Beta-2-Microglobulin Maintains Overall Survival Prediction in Binet A Stage Chronic Lymphocytic Leukemia Patients with Compromised Kidney Function in Both Treatment Eras of Chemoimmunotherapy and Targeted Agents
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Survival According to CLL-IPI Risk Groups and B2M Plasma Levels
3.2. Overall Survival Comparison in the Era of Chemoimmunotherapy and Targeted Agents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, A.; Howell, D.; Patmore, R.; Jack, A.; Roman, E. Incidence of haematological malignancy by sub-type: A report from the Haematological Malignancy Research Network. Br. J. Cancer 2011, 105, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Brieghel, C.; da Cunha-Bang, C.; Mourek, J.; Kjeldsen, L.; Niemann, C.U. It is feasible and safe to stop specialized follow-up of asymptomatic lower-risk chronic lymphocytic leukemia. Blood Adv. 2024, 8, 4449–4456. [Google Scholar] [CrossRef] [PubMed]
- Condoluci, A.; Terzi di Bergamo, L.; Langerbeins, P.; Hoechstetter, M.A.; Herling, C.D.; De Paoli, L.; Delgado, J.; Rabe, K.G.; Gentile, M.; Doubek, M.; et al. International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood 2020, 135, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.A.; Rabe, K.G.; Kay, N.E.; Call, T.G.; Ding, W.; Leis, J.F.; Kenderian, S.S.; Muchtar, E.; Wang, Y.; Koehler, A.B.; et al. The CLL International Prognostic Index predicts outcomes in monoclonal B-cell lymphocytosis and Rai 0 CLL. Blood 2021, 138, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P.; Hallek, M. Prognostic factors in chronic lymphocytic leukemia-what do we need to know? Nature reviews. Clin. Oncol. 2011, 8, 38–47. [Google Scholar] [CrossRef]
- Moia, R.; Gaidano, G. Prognostication in chronic lymphocytic leukemia. Semin. Hematol. 2024, 61, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Braish, J.; Cerchione, C.; Ferrajoli, A. An overview of prognostic markers in patients with CLL. Front. Oncol. 2024, 14, 1371057. [Google Scholar] [CrossRef]
- Urso, A.; Martino, E.A.; Cuneo, A.; Gentile, M.; Rigolin, G.M. Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs. Cancers 2024, 16, 2732. [Google Scholar] [CrossRef]
- Goergen, E.; Al-Sawaf, O. The prognostic significance of genomic complexity in patients with CLL. Leuk. Lymphoma 2024, 65, 873–881. [Google Scholar] [CrossRef]
- An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016, 17, 779–790. [CrossRef] [PubMed]
- Rotbain, E.C.; da Cunha-Bang, C.; Brieghel, C.; Niemann, C.U. CLL-IPI applied in Binet A CLL: A nationwide cohort study. Blood Adv. 2022, 6, 5698–5701. [Google Scholar] [CrossRef] [PubMed]
- Langerbeins, P.; Giza, A.; Robrecht, S.; Cramer, P.; von Tresckow, J.; Al-Sawaf, O.; Fink, A.M.; Fürstenau, M.; Kutsch, N.; Simon, F.; et al. Reassessing the chronic lymphocytic leukemia International Prognostic Index in the era of targeted therapies. Blood 2024, 143, 2588–2598. [Google Scholar] [CrossRef]
- Hoechstetter, M.A.; Busch, R.; Eichhorst, B.; Bühler, A.; Winkler, D.; Bahlo, J.; Robrecht, S.; Eckart, M.J.; Vehling-Kaiser, U.; Jacobs, G.; et al. Prognostic model for newly diagnosed CLL patients in Binet stage A: Results of the multicenter, prospective CLL1 trial of the German CLL study group. Leukemia 2020, 34, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig VH Genes Are Associated with a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef]
- Vardi, A.; Agathangelidis, A.; Sutton, L.A.; Ghia, P.; Rosenquist, R.; Stamatopoulos, K. Immunogenetic studies of chronic lymphocytic leukemia: Revelations and speculations about ontogeny and clinical evolution. Cancer Res. 2014, 74, 4211–4216. [Google Scholar] [CrossRef]
- Bohn, J.P.; Stolzlechner, V.; Göbel, G.; Pirklbauer, M.; Wolf, D.; Steiner, N. Reduced prognostic value of beta-2-microglobulin for time to first treatment in CLL patients with compromised kidney function. Leuk. Lymphoma 2024, 1–8. [Google Scholar] [CrossRef]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin as a Biomarker across the Spectrum of Kidney Diseases. Front. Med. 2017, 4, 73. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Binet, J.L.; Leporrier, M.; Dighiero, G.; Charron, D.; Vaugier, G.; Beral, H.M.; Natali, J.C.; Raphael, M.; Nizet, B.; Follezou, J.Y. A clinical staging system for chronic lymphocytic leukemia. Prognostic significance. Cancer 1977, 40, 855–864. [Google Scholar] [CrossRef]
- Agathangelidis, A.; Chatzidimitriou, A.; Chatzikonstantinou, T.; Tresoldi, C.; Davis, Z.; Giudicelli, V.; Kossida, S.; Belessi, C.; Rosenquist, R.; Ghia, P.; et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: The 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia 2022, 36, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Davi, F.; Langerak, A.W.; de Septenville, A.L.; Kolijn, P.M.; Hengeveld, P.J.; Chatzidimitriou, A.; Bonfiglio, S.; Sutton, L.A.; Rosenquist, R.; Ghia, P.; et al. Immunoglobulin gene analysis in chronic lymphocytic leukemia in the era of next generation sequencing. Leukemia 2020, 34, 2545–2551. [Google Scholar] [CrossRef] [PubMed]
- Nadeu, F.; Delgado, J.; Royo, C.; Baumann, T.; Stankovic, T.; Pinyol, M.; Jares, P.; Navarro, A.; Martín-García, D.; Beà, S.; et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 2016, 127, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Khiabanian, H.; Spina, V.; Ciardullo, C.; Bruscaggin, A.; Famà, R.; Rasi, S.; Monti, S.; Deambrogi, C.; De Paoli, L.; et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014, 123, 2139–2147. [Google Scholar] [CrossRef]
- Lazarian, G.; Tausch, E.; Eclache, V.; Sebaa, A.; Bianchi, V.; Letestu, R.; Collon, J.F.; Lefebvre, V.; Gardano, L.; Varin-Blank, N.; et al. TP53 mutations are early events in chronic lymphocytic leukemia disease progression and precede evolution to complex karyotypes. Int. J. Cancer 2016, 139, 1759–1763. [Google Scholar] [CrossRef]
- Malcikova, J.; Tausch, E.; Rossi, D.; Sutton, L.A.; Soussi, T.; Zenz, T.; Kater, A.P.; Niemann, C.U.; Gonzalez, D.; Davi, F.; et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia—Update on methodological approaches and results interpretation. Leukemia 2018, 32, 1070–1080. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Klahr, S.; Levey, A.S.; Beck, G.J.; Caggiula, A.W.; Hunsicker, L.; Kusek, J.W.; Striker, G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. N. Engl. J. Med. 1994, 330, 877–884. [Google Scholar] [CrossRef]
- Langerbeins, P.; Zhang, C.; Robrecht, S.; Cramer, P.; Fürstenau, M.; Al-Sawaf, O.; von Tresckow, J.; Fink, A.-M.; Kreuzer, K.-A.; Vehling-Kaiser, U.; et al. The CLL12 trial: Ibrutinib vs placebo in treatment-naïve, early-stage chronic lymphocytic leukemia. Blood 2022, 139, 177–187. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
Parameter | Non-CKD Patients (n = 215) | CKD # Patients (n = 44) |
---|---|---|
Female | 74 (34.1%) | 18 (40.9%) |
Median age (years) | 64 (range, 39–88) | 72 (range, 57–83) |
Median eGFR * (mL/min/m2) | >60 | 53 (range, 30–59) |
B2M + plasma level > 3.5 mg/L | 23 (10.6%) | 15 (44.1%) |
TP53 alterations | 16 (10.8%, n = 148) | 5 (14.7%, n = 34) |
Unmutated IGHV | 88 (40.5%, n = 148) | 15 (44.1%, n = 34) |
CLL-IPI score | 148/215 | 34/44 |
Low risk | 71 (48.0%) | 12 (35.3%) |
Intermediate risk | 46 (31.1%) | 11 (32.4%) |
High risk | 22 (14.9%) | 8 (23.5%) |
Very high risk | 9 (6.1%) | 3 (8.8%) |
Start of CLL treatment in follow-up | 108 (50.2%) | 21 (47.7%) |
1st/2nd line treatment with novel agents | 58/108 (53.7%) | 9/21 (42.9%) |
Ibrutinib | 38 (65.5%) | 5 (55.5%) |
Acalabrutinib | 6 (10.3%) | 2 (22.2%) |
Zanubrutinib | 4 (6.9%) | 0 |
Venetoclax and Obinutuzumab | 5 (8.6%) | 2 (22.2%) |
Ibrutinib and Venetoclax | 5 (8.6%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohn, J.-P.; Stolzlechner, V.; Göbel, G.; Willenbacher, W.; Pirklbauer, M.; Steiner, N.; Wolf, D. Beta-2-Microglobulin Maintains Overall Survival Prediction in Binet A Stage Chronic Lymphocytic Leukemia Patients with Compromised Kidney Function in Both Treatment Eras of Chemoimmunotherapy and Targeted Agents. Cancers 2024, 16, 3744. https://doi.org/10.3390/cancers16223744
Bohn J-P, Stolzlechner V, Göbel G, Willenbacher W, Pirklbauer M, Steiner N, Wolf D. Beta-2-Microglobulin Maintains Overall Survival Prediction in Binet A Stage Chronic Lymphocytic Leukemia Patients with Compromised Kidney Function in Both Treatment Eras of Chemoimmunotherapy and Targeted Agents. Cancers. 2024; 16(22):3744. https://doi.org/10.3390/cancers16223744
Chicago/Turabian StyleBohn, Jan-Paul, Valentina Stolzlechner, Georg Göbel, Wolfgang Willenbacher, Markus Pirklbauer, Normann Steiner, and Dominik Wolf. 2024. "Beta-2-Microglobulin Maintains Overall Survival Prediction in Binet A Stage Chronic Lymphocytic Leukemia Patients with Compromised Kidney Function in Both Treatment Eras of Chemoimmunotherapy and Targeted Agents" Cancers 16, no. 22: 3744. https://doi.org/10.3390/cancers16223744
APA StyleBohn, J.-P., Stolzlechner, V., Göbel, G., Willenbacher, W., Pirklbauer, M., Steiner, N., & Wolf, D. (2024). Beta-2-Microglobulin Maintains Overall Survival Prediction in Binet A Stage Chronic Lymphocytic Leukemia Patients with Compromised Kidney Function in Both Treatment Eras of Chemoimmunotherapy and Targeted Agents. Cancers, 16(22), 3744. https://doi.org/10.3390/cancers16223744