Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,385)

Search Parameters:
Keywords = resource-limited settings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 497 KiB  
Article
Sensitivity and Specificity of a Revised Version of the TRACK-MS Screening Battery for Early Detection of Cognitive Impairment in Patients with Multiple Sclerosis
by Luisa T. Balz, Ingo Uttner, Daniela Taranu, Deborah K. Erhart, Tanja Fangerau, Stefanie Jung, Herbert Schreiber, Makbule Senel, Ioannis Vardakas, Dorothée E. Lulé and Hayrettin Tumani
Biomedicines 2025, 13(8), 1902; https://doi.org/10.3390/biomedicines13081902 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Cognitive impairment is one of the most common and debilitating clinical features of Multiple Sclerosis (MS). Neuropsychological assessment, however, is time-consuming and requires personal resources, so, due to limited resources in daily clinical practice, information on cognitive profiles is often lacking, [...] Read more.
Background/Objectives: Cognitive impairment is one of the most common and debilitating clinical features of Multiple Sclerosis (MS). Neuropsychological assessment, however, is time-consuming and requires personal resources, so, due to limited resources in daily clinical practice, information on cognitive profiles is often lacking, despite its high prognostic relevance. Time-saving and effective tools are required to bridge this gap. This study evaluates the sensitivity and specificity of a revised version of TRACK-MS (TRACK-MS-R), a recently published screening tool to identify cognitive impairment in MS in a fast and reliable way, offering a balance between efficiency and diagnostic yield for the individual patient. Methods: In this prospective cross-sectional study, 102 MS patients and 94 age-, sex-, and education-matched healthy controls (HC) completed an extensive neuropsychological assessment, including TRACK-MS-R, to test for cognitive processing speed (Symbol Digit Modalities Test, SDMT) and verbal fluency (Regensburger Word Fluency Test, RWT). Sensitivity of TRACK-MS-R was assessed by using the BICAMS-M battery as a reference, and specificity was determined by comparing MS patients to HC. Results: TRACK-MS-R demonstrated high sensitivity (97.44%) when compared to the gold standard as represented by BICAMS-M for early and accurately detecting cognitive impairment in MS patients. Additionally, as a potential cognitive marker, TRACK-MS-R showed a specificity of 82.98% in distinguishing MS patients from healthy controls. Conclusions: TRACK-MS-R proves to be a highly sensitive and time-efficient screening tool for detecting cognitive impairment in patients with MS, while demonstrating good specificity compared to HC. Whereas high sensitivity is a prerequisite for a valid screening tool, its relatively modest specificity compared to BICAMS-M (62.9%) calls for caution in interpreting standalone results but instead indicates more extensive neuropsychological testing. Its briefness and diagnostic accuracy support its implementation in routine clinical practice, particularly in time-constrained settings. Full article
Show Figures

Figure 1

12 pages, 472 KiB  
Communication
LAMPOX: A Portable and Rapid Molecular Diagnostic Assay for the Epidemic Clade IIb Mpox Virus Detection
by Anna Rosa Garbuglia, Mallory Draye, Silvia Pauciullo, Daniele Lapa, Eliana Specchiarello, Florence Nazé and Pascal Mertens
Diagnostics 2025, 15(15), 1959; https://doi.org/10.3390/diagnostics15151959 (registering DOI) - 4 Aug 2025
Abstract
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions [...] Read more.
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions and a dried, ready-to-use version—targeting only the ORF F3L (Liquid V1) or both the ORF F3L and N4R (Liquid V2 and dried) genomic regions. Analytical sensitivity and specificity were assessed using 60 clinical samples from confirmed MPXV-positive patients. Sensitivity on clinical samples was 81.7% for Liquid V1 and 88.3% for Liquid V2. The dried LAMPOX assay demonstrated a sensitivity of 88.3% and a specificity of 100% in a panel of 112 negative controls, with most positive samples detected in under 7 min. Additionally, a simplified sample lysis protocol was developed to facilitate point-of-care use. While this method showed slightly reduced sensitivity compared to standard DNA extraction, it proved effective for samples with higher viral loads. The dried format offers key advantages, including ambient-temperature stability and minimal equipment needs, making it suitable for point-of-care testing. These findings support LAMPOX as a promising tool for rapid MPXV detection during outbreaks, especially in resource-limited settings where traditional PCR is impractical. Full article
Show Figures

Figure 1

33 pages, 8443 KiB  
Article
Model for Planning and Optimization of Train Crew Rosters for Sustainable Railway Transport
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Sustainability 2025, 17(15), 7069; https://doi.org/10.3390/su17157069 (registering DOI) - 4 Aug 2025
Abstract
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a [...] Read more.
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a focus on the operational setting of the train crew depot in Česká Třebová, a city in the Czech Republic. The seven-step methodology includes identifying available train shifts, defining scheduling constraints, creating roster variants, and calculating personnel and time requirements for each option. The proposed roster reduced staffing needs by two employees, increased the average shift duration to 9 h and 42 min, and decreased non-productive time by 384 h annually. These improvements enhance sustainability by optimizing human resource use, lowering unnecessary energy consumption, and improving employees’ work–life balance. The model also provides a quantitative assessment of operational feasibility and economic efficiency. Compared to existing rosters, the proposed model offers clear advantages and remains applicable even in settings with limited technological support. The findings show that a well-designed rostering system can contribute not only to cost savings and personnel stabilization, but also to broader objectives in sustainable public transport, supporting resilient and resource-efficient rail operations. Full article
Show Figures

Figure 1

20 pages, 949 KiB  
Review
Behavioural Cardiology: A Review on an Expanding Field of Cardiology—Holistic Approach
by Christos Fragoulis, Maria-Kalliopi Spanorriga, Irini Bega, Andreas Prentakis, Evangelia Kontogianni, Panagiotis-Anastasios Tsioufis, Myrto Palkopoulou, John Ntalakouras, Panagiotis Iliakis, Ioannis Leontsinis, Kyriakos Dimitriadis, Dimitris Polyzos, Christina Chrysochoou, Antonios Politis and Konstantinos Tsioufis
J. Pers. Med. 2025, 15(8), 355; https://doi.org/10.3390/jpm15080355 (registering DOI) - 4 Aug 2025
Abstract
Cardiovascular disease (CVD) remains Europe’s leading cause of mortality, responsible for >45% of deaths. Beyond established risk factors (hypertension, diabetes, dyslipidaemia, smoking, obesity), psychosocial elements—depression, anxiety, financial stress, personality traits, and trauma—significantly influence CVD development and progression. Behavioural Cardiology addresses this connection by [...] Read more.
Cardiovascular disease (CVD) remains Europe’s leading cause of mortality, responsible for >45% of deaths. Beyond established risk factors (hypertension, diabetes, dyslipidaemia, smoking, obesity), psychosocial elements—depression, anxiety, financial stress, personality traits, and trauma—significantly influence CVD development and progression. Behavioural Cardiology addresses this connection by systematically incorporating psychosocial factors into prevention and rehabilitation protocols. This review examines the HEARTBEAT model, developed by Greece’s first Behavioural Cardiology Unit, which aligns with current European guidelines. The model serves dual purposes: primary prevention (targeting at-risk individuals) and secondary prevention (treating established CVD patients). It is a personalised medicine approach that integrates psychosocial profiling with traditional risk assessment, utilising tailored evaluation tools, caregiver input, and multidisciplinary collaboration to address personality traits, emotional states, socioeconomic circumstances, and cultural contexts. The model emphasises three critical implementation aspects: (1) digital health integration, (2) cost-effectiveness analysis, and (3) healthcare system adaptability. Compared to international approaches, it highlights research gaps in psychosocial interventions and advocates for culturally sensitive adaptations, particularly in resource-limited settings. Special consideration is given to older populations requiring tailored care strategies. Ultimately, Behavioural Cardiology represents a transformative systems-based approach bridging psychology, lifestyle medicine, and cardiovascular treatment. This integration may prove pivotal for optimising chronic disease management through personalised interventions that address both biological and psychosocial determinants of cardiovascular health. Full article
(This article belongs to the Special Issue Personalized Diagnostics and Therapy for Cardiovascular Diseases)
15 pages, 1216 KiB  
Article
Mathematical Modeling of Regional Infectious Disease Dynamics Based on Extended Compartmental Models
by Olena Kiseleva, Sergiy Yakovlev, Olga Prytomanova and Oleksandr Kuzenkov
Computation 2025, 13(8), 187; https://doi.org/10.3390/computation13080187 - 4 Aug 2025
Abstract
This study presents an extended approach to compartmental modeling of infectious disease spread, focusing on regional heterogeneity within affected areas. Using classical SIS, SIR, and SEIR frameworks, we simulate the dynamics of COVID-19 across two major regions of Ukraine—Dnipropetrovsk and Kharkiv—during the period [...] Read more.
This study presents an extended approach to compartmental modeling of infectious disease spread, focusing on regional heterogeneity within affected areas. Using classical SIS, SIR, and SEIR frameworks, we simulate the dynamics of COVID-19 across two major regions of Ukraine—Dnipropetrovsk and Kharkiv—during the period 2020–2024. The proposed mathematical model incorporates regionally distributed subpopulations and applies a system of differential equations solved using the classical fourth-order Runge–Kutta method. The simulations are validated against real-world epidemiological data from national and international sources. The SEIR model demonstrated superior performance, achieving maximum relative errors of 4.81% and 5.60% in the Kharkiv and Dnipropetrovsk regions, respectively, outperforming the SIS and SIR models. Despite limited mobility and social contact data, the regionally adapted models achieved acceptable accuracy for medium-term forecasting. This validates the practical applicability of extended compartmental models in public health planning, particularly in settings with constrained data availability. The results further support the use of these models for estimating critical epidemiological indicators such as infection peaks and hospital resource demands. The proposed framework offers a scalable and computationally efficient tool for regional epidemic forecasting, with potential applications to future outbreaks in geographically heterogeneous environments. Full article
Show Figures

Figure 1

17 pages, 6108 KiB  
Article
Grid-Forming Buck-Type Current-Source Inverter Using Hybrid Model-Predictive Control
by Gianni Avilan-Losee and Hang Gao
Energies 2025, 18(15), 4124; https://doi.org/10.3390/en18154124 (registering DOI) - 4 Aug 2025
Abstract
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, [...] Read more.
Grid-forming (GFM) inverters have recently seen wider adoption in microgrids and inverter-based-resource (IBR)-penetrated grids, and are primarily used to establish grid voltage under a wide array of conditions. In the existing literature, GFM control is almost exclusively applied using voltage-source inverters (VSIs). However, due to the inherent limitations of available semiconductor devices’ current ratings, inverter-side current must be limited in VSIs, particularly during grid-fault conditions. These limitations complicate the real-world application of GFM functionality in VSIs, and complex control methodologies and tuning parameters are required as a result. In the following study, GFM control is instead applied to a buck-type current-source inverter (CSI) using a combination of linear droop-control and finite-control-set (FCS) mode-predictive control (MPC) that will be referred to herein as hybrid model-predictive control (HMPC). The resulting inverter features a simple topology, inherent current limiting capabilities, and a relatively simple and intuitive control structure. Verification was performed on a 1MVA/630V system via MATLAB/Simulink, and the simulation results demonstrate strong performance in voltage establishment, power regulation, and low-voltage ride through under-grid-fault conditions, highlighting its potential as a competent alternative to VSIs in GFM applications, and lacking the inherent limitations and/or complexity of existing GFM control methodologies. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

15 pages, 1189 KiB  
Article
Innovative Payment Mechanisms for High-Cost Medical Devices in Latin America: Experience in Designing Outcome Protection Programs in the Region
by Daniela Paredes-Fernández and Juan Valencia-Zapata
J. Mark. Access Health Policy 2025, 13(3), 39; https://doi.org/10.3390/jmahp13030039 (registering DOI) - 4 Aug 2025
Abstract
Introduction and Objectives: Risk-sharing agreements (RSAs) have emerged as a key strategy for financing high-cost medical technologies while ensuring financial sustainability. These payment mechanisms mitigate clinical and financial uncertainties, optimizing pricing and reimbursement decisions. Despite their widespread adoption globally, Latin America has [...] Read more.
Introduction and Objectives: Risk-sharing agreements (RSAs) have emerged as a key strategy for financing high-cost medical technologies while ensuring financial sustainability. These payment mechanisms mitigate clinical and financial uncertainties, optimizing pricing and reimbursement decisions. Despite their widespread adoption globally, Latin America has reported limited implementation, particularly for high-cost medical devices. This study aims to share insights from designing RSAs in the form of Outcome Protection Programs (OPPs) for medical devices in Latin America from the perspective of a medical devices company. Methods: The report follows a structured approach, defining key OPP dimensions: payment base, access criteria, pricing schemes, risk assessment, and performance incentives. Risks were categorized as financial, clinical, and operational. The framework applied principles from prior models, emphasizing negotiation, program design, implementation, and evaluation. A multidisciplinary task force analyzed patient needs, provider motivations, and payer constraints to ensure alignment with health system priorities. Results: Over two semesters, a panel of seven experts from the manufacturer designed n = 105 innovative payment programs implemented in Argentina (n = 7), Brazil (n = 7), Colombia (n = 75), Mexico (n = 9), Panama (n = 4), and Puerto Rico (n = 3). The programs targeted eight high-burden conditions, including Coronary Artery Disease, atrial fibrillation, Heart Failure, and post-implantation arrhythmias, among others. Private providers accounted for 80% of experiences. Challenges include clinical inertia and operational complexities, necessitating structured training and monitoring mechanisms. Conclusions: Outcome Protection Programs offer a viable and practical risk-sharing approach to financing high-cost medical devices in Latin America. Their implementation requires careful stakeholder alignment, clear eligibility criteria and endpoints, and robust monitoring frameworks. These findings contribute to the ongoing dialogue on sustainable healthcare financing, emphasizing the need for tailored approaches in resource-constrained settings. Full article
Show Figures

Figure 1

33 pages, 8886 KiB  
Article
Unsupervised Binary Classifier-Based Object Detection Algorithm with Integrated Background Subtraction Suitable for Use with Aerial Imagery
by Gabija Veličkaitė, Ignas Daugėla and Ivan Suzdalev
Appl. Sci. 2025, 15(15), 8608; https://doi.org/10.3390/app15158608 (registering DOI) - 3 Aug 2025
Abstract
This research presents the development of a novel object detection algorithm designed to identify humans in natural outdoor environments using minimal computational resources. The proposed system, SARGAS, combines a custom convolutional neural network (CNN) classifier with MOG2 background subtraction and partial affine transformations [...] Read more.
This research presents the development of a novel object detection algorithm designed to identify humans in natural outdoor environments using minimal computational resources. The proposed system, SARGAS, combines a custom convolutional neural network (CNN) classifier with MOG2 background subtraction and partial affine transformations for camera stabilization. A secondary CNN refines detections and reduces false positives. Unlike conventional supervised models, SARGAS is trained in a partially unsupervised manner, learning to recognize feature patterns without requiring labeled data. The algorithm achieved a recall of 93%, demonstrating strong detection capability even under challenging conditions. However, the overall accuracy reached 65%, due to a higher rate of false positives—an expected trade-off when maximizing recall. This bias is intentional, as missing a human target in search and rescue applications carries a higher cost than producing additional false detections. While supervised models, such as YOLOv5, perform well on data resembling their training sets, they exhibit significant performance degradation on previously unseen footage. In contrast, SARGAS generalizes more effectively, making it a promising candidate for real-world deployment in environments where labeled training data is limited or unavailable. The results establish a solid foundation for further improvements and suggest that unsupervised CNN-based approaches hold strong potential in object detection tasks. Full article
Show Figures

Figure 1

23 pages, 386 KiB  
Article
Balancing Tradition, Reform, and Constraints: A Study of Principal Leadership Practices in Chinese Primary Schools
by Chenzhi Li, Edmond Hau-Fai Law, Yunyun Huang and Ke Ding
Educ. Sci. 2025, 15(8), 988; https://doi.org/10.3390/educsci15080988 (registering DOI) - 3 Aug 2025
Abstract
It is well-established that principal leadership significantly influences student learning in developed countries, yet much less is known about how leadership practices manifest in complex systems like China’s, where rapid modernization intersects with deep-rooted educational traditions. In particular, Chinese principals face multiple challenges [...] Read more.
It is well-established that principal leadership significantly influences student learning in developed countries, yet much less is known about how leadership practices manifest in complex systems like China’s, where rapid modernization intersects with deep-rooted educational traditions. In particular, Chinese principals face multiple challenges in balancing the implementation of educational reform policies, high parental expectations, and their own educational ideology, all within limited resources. The current study examines these challenges in Shenzhen, a city which typically manifests them through its rapid development. Specifically, we took a phenomenographic approach and interviewed the principals and staff from five prestigious primary schools to extract the key components behind the diverse school leaders’ styles and practices. Results showed that, the Chinese leadership practice model consists of five key components: mission setting, infrastructure reconstruction, teacher development, learning improvement, and educators’ networking. Although the first four components in this model align with established theories in developed countries, networking was identified as a distinctive and critical element for securing resources and fostering collaboration. These findings may broaden the scope of leadership theories and underscore the need to contextualize leadership practices based on local challenges and dynamics. It also offers practical insights for school leaders on navigating challenges to improve teacher and student outcomes. Full article
(This article belongs to the Special Issue School Leadership and School Improvement)
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 (registering DOI) - 3 Aug 2025
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

10 pages, 586 KiB  
Article
The Role of Systemic Immune-Inflammation Index (SII) in Diagnosing Pediatric Acute Appendicitis
by Binali Firinci, Cetin Aydin, Dilek Yunluel, Ahmad Ibrahim, Murat Yigiter and Ali Ahiskalioglu
Diagnostics 2025, 15(15), 1942; https://doi.org/10.3390/diagnostics15151942 - 2 Aug 2025
Viewed by 49
Abstract
Background and Objectives: Accurately diagnosing acute appendicitis (AA) in children remains clinically challenging due to overlapping symptoms with other pediatric conditions and limitations in conventional diagnostic tools. The systemic immune-inflammation index (SII) has emerged as a promising biomarker in adult populations; however, [...] Read more.
Background and Objectives: Accurately diagnosing acute appendicitis (AA) in children remains clinically challenging due to overlapping symptoms with other pediatric conditions and limitations in conventional diagnostic tools. The systemic immune-inflammation index (SII) has emerged as a promising biomarker in adult populations; however, its utility in pediatrics is still unclear. This study aimed to evaluate the diagnostic accuracy of SII in distinguishing pediatric acute appendicitis from elective non-inflammatory surgical procedures and to assess its predictive value in identifying complicated cases. Materials and Methods: This retrospective, single-center study included 397 pediatric patients (5–15 years), comprising 297 histopathologically confirmed appendicitis cases and 100 controls. Demographic and laboratory data were recorded at admission. Inflammatory indices including SII, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were calculated. ROC curve analysis was performed to evaluate diagnostic performance. Results: SII values were significantly higher in the appendicitis group (median: 2218.4 vs. 356.3; p < 0.001). SII demonstrated excellent diagnostic accuracy for AA (AUROC = 0.95, 95% CI: 0.92–0.97), with 91% sensitivity and 88% specificity at a cut-off > 624. In predicting complicated appendicitis, SII showed moderate discriminative ability (AUROC = 0.66, 95% CI: 0.60–0.73), with 83% sensitivity but limited specificity (43%). Conclusions: SII is a reliable and easily obtainable biomarker for diagnosing pediatric acute appendicitis and may aid in early detection of complicated cases. Its integration into clinical workflows may enhance diagnostic precision, particularly in resource-limited settings. Age-specific validation studies are warranted to confirm its broader applicability. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Pediatric Emergencies—2nd Edition)
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 134
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

16 pages, 3183 KiB  
Case Report
A Multidisciplinary Approach to Crime Scene Investigation: A Cold Case Study and Proposal for Standardized Procedures in Buried Cadaver Searches over Large Areas
by Pier Matteo Barone and Enrico Di Luise
Forensic Sci. 2025, 5(3), 34; https://doi.org/10.3390/forensicsci5030034 - 1 Aug 2025
Viewed by 234
Abstract
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar [...] Read more.
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar (GPR), and cadaver dog (K9) deployment. A dedicated decision tree guided each phase, allowing for efficient allocation of resources and minimizing investigative delays. Although no human remains were recovered, the case demonstrates the practical utility and operational robustness of a structured, evidence-based model that supports decision-making even in the absence of positive findings. The approach highlights the relevance of “negative” results, which, when derived through scientifically validated procedures, offer substantial value by excluding burial scenarios with a high degree of reliability. This case is particularly significant in the Italian forensic context, where the adoption of standardized search protocols remains limited, especially in complex outdoor environments. The integration of geophysical, remote sensing, and canine methodologies—rooted in forensic geoarchaeology—provides a replicable framework that enhances both investigative effectiveness and the evidentiary admissibility of findings in court. The protocol illustrated in this study supports the consistent evaluation of large and morphologically complex areas, reduces the risk of interpretive error, and reinforces the transparency and scientific rigor expected in judicial settings. As such, it offers a model for improving forensic search strategies in both national and international contexts, particularly in long-standing or high-profile missing persons cases. Full article
Show Figures

Figure 1

16 pages, 914 KiB  
Article
APTIMA mRNA vs. DNA-Based HPV Assays: Analytical Performance Insights from a Resource-Limited South African Setting
by Varsetile Varster Nkwinika, Kelvin Amoh Amissah, Johnny Nare Rakgole, Moshawa Calvin Khaba, Cliff Abdul Magwira and Ramokone Lisbeth Lebelo
Int. J. Mol. Sci. 2025, 26(15), 7450; https://doi.org/10.3390/ijms26157450 (registering DOI) - 1 Aug 2025
Viewed by 186
Abstract
Cervical cancer remains a major health burden among women in sub-Saharan Africa, where screening is often limited. Persistent high-risk human papillomavirus (HR-HPV) infection is the principal cause, highlighting the need for accurate molecular diagnostics. This cross-sectional study evaluated the analytical performance of one [...] Read more.
Cervical cancer remains a major health burden among women in sub-Saharan Africa, where screening is often limited. Persistent high-risk human papillomavirus (HR-HPV) infection is the principal cause, highlighting the need for accurate molecular diagnostics. This cross-sectional study evaluated the analytical performance of one mRNA assay, APTIMA® HPV assay (APTIMA mRNA), and two DNA-based assays, the Abbott RealTime High Risk HPV assay (Abbott DNA) and Seegene Allplex™ II HPV28 assay (Seegene DNA), in 527 cervical samples from a South African tertiary hospital, focusing on 14 shared HR-HPV genotypes. Seegene DNA yielded the highest detection rate (53.7%), followed by Abbott DNA (48.2%) and APTIMA mRNA (45.2%). APTIMA mRNA showed a strong agreement with Abbott DNA (87.9%, κ = 0.80), 89.9% sensitivity, 91.2% NPV, and the highest accuracy (AUC = 0.8804 vs. 0.8681). The agreement between APTIMA mRNA and Seegene DNA was moderate (83.4%, κ = 0.70), reflecting target differences. Many DNA-positive/mRNA-negative cases likely represent transient infections, though some may be latent with reactivation potential, warranting a follow-up. In resource-constrained settings, prioritizing transcriptionally active infections through mRNA testing may enhance screening efficiency and reduce burden. Scalable, cost-effective assays with strong clinical utility are essential for broadening access and improving cervical cancer prevention. Further studies should assess the integration of mRNA testing into longitudinal screening algorithms. Full article
Show Figures

Figure 1

18 pages, 11340 KiB  
Article
CLSANet: Cognitive Learning-Based Self-Adaptive Feature Fusion for Multimodal Visual Object Detection
by Han Peng, Qionglin Liu, Riqing Ruan, Shuaiqi Yuan and Qin Li
Electronics 2025, 14(15), 3082; https://doi.org/10.3390/electronics14153082 - 1 Aug 2025
Viewed by 201
Abstract
Multimodal object detection leverages the complementary characteristics of visible (RGB) and infrared (IR) imagery, making it well-suited for challenging scenarios such as low illumination, occlusion, and complex backgrounds. However, most existing fusion-based methods rely on static or heuristic strategies, limiting their adaptability to [...] Read more.
Multimodal object detection leverages the complementary characteristics of visible (RGB) and infrared (IR) imagery, making it well-suited for challenging scenarios such as low illumination, occlusion, and complex backgrounds. However, most existing fusion-based methods rely on static or heuristic strategies, limiting their adaptability to dynamic environments. To address this limitation, we propose CLSANet, a cognitive learning-based self-adaptive network that enhances detection performance by dynamically selecting and integrating modality-specific features. CLSANet consists of three key modules: (1) a Dominant Modality Identification Module that selects the most informative modality based on global scene analysis; (2) a Modality Enhancement Module that disentangles and strengthens shared and modality-specific representations; and (3) a Self-Adaptive Fusion Module that adjusts fusion weights spatially according to local scene complexity. Compared to existing methods, CLSANet achieves state-of-the-art detection performance with significantly fewer parameters and lower computational cost. Ablation studies further demonstrate the individual effectiveness of each module under different environmental conditions, particularly in low-light and occluded scenes. CLSANet offers a compact, interpretable, and practical solution for multimodal object detection in resource-constrained settings. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications)
Show Figures

Figure 1

Back to TopTop