, F.; Qiu, Y.; Wang, J.; Hu, Z.; Wu, J.; Bao, X.; Lin, L.; et al. Nomograms and Risk Scores for Predicting the Risk of Oral Cancer in Different Sexes: A Large-Scale Case-Control Study. J. Cancer 2018, 9, 2543–2548. [Google Scholar] [CrossRef]
- Chen, Q.; Qiu, Y.; Chen, L.; Lin, J.; Yan, L.J.; Bao, X.D.; Lin, L.S.; Pan, L.Z.; Shi, B.; Zheng, X.Y.; et al. Association between Serum Arsenic and Oral Cancer Risk: A Case-Control Study in Southeast China. Community Dent. Oral Epidemiol. 2022, 50, 83–90. [Google Scholar] [CrossRef]
- Cheung, L.C.; Ramadas, K.; Muwonge, R.; Katki, H.A.; Thomas, G.; Graubard, B.I.; Basu, P.; Sankaranarayanan, R.; Somanathan, T.; Chaturvedi, A.K. Risk-Based Selection of Individuals for Oral Cancer Screening. J. Clin. Oncol. 2021, 39, 663–674. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, J.; Lin, J.; Chen, J.; Zhuang, Z.; Hong, Y.; Yan, L.; Lin, L.; Shi, B.; Qiu, Y.; et al. Association Between Rare Earth Element Cerium and the Risk of Oral Cancer: A Case-Control Study in Southeast China. Front. Public Health 2021, 9, 647120. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.A.; Al-Temimi, M.; Ying, J.; Muscat, J.; Olshan, A.F.; Zevallos, J.P.; Winn, D.M.; Li, G.; Sturgis, E.M.; Morgenstern, H.; et al. Risk Prediction Models for Head and Neck Cancer in the US Population from the INHANCE Consortium. Am. J. Epidemiol. 2020, 189, 330–342. [Google Scholar] [CrossRef]
- Krishna Rao, S.; Mejia, G.C.; Logan, R.M.; Kulkarni, M.; Kamath, V.; Fernandes, D.J.; Ray, S.; Roberts-Thomson, K. A Screening Model for Oral Cancer Using Risk Scores: Development and Validation. Community Dent. Oral Epidemiol. 2016, 44, 76–84. [Google Scholar] [CrossRef]
- Tota, J.E.; Gillison, M.L.; Katki, H.A.; Kahle, L.; Pickard, R.K.; Xiao, W.; Jiang, B.; Graubard, B.I.; Chaturvedi, A.K. Development and Validation of an Individualized Risk Prediction Model for Oropharynx Cancer in the US Population. Cancer 2019, 125, 4407–4416. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.-M.; Lee, C.-H.; Chen, M.-K.; Lee, K.-W.; Lan, C.-C.E.; Kwan, A.-L.; Tsai, M.-H.; Ko, Y.-C. Combined Genetic Biomarkers and Betel Quid Chewing for Identifying High-Risk Group for Oral Cancer Occurrence. Cancer Prev. Res. 2017, 10, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.M.; Hung, C.C.; Lee, C.H.; Lee, C.P.; Lee, K.W.; Chen, M.K.; Yeh, K.T.; Ko, Y.C. Variants in FAT1 and COL9A1 Genes in Male Population with or without Substance Use to Assess the Risk Factors for Oral Malignancy. PLoS ONE 2019, 14, e0210901. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, L.G.; Patil, S.; Beesley, L.J.; VandeHaar, P.; Salvatore, M.; Ma, Y.; Peng, R.B.; Taliun, D.; Zhou, X.; Mukherjee, B. Cancer PRSweb: An Online Repository with Polygenic Risk Scores for Major Cancer Traits and Their Evaluation in Two Independent Biobanks. Am. J. Hum. Genet. 2020, 107, 815–836. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Wang, L.; Zhu, L.; Du, J.; Zhu, X.; Niu, Y.; Wang, R.; Hu, Z.; Chen, N.; Shen, H.; et al. Association of microRNA Polymorphisms with the Risk of Head and Neck Squamous Cell Carcinoma in a Chinese Population: A Case-Control Study. Chin. J. Cancer 2016, 35, 77. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Ramadas, K.; Thomas, G.; Muwonge, R.; Thara, S.; Mathew, B.; Rajan, B. Effect of Screening on Oral Cancer Mortality in Kerala, India: A Cluster-Randomised Controlled Trial. Lancet 2005, 365, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Harrison, H.; Thompson, R.E.; Lin, Z.; Rossi, S.H.; Stewart, G.D.; Griffin, S.J.; Usher-Smith, J.A. Risk Prediction Models for Kidney Cancer: A Systematic Review. Eur. Urol. Focus 2020, 7, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Bahl, M. Assessing Risk of Breast Cancer: A Review of Risk Prediction Models. J. Breast Imaging 2021, 3, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Usher-Smith, J.A.; Walter, F.M.; Emery, J.D.; Win, A.K.; Griffin, S.J. Risk Prediction Models for Colorectal Cancer: A Systematic Review. Cancer Prev. Res. 2016, 9, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Harrison, H.; Li, N.; Saunders, C.L.; Rossi, S.H.; Dennis, J.; Griffin, S.J.; Stewart, G.D.; Usher-Smith, J.A. The Current State of Genetic Risk Models for the Development of Kidney Cancer: A Review and Validation. BJU Int. 2022, 130, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Z.; Xie, L.; Shang, Z.-J. Burden of Oral Cancer on the 10 Most Populous Countries from 1990 to 2019: Estimates from the Global Burden of Disease Study 2019. Int. J. Environ. Res. Public Health 2022, 19, 875. [Google Scholar] [CrossRef]
- Chen, M.; Tan, X.; Padman, R. Social Determinants of Health in Electronic Health Records and Their Impact on Analysis and Risk Prediction: A Systematic Review. J. Am. Med. Inform. Assoc. 2020, 27, 1764–1773. [Google Scholar] [CrossRef]
- Chen, E.S.; Carter, E.W.; Sarkar, I.N.; Winden, T.J.; Melton, G.B. Examining the Use, Contents, and Quality of Free-Text Tobacco Use Documentation in the Electronic Health Record. AMIA Annu. Symp. Proc. 2014, 2014, 366–374. [Google Scholar]
- Conway, D.I.; Purkayastha, M.; Chestnutt, I.G. The Changing Epidemiology of Oral Cancer: Definitions, Trends, and Risk Factors. Br. Dent. J. 2018, 225, 867–873. [Google Scholar] [CrossRef]
- Morrison, A.; Polisena, J.; Husereau, D.; Moulton, K.; Clark, M.; Fiander, M.; Mierzwinski-Urban, M.; Clifford, T.; Hutton, B.; Rabb, D. The Effect of English-Language Restriction on Systematic Review-Based Meta-Analyses: A Systematic Review of Empirical Studies. Int. J. Technol. Assess. Health Care 2012, 28, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Boutron, I.; Page, M.J.; Higgins, J.P.T.; Altman, D.G.; Lundh, A.; Hróbjartsson, A. Chapter 7: Considering Bias and Conflicts of Interest among the Included Studies. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane: Spokane, WA, USA, 2021. [Google Scholar]
- Dobrescu, A.; Nussbaumer-Streit, B.; Klerings, I.; Wagner, G.; Persad, E.; Sommer, I.; Herkner, H.; Gartlehner, G. Restricting Evidence Syntheses of Interventions to English-Language Publications Is a Viable Methodological Shortcut for Most Medical Topics: A Systematic Review. J. Clin. Epidemiol. 2021, 137, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, S.; Cain, N. Screening for Oral Cancer: Contributing to the Debate. J. Investig. Clin. Dent. 2011, 2, 2–9. [Google Scholar] [CrossRef]
- Chaturvedi, A.K. Epidemiology and Clinical Aspects of HPV in Head and Neck Cancers. Head Neck Pathol. 2012, 6 (Suppl. S1), S16–S24. [Google Scholar] [CrossRef]
First Author, Year | Country | Outcome a | Age | Sex | Alcohol Consumption | Smoking | Clinical Risk Factors | Biomarkers | Other Lifestyle Risk Factors | Study Type | Study Setting | Tripod Level b | Reported Performance Measures | Overall Risk of Bias | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Development | Validation | ||||||||||||||
Antunes, 2013 [34] | Brazil | OCC, OPC | X | X | X | X | CC | Hospital-based | 1a | R2 | High | Not applicable | |||
Bao, 2020a [35] | China | OCC | X | X | X | X | X | X | CC | Hospital-based | 1a | AIC | High | Not applicable | |
Chen, 2017 [36] | China | OCC | X | X | X | X | CC | Hospital-based cases and mixed controls | 1a | AUROC | High | Not applicable | |||
Chen, 2018a [37] | China | OCC (male) | X | X | X | X | X | CC | Hospital-based | 1b | AUROC and calibration plot | High | High | ||
Chen, 2018b [37] | China | OCC (female) | X | X | X | CC | Hospital-based | 1b | AUROC and calibration plot | High | High | ||||
Chen, 2022 [38] | China | OCC | X | X | X | X | X | X | CC | Hospital-based | 1a | Sens, Spec | High | Not applicable | |
Cheung, 2021 [39] | India | OCC | X | X | X | X | X | X | Cohort study based on a cluster RCT | General population | 1b | AUROC, O/E ratio | High | High | |
He, 2021a [40] | China | OCC | X | X | X | X | X | CC | Hospital-based | 1a | AUROC, AIC | High | Not applicable | ||
He, 2021b [40] | China | OCC | X | X | X | X | X | X | CC | Hospital-based | 1a | AUROC, AIC | High | Not applicable | |
Lee, 2020a [41] | United States | OCC (male) | X | X | X | X | CC | Hospital-based cases and mixed controls | 2a | AUROC without CI | High | High | |||
Lee, 2020b [41] | United States | OCC (female) | X | X | X | CC | Hospital-based cases and mixed controls | 2a | AUROC without CI | High | High | ||||
Lee, 2020c [41] | United States | OPC (male) | X | X | X | CC | Hospital-based cases and mixed controls | 2a | AUROC without CI | High | High | ||||
Lee, 2020d [41] | United States | OPC (female) | X | X | X | CC | Hospital-based cases and mixed controls | 2a | AUROC without CI | High | High | ||||
Rao, 2016a [42] | India | OCC, OPC | X | X | X | X | X | CC | Hospital-based | 1b | AUROC, Sens, Spec, PPV, NPV | High | High | ||
Rao, 2016b [42] | India | OCC, OPC | X | X | X | X | X | CC | Hospital-based | 1b | AUROC, Sens, Spec, PPV, NPV | High | High | ||
Tota, 2019a [43] | United States | OPC | X | X | X | X | X | CC | Hospital-based cases and population-based controls | 3 | AUROC, O/E ratio in IV and EV | High | High | ||
Tota, 2019b [43] | United States | OPC | X | X | X | X | X | X | CC | Hospital-based cases and population-based controls | 3 | AUROC, O/E ratio in IV and EV | High | High |
First Author, Year | Country | Outcome a | Genetic Factors | Non-Genetic Risk Factors | Study Type | Study-Setting | Tripod Level ᵇ | Reported Performance Measures | Overall Risk of Bias | |
---|---|---|---|---|---|---|---|---|---|---|
Development | Validation | |||||||||
Bao, 2020b [35] | China | OCC | 7 SNP ᶜ-constructed GRS | Selenium level | CC | Hospital-based | 1a | AIC, OR | High | Not applicable |
Chung, 2017 [44] | Taiwan | OCC | 4 SNPs ᵈ | Age and betel quid chewing | CC | Hospital-based | 2b | AUROC, Sens, Spec, OR | High | High |
Chung, 2019 [45] | Taiwan | OCC | 2 SNPs ᵉ | Age, betel quid chewing and alcohol consumption | CC | Hospital-based | 1a | AUROC | High | High |
Fritsche, 2020a [46] | United Kingdom (UK Biobank) | OCC | 1,119,238 SNPs | EHR-derived phenotypes | CC | General population | 1b | AUROC, R2, Brier score, OR | High | High |
Fritsche, 2020b [46] | Finland (FinnGen) | OCC ᶠ | 931,954 SNPs | EHR-derived phenotypes | CC | General population | 1b | AUROC, R2, Brier score, OR | High | High |
Miao, 2016 [47] | China | OCC | 3 SNPs | Age | CC | Hospital-based | 1a | Balance accuracy | High | Not applicable |
Risk Factor, Category | Considered | Included | Risk Factor, Category | Considered | Included |
---|---|---|---|---|---|
Demographic and lifestyle | Beans and/or soy products | 3 | 2 | ||
Personal characteristics | Tea consumption | 2 | 2 | ||
Age | 20 | 21 | Spicy foods | 2 | 2 |
Education level | 14 | 14 | Poultry/domestic meat | 3 | 1 |
Sex | 13 | 9 | Milk and dairy products | 3 | 1 |
Marital status | 7 | 7 | Pickled food | 3 | 1 |
Ethnicity | 9 | 6 | Processed meat | 1 | 1 |
BMI | 7 | 5 | Tea concentration | 2 | 0 |
Area of residence | 5 | 5 | Tea types | 2 | 0 |
Occupation * | 3 | 3 | Tea temperature | 2 | 0 |
Lifetime number of sexual partners * | 2 | 2 | Tobacco/BQ chewing | 5 | 5 |
Age of first intercourse * | 2 | 1 | Status of tobacco/BQ chewing | 4 | 4 |
Parental education level * | 2 | 0 | Duration of tobacco/BQ chewing | 1 | 1 |
Socioeconomic condition * | 2 | 0 | Intensity of tobacco/BQ chewing | 1 | 1 |
Alcohol consumption | 21 | 18 | Past user of tobacco/BQ chewing | 1 | 1 |
Alcohol consumption status | 12 | 10 | Clinical risk factors | ||
Intensity of alcohol consumption | 9 | 9 | Oral health or oral habits | 6 | 6 |
Parental alcohol consumption status | 2 | 0 | Teeth loss | 2 | 2 |
Duration of alcohol consumption | 1 | 1 | Recurrent oral ulceration | 3 | 3 |
Smoking | 21 | 17 | Regular dental visit | 2 | 2 |
Smoking status/history | 15 | 12 | Denture wearing | 3 | 1 |
Intensity of tobacco/cigarette smoking | 9 | 8 | Frequency of tooth-brushing | 2 | 0 |
Duration of tobacco/cigarette smoking | 5 | 5 | Mouth rinsing habit | 2 | 2 |
Passive smoking | 2 | 1 | Oral cancer screening status | 1 | 1 |
Family history | 9 | 7 | HPV status | 1 | 1 |
Family history of head and neck cancer | 6 | 4 | Genetic factors | 6 | 6 |
Family history of any cancer | 5 | 5 | Genetic risk score | 3 | 3 |
Diet | 8 | 8 | Biomarkers | 3 | 3 |
Vegetables (leafy and/or other) | 6 | 6 | Arsenic level | 1 | 1 |
Fish | 6 | 5 | Selenium level | 1 | 1 |
Seafood | 6 | 5 | Cerium level | 1 | 1 |
Fruits | 6 | 5 | Other risk factors | 4 | 3 |
Eggs | 5 | 3 | EHR-derived phenotype | 2 | 2 |
Red meat | 5 | 3 | Cooking oil fume exposure | 2 | 1 |
First Author, Year | Development | Validation a | ||||||
---|---|---|---|---|---|---|---|---|
Discrimination | Calibration | Accuracy | Other Measures | Discrimination | Calibration | Accuracy | Other Measures | |
Models without genetic variants | ||||||||
Antunes, 2013 [34] | Pseudo-R2 = 0.186 | |||||||
Bao, 2020a [35] | AIC: 542.846 | |||||||
Chen, 2017 [36] | AUROC: 0.682 (95% CI: 0.662–0.702) | |||||||
Chen, 2018a [37] | C-index: 0.768 (95% CI: 0.723–0.813) | Calibration plot: shows good calibration | ||||||
Chen, 2018b [37] | C-index: 0.700 (95% CI: 0.635–0.765) | Calibration plot: shows good calibration | ||||||
Chen, 2022 [38] | Sens: 69.9% Spec: 91.4% | |||||||
Cheung, 2021 [39] | C-index: 0.84 (95% CI: 0.77–0.90) | O/E ratio: 1.08 (95% CI: 0.81–1.44) | ||||||
He, 2021a [40] | AUROC: 0.77 (95% CI: 0.74–0.80) | AIC: 1040.50 | ||||||
He, 2021b [40] | AUROC: 0.78 (95% CI: 0.75–0.81) | AIC: 1033.82 | ||||||
Lee, 2020a [41] | AUROC: 0.798 | AUROC: 0.752 | Calibration plot by decile: shows good calibration | |||||
Lee, 2020b [41] | AUROC: 0.774 | AUROC: 0.718 | Calibration plot by decile: shows good calibration | |||||
Lee, 2020c [41] | AUROC: 0.701 | AUROC: 0.643 | Calibration plot by decile: shows overestimation in the three highest deciles | |||||
Lee, 2020d [41] | AUROC: 0.777 | AUROC: 0.745 | Calibration plot by decile: shows good calibration | |||||
Rao, 2016a [42] | AUROC: 0.870 | Sens: 74.6% Spec: 84.6% PPV: 76.7% NPV: 83.0% | AUROC: 0.869 | Sens: 74.4% Spec: 85.1% PPV: 77.3% NPV: 83.0% | ||||
Rao, 2016b [42] | AUROC: 0.866 | Sens: 92.8% Spec: 60.3% PPV: 60.7% NPV: 92.7% | AUROC: 0.865 | Sens: 96.6% Spec: 39.3% PPV: 51.4% NPV: 94.6% | ||||
Tota, 2019a [43] | Internal validation: AUROC: 0.86 (95% CI: 0.84–0.89) External validation: AUROC: 0.81 (95% CI: 0.77–0.86) | Internal validation: Overall O/E ratio: 1.01 (95% CI: 0.70–1.32) External validation: O/E ratio: 1.08 (95% CI: 0.77–1.39) | ||||||
Tota, 2019b [43] | Internal validation: AUROC: 0.95 (95% CI: 0.92–0.97) External validation: AUROC: 0.87 (95% CI: 0.84–0.90) | Internal validation: O/E ratio: 1.01 (95% CI: 0.70–1.32) External validation: O/E ratio: 1.08 (95% CI: 0.77–1.39) | ||||||
Models incorporating genetic variants | ||||||||
Bao, 2020b [35] | AIC: 504.162 | Adjusted OR for GRS: 0: Reference 1: 1.908 (95% CI: 1.086–3.352) 2: 1.940 (95% CI: 1.055–3.567) | ||||||
Chung, 2017 [44] | AUROC: 0.89 (95% CI: 0.86–0.91) | Sens: 86.7% Spec: 86% | Adjusted OR for GRS: 0: Reference 1: 0.96 (95% CI: 0.60–1.54) 2: 1.29 (95% CI: 0.79–2.10) 3: 1.31 (95% CI: 0.60–2.85) 4: 3.11 (95% CI: 1.21–10.67) | AUROC: 0.88 (95% CI: 0.84–0.91) | Sens: 86.3% Spec: 86.5% | |||
Chung, 2019 [44] | AUROC: 0.91 | Sens: 85.7% Spec: 85.7% | Adjusted OR for GRS: 0: Reference 1: 1.68 (95% CI: 1.01–2.81) 2: 6.12 (95% CI: 1.66–22.49) | |||||
Fritsche, 2020a [46] | OR Top 1% vs. other: 1.63 (95% CI: 0.812–3.26) R2: 0.00207 | AUROC: 0.528 (95% CI: 0.502–0.552) | Brier score: 0.0829 | |||||
Fritsche, 2020b [46] | OR Top 1% vs. other: 1.69 (95% CI: 0.61–4.71) R2: 0.00325 | AUROC: 0.538 (95% CI: 0.501–0.575) | Brier score: 0.0827 | |||||
Miao, 2016 [47] | Training balance accuracy: 0.8221 Testing balance accuracy: 0.5491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espressivo, A.; Pan, Z.S.; Usher-Smith, J.A.; Harrison, H. Risk Prediction Models for Oral Cancer: A Systematic Review. Cancers 2024, 16, 617. https://doi.org/10.3390/cancers16030617
Espressivo A, Pan ZS, Usher-Smith JA, Harrison H. Risk Prediction Models for Oral Cancer: A Systematic Review. Cancers. 2024; 16(3):617. https://doi.org/10.3390/cancers16030617
Chicago/Turabian StyleEspressivo, Aufia, Z. Sienna Pan, Juliet A. Usher-Smith, and Hannah Harrison. 2024. "Risk Prediction Models for Oral Cancer: A Systematic Review" Cancers 16, no. 3: 617. https://doi.org/10.3390/cancers16030617
APA StyleEspressivo, A., Pan, Z. S., Usher-Smith, J. A., & Harrison, H. (2024). Risk Prediction Models for Oral Cancer: A Systematic Review. Cancers, 16(3), 617. https://doi.org/10.3390/cancers16030617