Impairment of Nutritional Status and Quality of Life Following Minimal-Invasive Esophagectomy—A Prospective Cohort Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Blood Tests
2.3. Fecal Samples
2.4. Quality of Life Questionnaires QLQ-C30 and QLQ-OG25
2.5. NRS 2002
2.6. Surgical Procedure
2.7. Statistical Analysis
3. Results
3.1. Body Weight, BMI, Nutritional Risk Screening
3.2. Laboratory Tests
3.3. Fecal Samples
3.4. Quality of Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol. 2020, 13, 1010–1021. [Google Scholar] [CrossRef]
- Alsop, B.R.; Sharma, P. Esophageal Cancer. Gastroenterol. Clin. N. Am. 2016, 45, 399–412. [Google Scholar] [CrossRef]
- Short, M.W.; Burgers, K.G.; Fry, V.T. Esophageal Cancer. Am. Fam. Physician 2017, 95, 22–28. [Google Scholar]
- Shahbaz Sarwar, C.M.; Luketich, J.D.; Landreneau, R.J.; Abbas, G. Esophageal cancer: An update. Int. J. Surg. 2010, 8, 417–422. [Google Scholar] [CrossRef]
- Pennathur, A.; Gibson, M.K.; Jobe, B.A.; Luketich, J.D. Oesophageal carcinoma. Lancet 2013, 381, 400–412. [Google Scholar] [CrossRef]
- Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021, 13, 1980. [Google Scholar] [CrossRef]
- Lidoriki, I.; Schizas, D.; Mylonas, K.S.; Vergadis, C.; Karydakis, L.; Alexandrou, A.; Karavokyros, I.; Liakakos, T. Postoperative Changes in Nutritional and Functional Status of Gastroesophageal Cancer Patients. J. Am. Nutr. Assoc. 2022, 41, 301–309. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Arends, J. The causes and consequences of cancer-associated malnutrition. Eur. J. Oncol. Nurs. 2005, 9 (Suppl. 2), S51–S63. [Google Scholar] [CrossRef]
- Kubota, T.; Shoda, K.; Konishi, H.; Okamoto, K.; Otsuji, E. Nutrition update in gastric cancer surgery. Ann. Gastroenterol. Surg. 2020, 4, 360–368. [Google Scholar] [CrossRef]
- Ranasinghe, R.N.; Biswas, M.; Vincent, R.P. Prealbumin: The clinical utility and analytical methodologies. Ann. Clin. Biochem. 2022, 59, 7–14. [Google Scholar] [CrossRef]
- Ingenbleek, Y.; Bernstein, L.H. Plasma Transthyretin as a Biomarker of Lean Body Mass and Catabolic States. Adv. Nutr. 2015, 6, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Janssen, H.J.B.; Fransen, L.F.C.; Ponten, J.E.H.; Nieuwenhuijzen, G.A.P.; Luyer, M.D.P. Micronutrient Deficiencies Following Minimally Invasive Esophagectomy for Cancer. Nutrients 2020, 12, 778. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, H.M.; Zaborowski, A.; Fanning, M.; McHugh, A.; Doyle, S.; Moore, J.; Ravi, N.; Reynolds, J.V. Prospective Study of Malabsorption and Malnutrition After Esophageal and Gastric Cancer Surgery. Ann. Surg. 2015, 262, 803–807, discussion 807–808. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A. Postgastrectomy problems. Proc. R Soc. Med. 1971, 64, 745–747. [Google Scholar] [PubMed]
- Rino, Y.; Aoyama, T.; Atsumi, Y.; Yamada, T.; Yukawa, N. Metabolic bone disorders after gastrectomy: Inevitable or preventable? Surg. Today 2022, 52, 182–188. [Google Scholar] [CrossRef] [PubMed]
- van Erning, F.N.; Nieuwenhuijzen, G.A.P.; van Laarhoven, H.W.M.; Rosman, C.; Gisbertz, S.S.; Heisterkamp, J.; Lagarde, S.M.; Slingerland, M.; van den Berg, J.W.; Kouwenhoven, E.A.; et al. Gastrointestinal Symptoms After Resection of Esophagogastric Cancer: A Longitudinal Study on Their Incidence and Impact on Patient-Reported Outcomes. Ann. Surg. Oncol. 2023, 30, 8203–8215. [Google Scholar] [CrossRef] [PubMed]
- Markar, S.R.; Zaninotto, G.; Castoro, C.; Johar, A.; Lagergren, P.; Elliott, J.A.; Gisbertz, S.S.; Mariette, C.; Alfieri, R.; Huddy, J.; et al. Lasting Symptoms After Esophageal Resection (LASER): European Multicenter Cross-sectional Study. Ann. Surg. 2022, 275, e392–e400. [Google Scholar] [CrossRef] [PubMed]
- Boshier, P.R.; Klevebro, F.; Savva, K.V.; Waller, A.; Hage, L.; Hanna, G.B.; Low, D.E. Assessment of Health Related Quality of Life and Digestive Symptoms in Long-term, Disease Free Survivors After Esophagectomy. Ann. Surg. 2022, 275, e140–e147. [Google Scholar] [CrossRef]
- Nucci, D.; Gianfredi, V.; Ferrara, P.; Santangelo, O.E.; Varotto, B.; Feltrin, A.; Galiano, A.; Nardi, M. Association between Malnutrition and Depression in Patients with Cancer: The Importance of Nutritional Status Evaluation in Cancer Care. Int. J. Environ. Res. Public Health 2023, 20, 2295. [Google Scholar] [CrossRef]
- Elliott, J.A.; Casey, S.; Murphy, C.F.; Docherty, N.G.; Ravi, N.; Beddy, P.; Reynolds, J.V.; le Roux, C.W. Risk factors for loss of bone mineral density after curative esophagectomy. Arch. Osteoporos. 2019, 14, 6. [Google Scholar] [CrossRef]
- Huddy, J.R.; Macharg, F.M.; Lawn, A.M.; Preston, S.R. Exocrine pancreatic insufficiency following esophagectomy. Dis. Esophagus 2013, 26, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, R.P.; Yacob, M.; Chowdhury, S.D.; Balasubramanian, K.A.; Samarasam, I. Exocrine Pancreatic Insufficiency Following Gastric Resectional Surgery-is Routine Pancreatic Enzyme Replacement Therapy Necessary? Indian J. Surg. Oncol. 2021, 12, 391–396. [Google Scholar] [CrossRef]
- Dominici, R.; Franzini, C. Fecal elastase-1 as a test for pancreatic function: A review. Clin. Chem. Lab. Med. 2002, 40, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef]
- Hjelms, E.; Thirup, P.; Schou, L. Gastric intrinsic factor production and vitamin B12 absorption after oesophageal resection using stomach as substitute. Eur. J. Cardiothorac. Surg. 1999, 16, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Sweed, M.R.; Edmonson, D.; Cohen, S.J. Tumors of the esophagus, gastroesophageal junction, and stomach. Semin. Oncol. Nurs. 2009, 25, 61–75. [Google Scholar] [CrossRef]
- Green, R.; Datta Mitra, A. Megaloblastic Anemias: Nutritional and Other Causes. Med. Clin. N. Am. 2017, 101, 297–317. [Google Scholar] [CrossRef]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef]
- Hercberg, S.; Rouaud, C. Nutritional anaemia. Child. Trop. 1981, 133, 1–36. [Google Scholar] [CrossRef]
- Annibale, B.; Lahner, E.; Fave, G.D. Diagnosis and management of pernicious anemia. Curr. Gastroenterol. Rep. 2011, 13, 518–524. [Google Scholar] [CrossRef]
- Bowman, B.H.; Barnett, D.R.; Lum, J.B.; Yang, F. Haptoglobin. Methods Enzymol. 1988, 163, 452–474. [Google Scholar] [CrossRef] [PubMed]
- di Masi, A.; De Simone, G.; Ciaccio, C.; D’Orso, S.; Coletta, M.; Ascenzi, P. Haptoglobin: From hemoglobin scavenging to human health. Mol. Asp. Med. 2020, 73, 100851. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.P.; Asleh, R.; Blum, S.; Levy, N.S.; Miller-Lotan, R.; Kalet-Litman, S.; Anbinder, Y.; Lache, O.; Nakhoul, F.M.; Asaf, R.; et al. Haptoglobin: Basic and clinical aspects. Antioxid. Redox Signal. 2010, 12, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Matusiewicz, M.; Diakowska, D.; Grabowski, K.; Blachut, K.; Kustrzeba-Wojcicka, I.; Terlecki, G.; Gamian, A. Acute-phase response proteins are related to cachexia and accelerated angiogenesis in gastroesophageal cancers. Clin. Chem. Lab. Med. 2008, 46, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A. CRP after 2004. Mol. Immunol. 2005, 42, 927–930. [Google Scholar] [CrossRef]
- Pepys, M.B. C-reactive protein fifty years on. Lancet 1981, 1, 653–657. [Google Scholar] [CrossRef]
- Allin, K.H.; Nordestgaard, B.G. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit. Rev. Clin. Lab. Sci. 2011, 48, 155–170. [Google Scholar] [CrossRef]
- Ikeda, M.; Natsugoe, S.; Ueno, S.; Baba, M.; Aikou, T. Significant host- and tumor-related factors for predicting prognosis in patients with esophageal carcinoma. Ann. Surg. 2003, 238, 197–202. [Google Scholar] [CrossRef]
- Nozoe, T.; Saeki, H.; Sugimachi, K. Significance of preoperative elevation of serum C-reactive protein as an indicator of prognosis in esophageal carcinoma. Am. J. Surg. 2001, 182, 197–201. [Google Scholar] [CrossRef]
- Guillem, P.; Triboulet, J.P. Elevated serum levels of C-reactive protein are indicative of a poor prognosis in patients with esophageal cancer. Dis. Esophagus 2005, 18, 146–150. [Google Scholar] [CrossRef]
- Gockel, I.; Dirksen, K.; Messow, C.M.; Junginger, T. Significance of preoperative C-reactive protein as a parameter of the perioperative course and long-term prognosis in squamous cell carcinoma and adenocarcinoma of the oesophagus. World J. Gastroenterol. 2006, 12, 3746–3750. [Google Scholar] [CrossRef]
- Groblewska, M.; Mroczko, B.; Sosnowska, D.; Szmitkowski, M. Interleukin 6 and C-reactive protein in esophageal cancer. Clin. Chim. Acta 2012, 413, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Oka, M.; Yamamoto, K.; Takahashi, M.; Hakozaki, M.; Abe, T.; Iizuka, N.; Hazama, S.; Hirazawa, K.; Hayashi, H.; Tangoku, A.; et al. Relationship between serum levels of interleukin 6, various disease parameters and malnutrition in patients with esophageal squamous cell carcinoma. Cancer Res. 1996, 56, 2776–2780. [Google Scholar] [PubMed]
- Fujiwara, H.; Suchi, K.; Okamura, S.; Okamura, H.; Umehara, S.; Todo, M.; Shiozaki, A.; Kubota, T.; Ichikawa, D.; Okamoto, K.; et al. Elevated serum CRP levels after induction chemoradiotherapy reflect poor treatment response in association with IL-6 in serum and local tumor site in patients with advanced esophageal cancer. J. Surg. Oncol. 2011, 103, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF). [Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus. 2022 17.02.2023]; Langversion 3.1, 2022, AWMF-Registernummer: 021/023OL. Available online: https://www.leitlinienprogramm-onkologie.de/leitlinien/oesophaguskarzinom/ (accessed on 5 November 2023).
- Fayers, P.; Bottomley, A.; EORTC Quality of Life Group; Quality of Life Unit. Quality of life research within the EORTC-the EORTC QLQ-C30. European Organisation for Research and Treatment of Cancer. Eur. J. Cancer 2002, 38 (Suppl. 4), S125–S133. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; Ad Hoc, E.W.G. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.L.; Tsai, Y.F.; Wu, Y.C.; Hsieh, M.J. Factors relating to quality of life after esophagectomy for cancer patients in Taiwan. Cancer Nurs. 2014, 37, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Talagala, I.A.; Arambepola, C. Changes in quality of life following initial treatment of oesophageal carcinoma: A cohort study from Sri Lanka. BMC Cancer 2018, 18, 1184. [Google Scholar] [CrossRef]
- Murphy, C.F.; Fanning, M.; Raftery, N.; Elliott, J.A.; Docherty, N.G.; Donohoe, C.L.; Ravi, N.; Le Roux, C.W.; Reynolds, J.V. Early experience with a nutrition and survivorship clinic in esophageal cancer. Dis. Esophagus 2021, 34, doaa061. [Google Scholar] [CrossRef]
- Bailey, K.V.; Ferro-Luzzi, A. Use of body mass index of adults in assessing individual and community nutritional status. Bull World Health Organ. 1995, 73, 673–680. [Google Scholar]
- Wang, W.; Knovich, M.A.; Coffman, L.G.; Torti, F.M.; Torti, S.V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta 2010, 1800, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.B.F.; Stodkilde, K.; Saederup, K.L.; Kuhlee, A.; Raunser, S.; Graversen, J.H.; Moestrup, S.K. Haptoglobin. Antioxid. Redox Signal. 2017, 26, 814–831. [Google Scholar] [CrossRef] [PubMed]
- van Hagen, P.; de Jonge, R.; van Berge Henegouwen, M.I.; Hotte, G.J.; van der Stok, E.P.; Lindemans, J.; van Lanschot, J.J.B.; Wijnhoven, B.P.L. Vitamin B12 deficiency after esophagectomy with gastric tube reconstruction for esophageal cancer. Dis. Esophagus 2017, 30, 1–8. [Google Scholar] [CrossRef]
- Blonk, L.; Wierdsma, N.J.; Jansma, E.P.; Kazemier, G.; van der Peet, D.L.; Straatman, J. Exocrine pancreatic insufficiency after esophagectomy: A systematic review of literature. Dis. Esophagus 2021, 34, doab003. [Google Scholar] [CrossRef] [PubMed]
- Ayling, R.M.; Kok, K. Fecal Calprotectin. Adv. Clin. Chem. 2018, 87, 161–190. [Google Scholar] [CrossRef] [PubMed]
- Kristinsson, J.; Armbruster, C.H.; Ugstad, M.; Kriwanek, S.; Nygaard, K.; Ton, H.; Fuglerud, P. Fecal excretion of calprotectin in colorectal cancer: Relationship to tumor characteristics. Scand. J. Gastroenterol. 2001, 36, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Roseth, A.G.; Fagerhol, M.K.; Aadland, E.; Schjonsby, H. Assessment of the neutrophil dominating protein calprotectin in feces: A methodologic study. Scand. J. Gastroenterol. 1992, 27, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Vincent, Z.; Hornby, S.; Ball, S.; Sanders, G.; Ayling, R.M. Faecal calprotectin as a marker for oesophago-gastric cancer. Ann. Clin. Biochem. 2015, 52, 660–664. [Google Scholar] [CrossRef]
- Malmstrom, M.; Ivarsson, B.; Johansson, J.; Klefsgard, R. Long-term experiences after oesophagectomy/gastrectomy for cancer—A focus group study. Int. J. Nurs. Stud. 2013, 50, 44–52. [Google Scholar] [CrossRef]
- Fuchs, H.; Holscher, A.H.; Leers, J.; Bludau, M.; Brinkmann, S.; Schroder, W.; Alakus, H.; Monig, S.; Gutschow, C.A. Long-term quality of life after surgery for adenocarcinoma of the esophagogastric junction: Extended gastrectomy or transthoracic esophagectomy? Gastric Cancer 2016, 19, 312–317. [Google Scholar] [CrossRef]
Parameter | Standard Value | |
---|---|---|
Albumin | 3.5–5.2 g/dL | |
Prealbumin | 20–40 mg/dL | |
Vitamin A | 300–700 μg/L | |
Vitamin B12 | 197–771 pg/mL | |
Vitamin D3 (25-OH-Vitamin D) | Deficit < 20 ng/mL; toxic > 100 ng/mL | |
CRP | <5 mg/L | |
IL-6 | <7 pg/mL | |
Transferrin | 200–360 mg/dL | |
Ferritin | ♀ 15–150 ng/mL | ♂ 30–400 ng/mL |
Haptoglobin | 30–200 mg/dL | |
Phosphate | 0.81–1.45 mmol/L | |
Leucocytes | ♀ 4.0–10.0/nL | ♂ 4.2–9.1/nL |
Hemoglobin | ♀ 11.2–15.7 g/dL | ♂ 13.7–17.5 g/dL |
Hematocrit | ♀ 34.1–44.9% | ♂ 40.1–50.0% |
MCV | ♀ 79.4–94.8 fl | ♂ 79.0–92.2 fl |
MCH | 25.6–32.2 pg | |
Elastase | >200 µg/g | |
Calprotectin | <50 µg/g |
Patient Characteristics | All (n = 24) |
---|---|
Age | 64.3 years (±8.6) |
Male | 20 (83%) |
Arterial hypertension | 14 (58%) |
History of smoking | 12 (5%) |
Chronic obstructive pulmonary disease | 2 (8%) |
Coronary heart disease | 6 (25%) |
Diabetes mellitus type 2 | 7 (29%) |
Obesity (BMI > 25 kg/m2) | 6 (25%) |
Neoadjuvant therapy | 23 (96%) |
| 15 (65%) |
| 7 (30%) |
| 1 (4%) |
Adjuvant therapy | 17 (71%) |
| 15 (88%) |
| 2 (12%) |
ASA 2 | 6 (25%) |
ASA 3 | 17 (71%) |
ASA 4 | 1 (4%) |
Clavien-Dindo ≤ 3a | 19 (79%) |
Clavien-Dindo ≥ 3b | 5 (21%) |
NRS < 3 | 9 (41%) |
NRS ≥ 3 | 13 (59%) |
Prior to Surgery | After Surgery | p-Value | |
---|---|---|---|
Weight | 82.9 kg (14.6 kg) | 72.0 kg (14.0 kg) | <0.001 |
BMI | 27.5 kg/m2 (3.9 kg/m2) | 23.9 kg/m2 (3.9 kg/m2) | <0.001 |
Leucocytes | 7.0/nL (2.7/nL) | 5.9/nL (1.2/nL) | 0.058 |
Hemoglobin | 12.2 g/dL (2.2 g/dL) | 12.5 g/dL (1.9 g/dL) | 0.459 |
Hematocrit | 37.0% (6.2%) | 38.4% (6.1%) | 0.267 |
MCV | 87.3 fl (5.6 fl) | 88.4 fl (6.8 fl) | 0.125 |
MCH | 28.7 pg (2.3 pg) | 28.8 pg (2.7 pg) | 0.145 |
Albumin | 4.2 g/dL (0.3 g/dL) | 4.3 g/dL (0.4 g/dL) | 0.329 |
Vitamin A | 595.5 μg/L (163.8 μg/L) | 529.1 μg/L (142.6 μg/L) | 0.284 |
Vitamin D | 18.7 ng/nL (12.2 ng/mL) | 21.0 ng/mL (10.9 ng/mL) | 0.362 |
Vitamin B12 | 737.3 pg/mL (471.9 pg/mL) | 466.5 pg/mL (178.8 pg/mL) | 0.033 |
Transferrin | 257.8 mg/dL (59.7 mg/dL) | 265.2 mg/dL (60.5 mg/dL) | 0.538 |
Ferritin | 301.6 ng/mL (279.7 ng/mL) | 125.5 ng/mL (118.0 ng/mL) | 0.012 |
Haptoglobin | 227.1 mg/dL (143.4 mg/dL) | 152.3 mg/dL (54.3 mg/dL) | 0.025 |
CRP | 2.6 mg/L (1.6 mg/L) | 1.4 mg/L (1.0 mg/L) | 0.018 |
IL-6 | 7.5 pg/mL (6.3 pg/mL) | 5.1 pg/mL (5.4 pg/mL) | 0.353 |
Phosphate | 1.1 mmol/L (0.2 mmol/L) | 1.1 mmol/L (0.2 mmol/L) | 0.518 |
Prealbumin | 26.3 mg/dL (4.6 mg/dL) | 24.5 mg/dL (5.5 mg/dL) | 0.188 |
Prior to Surgery | After Surgery | |
---|---|---|
Elastase-1 | 1692.3 μg/g (±664.0) | 581.8 μg/g (±379.4) |
Calprotectin | 67.3 μg/g (±45.4) | 54.6 μg/g (±40.9) |
Prior to Surgery | After Surgery | p-Value | |
---|---|---|---|
Global Health Status | 52.2 (20.3) | 54.2 (21.2) | 0.776 |
Physical functioning | 71.8 (19.7) | 57.9 (27.2) | 0.034 |
Role functioning | 53.3 (40.4) | 40.0 (27.3) | 0.238 |
Emotional functioning | 61.1 (29.5) | 56.1 (24.5) | 0.591 |
Cognitive functioning | 90.0 (18.7) | 75.6 (28.8) | 0.072 |
Social functioning | 66.7 (28.2) | 40.0 (33.8) | 0.022 |
Fatigue | 46.2 (26.6) | 59.7 (25.6) | 0.169 |
Nausea and vomiting | 26.0 (27.9) | 19.8 (28.0) | 0.591 |
Pain | 19.8 (22.1) | 43.2 (34.3) | 0.041 |
Dyspnea | 22.9 (29,1) | 47.9 (29.7) | 0.013 |
Insomnia | 33.3 (32.2) | 47.9 (421) | 0.048 |
Appetite loss | 39.6 (37.0) | 52.1 (38.4) | 0.287 |
Constipation | 20.8 (29.5) | 2.1 (19.1) | 0.007 |
Diarrhea, | 37.8 (33.0) | 45.6 (33.6) | 0.235 |
Financial difficulties | 35.7 (35.7) | 42.9 (35.6) | 0.533 |
Dysphagia | 21.9 (29.1) | 20.1 (21.9) | 0.858 |
Eating | 42.7 (25.6) | 50.5 (26.1) | 0.297 |
Reflux | 13.5 (18.5) | 30.2 (28.7) | 0.076 |
Odynophagia, | 19.8 (28.7) | 19.8 (26.0) | 1.000 |
Pain and discomfort | 15.6 (30.1) | 33.3 (30.4) | 0.129 |
Anxiety | 68.8 (28.5) | 65.6 (28.8) | 0.580 |
Eating with others | 6.3 (18.1) | 25.0 (37.5) | 0.045 |
Dry mouth | 35.6 (36.7) | 24.4 (36.7) | 0.334 |
Trouble with taste | 52.1 (43.8) | 39.6 (38.9) | 0.383 |
Body image | 28.9 (27.8) | 40.0 (40.2) | 0.353 |
Trouble swallowing saliva | 16.7 (24.3) | 16.7 (27.2) | 1.000 |
Choked when swallowing | 14.6 (17.1) | 12.5 (20.6) | 0.718 |
Trouble with coughing | 20.8 (16.7) | 50.0 (34.4) | 0.001 |
Trouble talking | 6.7 (13.8) | 8.9 (26.6) | 0.774 |
Weight loss | 29.2 (34.2) | 41.7 (39.4) | 0.188 |
Hair loss | 52.4 (46.6) | 33.3 (43.0) | 0.280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberhoff, G.; Schooren, L.; Vondran, F.; Kroh, A.; Koch, A.; Bednarsch, J.; Neumann, U.P.; Schmitz, S.M.; Alizai, P.H. Impairment of Nutritional Status and Quality of Life Following Minimal-Invasive Esophagectomy—A Prospective Cohort Analysis. Cancers 2024, 16, 266. https://doi.org/10.3390/cancers16020266
Oberhoff G, Schooren L, Vondran F, Kroh A, Koch A, Bednarsch J, Neumann UP, Schmitz SM, Alizai PH. Impairment of Nutritional Status and Quality of Life Following Minimal-Invasive Esophagectomy—A Prospective Cohort Analysis. Cancers. 2024; 16(2):266. https://doi.org/10.3390/cancers16020266
Chicago/Turabian StyleOberhoff, Grace, Lena Schooren, Florian Vondran, Andreas Kroh, Alexander Koch, Jan Bednarsch, Ulf P. Neumann, Sophia M. Schmitz, and Patrick H. Alizai. 2024. "Impairment of Nutritional Status and Quality of Life Following Minimal-Invasive Esophagectomy—A Prospective Cohort Analysis" Cancers 16, no. 2: 266. https://doi.org/10.3390/cancers16020266
APA StyleOberhoff, G., Schooren, L., Vondran, F., Kroh, A., Koch, A., Bednarsch, J., Neumann, U. P., Schmitz, S. M., & Alizai, P. H. (2024). Impairment of Nutritional Status and Quality of Life Following Minimal-Invasive Esophagectomy—A Prospective Cohort Analysis. Cancers, 16(2), 266. https://doi.org/10.3390/cancers16020266