Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Acquisition
2.3. CTP AI Biomarker
2.4. Visual Annotation
2.5. Statistical Analysis
3. Results
3.1. Patient Cohort
3.2. Visual Phenotype
3.3. Computational Phenotype and Survival Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goh, V.; Ng, Q.S.; Miles, K. Computed Tomography Perfusion Imaging for Therapeutic Assessment: Has It Come of Age as a Biomarker in Oncology? Investig. Radiol. 2012, 47, 2–4. [Google Scholar] [CrossRef]
- Petralia, G.; Bonello, L.; Viotti, S.; Preda, L.; d’Andrea, G.; Bellomi, M. CT Perfusion in Oncology: How to Do It. Cancer Imaging 2010, 10, 8–19. [Google Scholar] [CrossRef]
- Prezzi, D.; Khan, A.; Goh, V. Perfusion CT Imaging of Treatment Response in Oncology. Eur. J. Radiol. 2015, 84, 2380–2385. [Google Scholar] [CrossRef] [PubMed]
- García-Figueiras, R.; Goh, V.J.; Padhani, A.R.; Baleato-González, S.; Garrido, M.; León, L.; Gómez-Caamaño, A. CT Perfusion in Oncologic Imaging: A Useful Tool? Am. J. Roentgenol. 2013, 200, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Hayano, K.; Fujishiro, T.; Sahani, D.V.; Satoh, A.; Aoyagi, T.; Ohira, G.; Tochigi, T.; Matsubara, H.; Shuto, K. Computed Tomography Perfusion Imaging as a Potential Imaging Biomarker of Colorectal Cancer. World J. Gastroenterol. 2014, 20, 17345–17351. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, A.; Ichikawa, Y.; Toyomasu, Y.; Nagata, M.; Nagasawa, N.; Nomoto, Y.; Sami, H.; Sakuma, H. Perfusion CT to Assess Response to Neoadjuvant Chemotherapy and Radiation Therapy in Pancreatic Ductal Adenocarcinoma: Initial Experience. Radiology 2019, 292, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Aslan, S.; Nural, M.S.; Camlidag, I.; Danaci, M. Efficacy of Perfusion CT in Differentiating of Pancreatic Ductal Adenocarcinoma from Mass-Forming Chronic Pancreatitis and Characterization of Isoattenuating Pancreatic Lesions. Abdom. Radiol. 2019, 44, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiß, S.; Horger, M.; Grözinger, A.; Nikolaou, K.; Ketelsen, D.; Syha, R.; Grözinger, G. CT-Perfusion Measurements in Pancreatic Carcinoma with Different Kinetic Models: Is There a Chance for Tumour Grading Based on Functional Parameters? Cancer Imaging 2016, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Perik, T.H.; van Genugten, E.A.J.; Aarntzen, E.H.J.G.; Smit, E.J.; Huisman, H.J.; Hermans, J.J. Quantitative CT Perfusion Imaging in Patients with Pancreatic Cancer: A Systematic Review. Abdom. Radiol. 2022, 47, 3101–3117. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.H.; Yu, E.S.; Kim, M.-H.; Kim, J.; Byun, J.H.; Lee, S.S.; Hwang, H.J.; Hwang, J.-Y.; Lee, S.S.; et al. Visually Isoattenuating Pancreatic Adenocarcinoma at Dynamic-Enhanced CT: Frequency, Clinical and Pathologic Characteristics, and Diagnosis at Imaging Examinations. Radiology 2010, 257, 87–96. [Google Scholar] [CrossRef]
- Blouhos, K.; Boulas, K.A.; Tsalis, K.; Hatzigeorgiadis, A. The Isoattenuating Pancreatic Adenocarcinoma: Review of the Literature and Critical Analysis. Surg. Oncol. 2015, 24, 322–328. [Google Scholar] [CrossRef]
- Prokesch, R.W.; Chow, L.C.; Beaulieu, C.F.; Bammer, R.; Jeffrey, R.B., Jr. Isoattenuating Pancreatic Adenocarcinoma at Multi-Detector Row CT: Secondary Signs. Radiology 2002, 224, 764–768. [Google Scholar] [CrossRef]
- Fukukura, Y.; Takumi, K.; Higashi, M.; Shinchi, H.; Kamimura, K.; Yoneyama, T.; Tateyama, A. Contrast-Enhanced CT and Diffusion-Weighted MR Imaging: Performance as a Prognostic Factor in Patients with Pancreatic Ductal Adenocarcinoma. Eur. J. Radiol. 2014, 83, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Lee, J.M.; Cho, J.Y.; Lee, K.B.; Kim, J.E.; Moon, S.K.; Kim, S.J.; Baek, J.H.; Kim, S.H.; Kim, S.H.; et al. Small (≤20 Mm) Pancreatic Adenocarcinomas: Analysis of Enhancement Patterns and Secondary Signs with Multiphasic Multidetector CT. Radiology 2011, 259, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Skornitzke, S.; Vats, N.; Mayer, P.; Kauczor, H.-U.; Stiller, W. Pancreatic CT Perfusion: Quantitative Meta-Analysis of Disease Discrimination, Protocol Development, and Effect of CT Parameters. Insights Imaging 2023, 14, 132. [Google Scholar] [CrossRef]
- Goh, V.; Shastry, M.; Engledow, A.; Reston, J.; Wellsted, D.M.; Peck, J.; Endozo, R.; Rodriguez-Justo, M.; Taylor, S.A.; Halligan, S.; et al. Commercial Software Upgrades May Significantly Alter Perfusion CT Parameter Values in Colorectal Cancer. Eur. Radiol. 2011, 21, 744–749. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, R.B.; Cox, D.; Soloff, E.V.; Zečević, M.; Green, S.; Coveler, A.; Busey, J.M.; Wang, C.L. CT Perfusion as a Potential Biomarker for Pancreatic Ductal Adenocarcinoma during Routine Staging and Restaging. Abdom. Radiol. 2022, 47, 3770–3781. [Google Scholar] [CrossRef] [PubMed]
- Goh, V.; Halligan, S.; Gharpuray, A.; Wellsted, D.; Sundin, J.; Bartram, C.I. Quantitative Assessment of Colorectal Cancer Tumor Vascular Parameters by Using Perfusion CT: Influence of Tumor Region of Interest. Radiology 2008, 247, 726–732. [Google Scholar] [CrossRef]
- Huisman, H.J.; Engelbrecht, M.R.; Barentsz, J.O. Accurate Estimation of Pharmacokinetic Contrast-Enhanced Dynamic MRI Parameters of the Prostate. J. Magn. Reson. Imaging 2001, 13, 607–614. [Google Scholar] [CrossRef]
- Alves, N.; Schuurmans, M.; Litjens, G.; Bosma, J.S.; Hermans, J.; Huisman, H. Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography. Cancers 2022, 14, 376. [Google Scholar] [CrossRef]
- O’Malley, R.B.; Soloff, E.V.; Coveler, A.L.; Cox, D.H.; Desai, N.; Busey, J.M.; Valentin, G.M.; Wang, C.L. Feasibility of Wide Detector CT Perfusion Imaging Performed during Routine Staging and Restaging of Pancreatic Ductal Adenocarcinoma. Abdom. Radiol. 2021, 46, 1992–2002. [Google Scholar] [CrossRef] [PubMed]
- Konno, Y.; Hiraka, T.; Kanoto, M.; Sato, T.; Tsunoda, M.; Ishizawa, T.; Matsuda, A.; Makino, N. Pancreatic Perfusion Imaging Method That Reduces Radiation Dose and Maintains Image Quality by Combining Volumetric Perfusion CT with Multiphasic Contrast Enhanced-CT. Pancreatology 2020, 20, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.L. Understanding and Optimizing Use of Contrast Material for CT of the Liver. Am. J. Roentgenol. 1994, 163, 323–331. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, M.; Gallotti, A.; Mantovani, W.; Crosara, S.; Manfrin, E.; Falconi, M.; Ventriglia, A.; Zamboni, G.A.; Manfredi, R.; Pozzi Mucelli, R. Perfusion CT Can Predict Tumoral Grading of Pancreatic Adenocarcinoma. Eur. J. Radiol. 2013, 82, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-S.; Klotz, E.; Kim, M.-J.; Song, S.Y.; Park, S.W.; Cha, S.-W.; Lim, J.S.; Seong, J.; Chung, J.B.; Kim, K.W. Perfusion CT: Noninvasive Surrogate Marker for Stratification of Pancreatic Cancer Response to Concurrent Chemo- and Radiation Therapy. Radiology 2009, 250, 110–117. [Google Scholar] [CrossRef]
- Kovač, J.D.; Đurić-Stefanović, A.; Dugalić, V.; Lazić, L.; Stanisavljević, D.; Galun, D.; Mašulović, D. CT Perfusion and Diffusion-Weighted MR Imaging of Pancreatic Adenocarcinoma: Can We Predict Tumor Grade Using Functional Parameters? Acta Radiol. 2019, 60, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Kudo, K.; Sasaki, M.; Yamada, K.; Momoshima, S.; Utsunomiya, H.; Shirato, H.; Ogasawara, K. Differences in CT Perfusion Maps Generated by Different Commercial Software: Quantitative Analysis by Using Identical Source Data of Acute Stroke Patients. Radiology 2010, 254, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Goh, V.; Halligan, S.; Bartram, C.I. Quantitative Tumor Perfusion Assessment with Multidetector CT: Are Measurements from Two Commercial Software Packages Interchangeable? Radiology 2007, 242, 777–782. [Google Scholar] [CrossRef]
Variable | Total (n = 92 Patients) | Visual Hypovascular (n = 72) | Visual Isovascular (n = 20) | p-Value * | |
---|---|---|---|---|---|
Age (year) | 66 ± 9 | 65 ± 9 | 68 ± 8 | 0.29 | |
Sex (n = males) | 51 (55%) | 41 (59%) | 39 (47%) | 0.40 | |
Tumor size (mm) | 36 ± 16 | 39 ± 16 | 28 ± 13 | 0.01 | |
Tumor location | Head Body–tail | 60 (65%) | 46 (66%) | 14 (63%) | 0.85 |
32 (35%) | 26 (34%) | 6 (37%) | |||
Median overall survival (days) | 337 | 320 | 377 | 0.04 |
Parameter | Visual Hypovascular | Visual Isovascular | p-Value |
---|---|---|---|
Tumor slope (HU/s) | 2.0 ± 0.6 | 2.9 ± 1.1 | p < 0.001 * |
Tumor peak enhancement (HU) | 46.8 ± 12.2 | 69.9 ± 22.1 | p < 0.001 * |
Enhancement difference (ΔHU) | 35.3 ± 19.4 | 12.0 ± 9.1 | p < 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perik, T.; Alves, N.; Hermans, J.J.; Huisman, H. Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma. Cancers 2024, 16, 577. https://doi.org/10.3390/cancers16030577
Perik T, Alves N, Hermans JJ, Huisman H. Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma. Cancers. 2024; 16(3):577. https://doi.org/10.3390/cancers16030577
Chicago/Turabian StylePerik, Tom, Natália Alves, John J. Hermans, and Henkjan Huisman. 2024. "Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma" Cancers 16, no. 3: 577. https://doi.org/10.3390/cancers16030577
APA StylePerik, T., Alves, N., Hermans, J. J., & Huisman, H. (2024). Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma. Cancers, 16(3), 577. https://doi.org/10.3390/cancers16030577