Short Peptides as Powerful Arsenal for Smart Fighting Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Short Peptide Immunotherapeutic Drugs
2.1. Peptide-Based Immune Checkpoint Blockades
2.2. Peptide-Drug Conjugates and Dual-Function Short Peptides
3. Peptide-Based Cancer Vaccination
3.1. Peptide-Based Cancer Vaccines
3.2. Peptide-Based Neoantigen Cancer Vaccines
3.3. Antigens and Adjuvants
Antigens | ||
---|---|---|
OVA257–264 | SIINFEKL | [91] |
OVA253–266 | EQLESIINFEKLTE | [123] |
OVA323–339 | ISQAVHAA-HAEINEAGR | [93] |
OFA 2 | ALCNTDSPL | [107] |
NY-ESO-1 | SLLMWITQV | [99] |
MAGE-A3 | FLWGPRALV | [101] |
Tyrosinase1–9 | MLLAVLYCL | [83] |
Tyrosinase368–376 | YMDGTMSQV | [83] |
MART-126–35 | EAAGIGILTV | [84] |
gp100280–288 | YLEPGPVTA | [86] |
gp100209–217 | IMDQVPFSV | [86] |
HGP100 | KVPRNQDWL | [87] |
TRP2 | SVYDFFVWL | [89] |
Survivin-2B80–88 | AYACNTSTL | [124] |
E-75 | KIFGSLAFL | [97] |
WT1Pep427 | RSDELVRHH-NMHQRNMTKL | [98] |
E711–20 | YMLDLQPETT | [102] |
E786–93 | TLGIVCPI | [102] |
E743–57 | GQAEPDRAHYNIVTF | [103] |
E749–57 | RAHYNIVTF | [11] |
E748–54 | PDRAHYNI | [106] |
Adjuvants | ||
KFE8 | FKFEFKFE | [114] |
Q11 | QQKFQFQFEQQ | [114] |
Hydrogel | Nap-GDFDFDYD | [117] |
Hydrogel | Nap-GDFDFDYDK | [125] |
Hydrogel | GDFDFDY | [125] |
4. Specificity of Short Peptide Assembly in Immunotherapy
4.1. Delivery Systems
4.2. Other Immuno-Based Approaches
5. Combined Peptide-Based Therapies
5.1. Immuno-Chemotherapy
5.2. Immuno-Radiotherapy
6. Peptide-Based Cancer Imaging
7. Peptide-Based 3D Culture
8. Natural Short Peptides as Anticancer Therapeutics
Peptides Performing Membrane-Damaging Cell Death | ||
---|---|---|
Decoralin | SLLSLIRKLIT | [238] |
MP1 | ILGTILGLLKSL | [239] |
Tachyplesin | KWCFRVCYRGICYRRCR | [240] |
Buforin IIb | TRSSRAGLQFPVGRVHRLLRK | [241] |
Magainin 2 | GIGKFLHSAKKFGKAFVGEIMNS | [242] |
Peptides Performing Apoptotic Cell Death | ||
Cycas revoluta peptide | AWKLFDDGV | [243] |
GG | GPPPQGGRPQG | [235] |
LF11 | FQWQRNMRKVR | [244] |
FK-16 fragment | FKRIVQRIKDFLRNLV | [245] |
9. Peptides as Tumor Drugs
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tran, K.B. The global burden of cancer attributable to risk factors. Lancet 2022, 400, 563–591. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Firipis, K.; Nisbet, D.R.; Franks, S.J.; Kapsa, R.M.I.; Pirogova, E.; Williams, R.J.; Quigley, A. Enhancing Peptide Biomaterials for Biofabrication. Polymers 2021, 13, 2590. [Google Scholar] [CrossRef]
- Zhang, P.; Cheetham, A.G.; Lin, Y.A.; Cui, H. Self-assembled tat nanofibers as effective drug carrier and transporter. ACS Nano 2013, 7, 5965–5977. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, F.; Zou, Q.; Li, Y.; Ma, G.; Yan, X. Multitriggered tumor-responsive drug delivery vehicles based on protein and polypeptide coassembly for enhanced photodynamic tumor ablation. Small 2016, 12, 5936–5943. [Google Scholar] [CrossRef]
- Ghafoor, M.H.; Song, B.L.; Zhou, L.; Qiao, Z.Y.; Wang, H. Self-assembly of Peptides as an alluring approach toward cancer treatment and imaging. ACS Biomat. Sci. Eng. 2024, 10, 2841–2862. [Google Scholar] [CrossRef]
- Li, M.; Zhao, X.; Dai, J.; Yu, Z. Peptide therapeutics and assemblies for cancer immunotherapy. Sci. China Mater. 2019, 62, 1759–1781. [Google Scholar] [CrossRef]
- Miao, Q.; Yeo, D.C.; Wiraja, C.; Zhang, J.; Ning, X.; Xu, C.; Pu, K. Near-infrared fluorescent molecular probe for sensitive imaging of keloid. Angew. Chem. Int. Ed. 2018, 57, 1256–1260. [Google Scholar] [CrossRef]
- Liu, T.Y.; Hussein, W.M.; Giddam, A.K.; Jia, Z.; Reiman, J.M.; Zaman, M.; McMillan, N.A.J.; Good, M.F.; Monteiro, M.J.; Toth, I.; et al. Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine. J. Med. Chem. 2015, 58, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Zou, Q.; Li, S.; Yan, X. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 2017, 29, 1605021. [Google Scholar] [CrossRef] [PubMed]
- Kiyotani, K.; Toyoshima, Y.; Nakamura, Y. Personalized immunotherapy in cancer precision medicine. Cancer Biol. Med. 2021, 18, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Niu, X.; Zhou, X.; Gao, Y. Peptide drugs: A new direction in cancer immunotherapy. Cancer Biol. Med. 2024, 21, 198–203. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Gubin, M.M.; Zhang, X.; Schuster, H. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515, 577–581. [Google Scholar]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Pan, C.; Yang, H.; Lu, Y.; Hu, S.; Wu, Y.; He, Q. Recent advance of peptide-based molecules and nonpeptidic small-molecules modulating PD-1/PD-L1 protein-protein interaction or targeting PD-L1 protein degradation. Eur. J. Med. Chem. 2021, 213, 113170. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Zhou, X.; Wang, X.; Zhai, W.; Li, B. An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J. Control Release 2021, 334, 376–388. [Google Scholar] [CrossRef]
- Zhou, X.; Zuo, C.; Li, W.; Shi, W.; Zhou, X.; Wang, H. A novel D-peptide identified by mirror-image phage display blocks TIGIT/PVR for cancer immunotherapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 15114–15128. [Google Scholar] [CrossRef]
- Shen, W.; Shi, P.; Dong, Q.; Zhou, X.; Chen, C.; Sui, X. Discovery of a novel dual-targeting D-peptide to block CD24/Siglec-10 and PD-1/PD-L1 interaction and synergize with radiotherapy for cancer immunotherapy. J. Immunother. Cancer. 2023, 11, e007068. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Zhou, X.; Wang, H.; Li, W.; Chen, G.; Sui, X.; Li, G.; Qi, Y.; Gao, Y. A novel cyclic peptide targeting LAG-3 for cancer immunotherapy by activating antigen-specific CD8(+) T cell responses. Acta Pharm. Sin. B 2020, 10, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Maute, R.L.; Gordon, S.R.; Mayer, A.T. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-petimaging. Proc. Natl. Acad. Sci. USA 2015, 112, E6506–E6514. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, Y.; Zhou, X.; Chen, C.; Jiao, L.; Li, W.; Gou, S.; Li, Y.; Du, J.; Chen, G.; et al. CD47/ Sirpα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000905. [Google Scholar] [CrossRef]
- Chang, H.N.; Liu, B.Y.; Qi, Y.K.; Zhou, Y.; Chen, Y.P.; Pan, K.M.; Li, W.W.; Zhou, X.M.; Ma, W.W.; Fu, C.Y.; et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 2015, 54, 11760–11764. [Google Scholar] [CrossRef]
- Niu, X.; Wu, M.; Li, G.; Zhou, X.; Cao, W.; Zhai, W. Identification and optimization of peptide inhibitors to block VISTA/PSGL-1 interaction for cancer immunotherapy. Acta Pharm. Sin. B 2023, 13, 4341–4666. [Google Scholar] [CrossRef]
- Magiera-Mularz, K.; Skalniak, L.; Zak, K.M. Bioactive macrocyclic inhibitors of the PD-1/PD-L1 immune checkpoint. Angew. Chem. Int. Ed. 2017, 56, 13732–13735. [Google Scholar] [CrossRef]
- Munir Ahmad, S.; Martinenaite, E.; Hansen, M. PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncoimmunology 2016, 5, e1202391. [Google Scholar] [CrossRef]
- Li, C.; Zhang, N.; Zhou, J. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Cancer Immunol. Res. 2018, 6, 178–188. [Google Scholar] [CrossRef]
- Chen, T.; Li, Q.; Liu, Z. Peptide-based and small synthetic molecule inhibitors on PD-1/PD-L1 pathway: A new choice for immunotherapy? Eur. J. Med. Chem. 2019, 161, 378–398. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Li, B.; Zhang, Y.; Chen, Y.; Zhang, W. A Three-in-one assembled nanoparticle containing peptide–radio-sensitizer conjugate and TLR7/8 Agonist can initiate the cancer-immunity cycle to trigger antitumor immune response. Small 2022, 18, 2107001. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, H.; Huang, Y.; Lian, B.; Ma, C.; Han, L.; Chen, Y.; Wu, S.; Li, N.; Zhang, W.; et al. A Self-Assembling Amphiphilic Peptide Dendrimer-Based Drug Delivery System for Cancer Therapy. Pharmaceutics 2021, 13, 1092. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, W.; Chen, S.; Chen, D.; Xu, R.; Zheng, D. Design of a novel chimeric peptide via dual blockade of CD47/Sirpα and PD-1/PD-L1 for cancer immunotherapy. Sci. China Life Sci. 2023, 66, 2310–2328. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Dong, Q.; Zhai, W.; Zhao, W.; Shi, P.; Wu, Y. A PD-L1 and VEGFR2 dual targeted peptide and its combination with irradiation for cancer immunotherapy. Pharmacol. Res. 2022, 182, 106343. [Google Scholar] [CrossRef]
- Reyes, C.; Patarroyo, M.A. Self-assembling peptides: Perspectives regarding biotechnological applications and vaccine development. Int. J. Biol. Macromol. 2024, 259, 128944. [Google Scholar] [CrossRef]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef]
- van der Burg, S.H. Correlates of immune and clinical activity of novel cancer vaccines. In Seminars in Immunology; Academic Press: Cambridge, MA, USA, 2018; Volume 39, pp. 119–136. [Google Scholar] [CrossRef]
- McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 2006, 26, 154–158. [Google Scholar]
- Plotkin, S.A. Vaccines: Past, present and future. Nat. Med. 2005, 11, S5–S11. [Google Scholar] [CrossRef]
- Janes, M.E.; Gottlieb, A.P.; Soo Park, K.; Zhao, Z.; Mitragotri, S. Cancer vaccines in the clinic. Bioeng. Transl. Med. 2024, 9, e10588. [Google Scholar] [CrossRef]
- Tsung, K.; Norton, J.A. In situ vaccine, immunological memory and cancer cure. Hum. Vaccines Immunother. 2016, 12, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Stephens, J.A.; Burgess-Brown, N.A.; Jiang, S. Beyond just peptide antigens: The complex world of peptide-based cancer vaccines. Front. Immunol. 2021, 12, 696791. [Google Scholar] [CrossRef] [PubMed]
- Jou, J.; Harrington, K.J.; Zocca, M.B.; Ehrnrooth, E.; Cohen, E.E.W. +e changing landscape of therapeutic cancer vaccines—Novel platforms and neoantigen identification. Clin. Cancer Res. 2021, 27, 689–703. [Google Scholar] [CrossRef] [PubMed]
- DeMaria, P.J.; Lee-Wisdom, K.; Donahue, R.N.; Madan, R.A.; Karzai, F.; Schwab, A.; Palena, C.; Jochems, C.; Floudas, C.; Strauss, J.; et al. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J. Immunother. Cancer 2021, 9, e003238. [Google Scholar] [CrossRef]
- Mohite, P.; Yadav, V.; Pandhare, R.; Maitra, S.; Saleh, F.M.; Saleem, R.M.; Al-Malky, H.S.; Kumarasamy, V.; Subramaniyan, V.; Abdel-Daim, M.M.; et al. Revolutionizing Cancer Treatment: Unleashing the Power of Viral Vaccines, Monoclonal Antibodies, and Proteolysis-Targeting Chimeras in the New Era of Immunotherapy. ACS Omega 2024, 9, 7277–7295. [Google Scholar] [CrossRef]
- Buonaguro, L.; Tagliamonte, M. Peptide-based vaccine for cancer therapies. Front. Immunol. 2023, 16, 1210044. [Google Scholar] [CrossRef]
- Bijker, M.S.; van den Eeden, S.J.F.; Franken, K.L. CD8+ CTL priming by exact peptide epitopes in incomplete freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J. Immunol. 2007, 179, 5033–5040. [Google Scholar] [CrossRef]
- Southwood, S.; Sidney, J.; Kondo, A. Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 1998, 160, 3363–3373. [Google Scholar] [CrossRef]
- Loeffler, C.M.L.; Gaisa, N.T.; Muti, H.S.; van Treeck, M.; Echle, A.; Ghaffari Laleh, N.; Trautwein, C.; Heij, L.R.; Grabsch, H.I.; Ortiz Bruechle, N.; et al. Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning: A Systematic Study Across 23 Solid Tumor Types. Front. Genet. 2022, 12, 806386. [Google Scholar] [CrossRef]
- Abd-Aziz, N.; Poh, C.L. Development of Peptide-Based Vaccines for Cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef]
- Kaumaya, P.T.P.; Guo, L.; Overholser, J.; Penichet, M.L.; Bekaii-Saab, T. Immunogenicity and antitumor efficacy of a novel human PD-1 B-cell vaccine (PD1-Vaxx) and combination immunotherapy with dual trastuzumab/pertuzumab-like HER-2 B-cell epitope vaccines (B-Vaxx) in a syngeneic mouse model. Oncoimmunology 2020, 9, 1818437. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.B.; Luo, C.; O’Connell, D.J.; Lefkovith, A.; Brown, E.M.; Yassour, M. Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat. Med. 2018, 24, 1762–1772. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Admistration (FDA). 2021. Available online: www.fda.gov (accessed on 1 March 2024).
- Makker, S.; Galley, C.; Benet, C.L. Cancer vaccines: From an immunology perspective. Immunother. Adv. 2024, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tagliamonte, M.; Cavalluzzo, B.; Mauriello, A.; Ragone, C.; Buonaguro, F.M.; Tornesello, M.L.; Buonaguro, L. Molecular mimicry and cancer vaccine development. Mol. Cancer 2023, 22, 75. [Google Scholar] [CrossRef]
- Cavalluzzo, B.; Ragone, C.; Mauriello, A.; Petrizzo, A.; Manolio, C.; Caporale, A.; Vitagliano, L.; Ruvo, M.; Buonaguro, L.; Tagliamonte, M. Identification and characterization of heteroclitic peptides in TCR-binding positions with improved HLA-binding efficacy. J. Transl. Med. 2021, 19, 89. [Google Scholar] [CrossRef]
- Arbelaez, C.A.; Estrada, J.; Gessner, M.A.; Glaus, C.; Morales, A.B.; Mohn, D.; Phee, H.; Lipford, J.R.; Johnston, J.A. A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. NPJ Vaccines 2020, 5, 106. [Google Scholar] [CrossRef]
- Melief, C.J.M.; van Hall, T.; Arens, R.; Ossendorp, F.; van der Burg, S.H. Therapeutic cancer vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef]
- Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Wang, Q.; Wang, X.; Ke, L.; Shi, K. Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics 2019, 9, 126–151. [Google Scholar] [CrossRef]
- Seo, N.; Akiyoshi, K.; Shiku, H. Exosome-mediated regulation of tumor immunology. Cancer Sci. 2018, 109, 2998–3004. [Google Scholar] [CrossRef]
- Pitt, J.M.; André, F.; Amigorena, S.; Soria, J.C.; Eggermont, A.; Kroemer, G.; Zitvogel, L. Dendritic cell-derived exosomes for cancer therapy. J. Clin. Investig. 2016, 126, 1224–1232. [Google Scholar] [CrossRef]
- Sheikhlary, S.; Lopez, D.H.; Moghimi, S.; Sun, B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024, 14, 503. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.W.; Li, J.; Pu, K. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater. 2018, 28, 1804688. [Google Scholar] [CrossRef]
- Li, Q.; Ming, R.; Huang, L.; Zhang, R. Versatile Peptide-Based Nanosystems for Photodynamic Therapy. Pharmaceutics 2024, 16, 218. [Google Scholar] [CrossRef]
- Fritah, H.; Rovelli, R.; Chiang, C.L.; Kandalaft, L.E. The current clinical landscape of personalized cancer vaccines. Cancer Treat. Rev. 2022, 106, 102383. [Google Scholar] [CrossRef]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Wang, L.; Liu, B. Personalized neoantigen vaccination with synthetic long peptides: Recent advances and future perspectives. Theranostics 2020, 10, 6011–6023. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef]
- Schumacher, T.; Bunse, L.; Pusch, S.; Sahm, F.; Wiestler, B.; Quandt, J.; Menn, O.; Osswald, M.; Oezen, I.; Ott, M.; et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014, 512, 324–327. [Google Scholar] [CrossRef]
- Thakur, S.; Jain, M.; Zhang, C.; Major, C.; Bielamowicz, K.J.; Lacayo, N.J.; Vaske, O.; Lewis, V.; Murguia-Favela, L.; Narendran, A. Identification and in vitro validation of neoantigens for immune activation against high-risk pediatric leukemia cells. Hum. Vaccines Immunother. 2021, 17, 5558–5562. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Q.; Zhang, R.; Xie, L.; Shu, Y.; Gao, S. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct. Target Ther. 2021, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhang, R.; Zhang, X.; Yang, L. Personalized neoantigen-pulsed DC vaccines: Advances in clinical applications. Front. Oncol. 2021, 11, 701777. [Google Scholar] [CrossRef] [PubMed]
- Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaabinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Lie, W.R.; Hildebrand, W.H.; Mardis, E.R.; et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015, 348, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yuan, Y.; Chen, C.; Lin, J.; Ma, Q.; Liu, G.; Gao, Y.; Huang, Y.; Chen, L.; Chen, L.-Z.; et al. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis. Oncol. 2022, 6, 34. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Poznanska, J.; Fechner, F.; Michalska, N.; Paszkowska, S.; Napierała, A.; Mackiewicz, A. Cancer Vaccine Therapeutics: Limitations and Effectiveness—A Literature Review. Cells 2023, 12, 2159. [Google Scholar] [CrossRef]
- Matsumura, M.; Fremont, D.H.; Peterson, P.A. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 1992, 257, 927–934. [Google Scholar] [CrossRef]
- Skwarczynski, M.; Toth, I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine 2014, 9, 2657–2669. [Google Scholar] [CrossRef]
- Zhu, P.; Li, X.Y.; Wang, H.K.; Jia, J.F.; Zheng, Z.H.; Ding, J.; Fan, C.M. Oral administration of type-II collagen peptide suppresses specific cellular and humoral immune response in collagen-induced artritis. Clin. Immunol. 2007, 122, 75–84. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Yang, J.C.; Schwartzentruber, D.J. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 1998, 4, 321–327. [Google Scholar] [CrossRef]
- Bakker, A.B.; Schreurs, M.W.; de Boer, A.J. Melanocyte lineage-specific antigen gp100 is recognized by melanoma- derived tumor-infiltrating lymphocytes. J. Exp. Med. 1994, 179, 1005–1009. [Google Scholar] [CrossRef]
- Jager, E.; Bernhard, H.; Romero, P. Generation of cytotoxic T cell responses with synthetic melanoma-associated peptides in vivo: Implications for tumor vaccines with melanoma-associated antigens. Int. J. Cancer 1996, 66, 162–169. [Google Scholar] [CrossRef]
- Jager, E.; Hohn, H.; Necker, A. Peptide-specific CD8+ T-cell evolution in vivo: Response to peptide vaccination with Melan-A/ MART-1. Int. J. Cancer 2002, 98, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Speiser, D.; Lienard, D.; Pittet, M. In vivo activation of melanoma-specific CD8+ T cells by endogenous tumor antigen and peptide vaccines. A comparison to virus-specific T cells. Eur. J. Immunol. 2002, 32, 731. [Google Scholar] [CrossRef] [PubMed]
- Slingluff, C.L.J.; Yamshchikov, G.; Neese, P. Phase I trial of a melanoma vaccine with gp100(280–288) peptide and tetanus helper peptide in adjuvant: Immunologic and clinical outcomes. Clin. Cancer Res. 2001, 7, 3012–3024. [Google Scholar] [PubMed]
- Guo, Y.; Wang, D.; Song, Q. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 2015, 9, 6918–6933. [Google Scholar] [CrossRef]
- Skakuj, K.; Wang, S.; Qin, L. Conjugation chemistry-dependent T-cell activation with spherical nucleic acids. J. Am. Chem. Soc. 2018, 140, 1227–1230. [Google Scholar] [CrossRef]
- Wakabayashi, R.; Sakuragi, M.; Kozaka, S. Solid-in-oil peptide nanocarriers for transcutaneous cancer vaccine delivery against melanoma. Mol. Pharm. 2018, 15, 955–961. [Google Scholar] [CrossRef]
- Xie, J.; Yang, C.; Liu, Q. Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response. Small 2017, 13, 1701741. [Google Scholar] [CrossRef]
- Molino, N.M.; Anderson, A.K.; Nelson, E.L.; Wang, S.W. Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation. ACS Nano 2013, 7, 9743–9752. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Ju, E. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. Nanoscale 2015, 7, 12419–12426. [Google Scholar] [CrossRef]
- Qian, Y.; Jin, H.; Qiao, S. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 2016, 98, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Gendler, S.J. MUC1, the renaissance molecule. J. Mammary Gland. Biol. Neoplasia 2001, 6, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Shi, L.; Ma, J.W. A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J. Am. Chem. Soc. 2012, 134, 8730–8733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Yu, F. Potentiating the immune response of MUC1-based antitumor vaccines using a peptide-based nanovector as a promising vaccine adjuvant. Chem. Commun. 2017, 53, 9486–9489. [Google Scholar] [CrossRef]
- Peoples, G.E.; Holmes, J.P.; Hueman, M.T. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. military cancer institute clinical trials group study I-01 and I-02. Clin. Cancer Res. 2008, 14, 797–803. [Google Scholar] [CrossRef]
- Villa, C.H.; Dao, T.; Ahearn, I. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 2011, 5, 5300–5311. [Google Scholar] [CrossRef]
- Jäger, E.; Chen, Y.T.; Drijfhout, J.W.; Karbach, J.; Ringhoffer, M.; Jäger, D.; Arand, M.; Wada, H.; Noguchi, Y.; Stockert, E.; et al. Simultaneous humoral and cellular immune response against cancer–testis antigen NY-ESO-1: Definition of human histocompatibility leukocyte antigen (HLA)-A2–binding peptide epitopes. J. Exp. Med. 1998, 187, 265–270. [Google Scholar] [CrossRef]
- de Faria, P.C.B.; dos Santos, L.I.; Coelho, J.P. Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8+ T cell response and protection against cancer. Nano Lett. 2014, 14, 5458–5470. [Google Scholar] [CrossRef]
- Neek, M.; Tucker, J.A.; Kim, T.I. Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses. Biomaterials 2018, 156, 194–203. [Google Scholar] [CrossRef]
- van Driel, W.J.; Ressing, M.E.; Kenter, G.G. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: Clinical evaluation of a phase I–II trial. Eur. J. Cancer 1999, 35, 946–952. [Google Scholar] [CrossRef]
- Liu, T.Y.; Hussein, W.M.; Jia, Z. Self-adjuvanting polymer–peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 2013, 14, 2798–2806. [Google Scholar] [CrossRef] [PubMed]
- Rad-Malekshahi, M.; Fransen, M.F.; Krawczyk, M. Self-assembling peptide epitopes as novel platform for anticancer vaccination. Mol. Pharm. 2017, 14, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Feltkamp, M.C.W.; Vreugdenhil, G.R.; Vierboom, M.P.M. Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16- induced tumors. Eur. J. Immunol. 1995, 25, 2638–2642. [Google Scholar] [CrossRef] [PubMed]
- Tindle, R.W.; Croft, S.; Herd, K. A vaccine conjugate of ‘ISCAR’ immunocarrier and peptide epitopes of the E7 cervical cancerassociated protein of human papillomavirus type 16 elicits specific Th1- and Th2-type responses in immunized mice in theabsence of oil-based adjuvants. Clin. Exp. Immunol. 1995, 101, 265–271. [Google Scholar] [CrossRef]
- Tsoras, A.N.; Champion, J.A. Cross-linked peptide nanoclusters for delivery of oncofetal antigen as a cancer vaccine. Bioconj. Chem. 2018, 29, 776–785. [Google Scholar] [CrossRef]
- He, X.; Zhou, S.; Quinn, B.; Jahagirdar, D.; Ortega, J.; Long, M.D. An in vivo screen to identify short peptide mimotopes with enhanced antitumor immunogenicity. Cancer Immunol. Res. 2022, 10, 314–326. [Google Scholar] [CrossRef]
- Grace, B.E.; Backlund, C.M.; Morgan, D.M.; Kang, B.H.; Singh, N.K.; Huisman, B.D.; Rappazzo, C.G.; Moynihan, K.D.; Maiorino, L.; Dobson, C.S.; et al. Identification of highly cross-reactive mimotopes for a public T cell response in murine melanoma. Front. Immunol. 2022, 13, 886683. [Google Scholar] [CrossRef]
- Manoutharian, K.; Gevorkian, G. Are we getting closer to a successful neonatigen cancer vaccine? Mol. Asp. Medic. 2024, 96, 101254. [Google Scholar] [CrossRef]
- Martínez-Cortes, F.; Domínguez-Romero, A.N.; Pérez-Hernández, E.G.; Orozco-Delgado, D.L.; Avila, S.; Odales, J. Tumor antigen-unbiased variable epitope library contains mimotopes with antitumor effect in a mouse model of breast cancer. Mol. Immunol. 2023, 157, 91–100. [Google Scholar] [CrossRef]
- Acar, H.; Srivastava, S.; Chung, E.J. Self-assembling peptide-based building blocks in medical applications. Adv. Drug Deliver. Rev. 2017, 110, 65–79. [Google Scholar] [CrossRef]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef]
- Rudra, J.S.; Tian, Y.F.; Jung, J.P.; Collier, J.H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl. Acad. Sci. USA 2010, 107, 622. [Google Scholar] [CrossRef] [PubMed]
- Appavu, R. Bortezomib in Anti-Cancer Activity: A Potential Drug. Glob. J. Cancer Ther. 2015, 15, 5–8. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Z.; Wang, Y.; He, T.; Yang, C.; Ren, C. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Adv. Funct. Mater. 2016, 26, 1822–1829. [Google Scholar] [CrossRef]
- Luo, Z. A powerful CD8+ T-cell stimulating D-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv. Mater. 2017, 29, 1601776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tang, L.; Tian, Y.; Ji, X.; Hu, Q.; Zhou, B.; Zhenyu, D.; Heng, X.; Yang, L. Cholesterol-modified DP7 enhances the effect of individualized cancer immunotherapy based on neoantigens. Biomaterials 2020, 241, 119852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tang, L.; Zhao, B.; Tian, Y.; Zhou, B.; Mu, Y.; Yang, L. A Peptide-Based Small RNA Delivery System to Suppress Tumor Growth by Remodeling the Tumor Microenvironment. Mol. Pharm. 2021, 18, 1431–1443. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, L.; Wang, Y.; Tian, Y.; Wu, S.; Zhou, B.; Dong, C.; Zhao, B.; Yang, Y.; Xie, D.; et al. A Dendrimer Peptide (KK2DP7) Delivery System with Dual Functions of Lymph Node Targeting and Immune Adjuvants as a General Strategy for Cancer Immunotherapy. Adv. Sci. 2023, 10, e2300116. [Google Scholar] [CrossRef]
- Qiu, Y.; Man, R.C.H.; Liao, Q.; Kung, K.L.K.; Chow, M.Y.T.; Lam, J.K.W. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J. Control. Release Soc. 2019, 314, 102–115. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, X.; Yang, H.; Li, Q.; Gai, L.; Sui, X.; Lu, H.; Feng, J. Nanomaterial Delivery Vehicles for the Development of Neoantigen Tumor Vaccines for Personalized Treatment. Molecules 2024, 29, 1462. [Google Scholar] [CrossRef]
- Black, M.; Trent, A.; Kostenko, Y.; Lee, J.S.; Olive, C.; Tirrell, M. Self-assembled peptide amphiphile micelles containing a cytotoxic T-Cell epitope promote a protective immune response in vivo. Adv. Mater. 2012, 24, 3845–3849. [Google Scholar] [CrossRef] [PubMed]
- Lehner, R.; Enomoto, T.; Mcgregor, J.; Shroyer, L.; Haugen, B.; Pugazhenthi, U.; Shroyer, K. Correlation of survivin mRNA detection with histologic diagnosis in normal endometrium and endometrial carcinoma. Acta Obstet. Et Gynecol. Scand. 2002, 81, 162–167. [Google Scholar]
- Wang, Z.; Liang, C.; Shi, F.; He, T.; Gong, C.; Wang, L.; Yang, Z. Cancer vaccines using supramolecular hydrogels of NSAID-modified peptides as adjuvants abolish tumorigenesis. Nanoscale 2017, 9, 14058–14064. [Google Scholar] [CrossRef] [PubMed]
- Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007, 36, 1263–1269. [Google Scholar] [CrossRef]
- Hamley, I.W. Peptide fibrillization. Angew. Chem. Int. Ed. 2007, 46, 8128–8147. [Google Scholar] [CrossRef]
- Cui, H.; Muraoka, T.; Cheetham, A.G. Self-assembly of giant peptide nanobelts. Nano Lett. 2009, 9, 945–951. [Google Scholar] [CrossRef]
- Hendricks, M.P.; Sato, K.; Palmer, L.C. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res. 2017, 50, 2440–2448. [Google Scholar] [CrossRef]
- De Santis, E.; Ryadnov, M.G. Peptide self-assembly for nanomaterials: The old new kid on the block. Chem. Soc. Rev. 2015, 44, 8288–8300. [Google Scholar] [CrossRef]
- Abdullah, T.; Bhatt, K.; Eggermont, L.J.; O’Hare, N.; Memic, A.; Bencherif, S.A. Supramolecular Self-Assembled Peptide-Based Vaccines. Front. Chem. 2020, 8, 598160. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, H.; Bernstein, Z.J.; Hainline, K.M.; Blakney, T.S.; Congdon, K.L.; Snyder, D.J.; Sampson, J.H.; Sanchez-Perez, L.; Collier, J.H. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. Sci. Adv. 2022, 8, 7833. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, H.; Wang, H.; Xiao, M.; Jia, H.; Ren, C.; Liu, J. Peptide-based supramolecular therapeutics for fighting major diseases. Adv. Funct. Mat. 2024, 34, 2314492. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Wang, A.J.; Liu, X.L.; Dai, M.Y.; Cai, H.B. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells. Front. Immunol. 2023, 30, 1193222. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.; Li, S.; Zhang, N.; Shen, G.; MÃhwald, H.; Yan, X. Self-assembled injectable peptide hydrogels capable of triggering antitumor immune response. Biomacromolecules 2017, 18, 3514–3523. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; Yang, Q.; Liu, Z.; Xiao, Z.; Le, Z.; Yang, Z.; Yang, C. A versatile supramolecular nanoadjuvant that activates NF-kB for cancer immunotherapy. Theranostics 2019, 9, 3388. [Google Scholar] [CrossRef]
- Faiena, I.; Comin-Anduix, B.; Berent-Maoz, B.; Bot, A.; Zomorodian, N.; Sachdeva, A.; Said, J.; Cheung-Lau, G.; Pang, J.; Macabali, M.; et al. A Phase I, Open-label, Dose-escalation, and Cohort Expansion Study to Evaluate the Safety and Immune Response to Autologous Dendritic Cells Transduced With AdGMCA9 (DC-AdGMCAIX) in Patients With Metastatic Renal Cell Carcinoma. J. Immunother. 2020, 43, 273–282. [Google Scholar] [CrossRef]
- Herrera Estrada, L.P.; Champion, J.A. Protein nanoparticles for therapeutic protein delivery. Biomater. Sci. 2015, 3, 787–799. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Zhao, B.; Chen, H.; Cai, Z.; Zheng, Y.; Zeng, Y.; Zhang, D.; Liu, X. Neoantigen Immunotherapeutic-Gel Combined with TIM-3 Blockade Effectively Restrains Orthotopic Hepatocellular Carcinoma Progression. Nano Lett. 2022, 22, 2048–2058. [Google Scholar] [CrossRef]
- Hu, X.; Hu, J.; Tian, J.; Ge, Z.; Zhang, G.; Luo, K. Polydrug amphiphilies: Hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 2013, 135, 17617–17629. [Google Scholar] [CrossRef]
- Qi, Y.; Min, H.; Mujeeb, A.; Zhang, Y.; Han, X.; Zhao, X.; Anderson, G.J.; Zhao, Y.; Nie, G. Injectable Hexapeptide Hydrogel for Localized Chemotherapy Prevents Breast Cancer Recurrence. ACS Appl. Mater. Interfaces 2018, 10, 6972–6981. [Google Scholar]
- Hua, Y.; Shen, Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. Nanoscale Adv. 2024, 6, 2993. [Google Scholar] [CrossRef]
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted Drug Delivery Strategies for Precision Medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef]
- Delfi, M.; Sartorius, R.; Ashrafizadeh, M.; Sharifi, E.; Zhang, Y.; De Berardinis, P.; Zarrabi, A.; Varma, R.S.; Tay, F.R.; Smith, B.R.; et al. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021, 38, 101119. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Cai, X.; Mu, G.; Duan, Y.; Jing, C.; Yang, Z.; Yang, C.; Wang, X. Supramolecular nanofibers co-loaded with dabrafenib and doxorubicin for targeted and synergistic therapy of differentiated thyroid carcinoma. Theranostics 2023, 13, 2140. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Shen, H.; Zhan, J.; Lin, M.; Dai, L.; Ren, C.; Shi, Y.; Liu, J.; Gao, J.; Yang, Z. Supramolecular Trojan horse for nuclear delivery of dual anticancer drugs. J. Am. Chem. Soc. 2017, 139, 2876. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Song, H.; Qin, Y.; Huang, P.; Zhang, C.; Kong, D. Engineering dendritic-cell-based vaccines and PD-1 blockade in self-assemble peptide nanofibrous hydrogel to amplify antitumor T-cell immunity. Nano Lett. 2018, 18, 4377–4385. [Google Scholar] [CrossRef]
- Zhang, S. Discovery and design of self-assembling peptides. Interface Focus 2017, 7, 20170028. [Google Scholar] [CrossRef]
- Lynn, G.M.; Sedlik, C.; Baharom, F.; Zhu, Y.; Ramirez-Valdez, R.A.; Coble, V.L.; Tobin, K.; Nichols, S.R.; Itzkowitz, Y.; Zaidi, N.; et al. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 2020, 38, 320–332. [Google Scholar] [CrossRef]
- Wang, L.; Fu, B.; Hou, D.Y.; Lv, Y.L.; Yang, G.; Li, C.; Shen, J.C.; Kong, B.; Zheng, L.B.; Qiu, Y.; et al. PKM2 Allosteric Converter: A Self-Assembly Peptide for Suppressing Renal Cell Carcinoma and Sensitizing Chemotherapy. Biomaterials 2023, 296, 122060. [Google Scholar] [CrossRef]
- Leach, D.G.; Dharmaraj, N.; Piotrowski, S.L.; Lopez-Silva, T.L.; Lei, Y.L.; Sikora, A.G.; Young, S.; Hartgerink, J.D. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 2018, 163, 67–75. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Hou, Z.; Cui, X.; Zhao, Y.; Xu, H. Rational design of short peptide-based hydrogels with MMP-2 responsiveness for controlled anticancer peptide delivery. Biomacromolecules 2017, 18, 3563–3571. [Google Scholar] [CrossRef]
- Shan, W.; Zheng, H.; Fu, G.; Liu, C.; Li, Z.; Ye, Y. Bioengineered nanocage from hbc protein for combination cancer immunotherapy. Nano Lett. 2019, 19, 1719–1727. [Google Scholar] [CrossRef]
- Mao, C.P.; Peng, S.; Yang, A.; He, L.; Tsai, Y.C.; Hung, C.F. Programmed self-assembly of peptide-major histocompatibility complex for antigen-specific immune modulation. Proc. Natl. Acad. Sci. USA 2018, 115, E4032–E4040. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, F.; Jiang, X.; Lv, Q.; Luo, N.; Gong, C. Discovery of a self-assembling and self-adjuvant lipopeptide as a saccharide-free peptide vaccine targeting EGFRvIII positive cutaneous melanoma. Biomater. Sci. 2018, 6, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Ding, Y.; Zhao, Y.; Ye, S.; Zhao, X.; Zhang, Y.; Ji, T.; Wu, H.; Wang, B.; Anderson, G.J.; et al. Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett. 2018, 18, 3250–3258. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Shi, B.; Wang, K.; Fan, M.; Jiao, D.; Ao, J. Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials 2016, 82, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Duns, G.; Dessie, W.; Cao, Z.; Ji, X.; Luo, X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front. Pharmacol. 2023, 14, 1052301. [Google Scholar] [CrossRef]
- Wu, C.; Jiao, Q.; Wang, C.; Zheng, Y.; Pan, X.; Zhong, W. Nanofibrillar peptide hydrogels for self-delivery of lonidamine and synergistic photodynamic therapy. Acta Biomater. 2023, 155, 139–153. [Google Scholar] [CrossRef]
- Ji, T.; Zhao, Y.; Ding, Y.; Wang, J.; Zhao, R.; Lang, J. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angew. Chem. Int. Ed. Engl. 2016, 55, 1050–1055. [Google Scholar] [CrossRef]
- Mei, L.; Xu, K.; Zhai, Z.; He, S.; Zhu, T.; Zhong, W. Doxorubicin-reinforced supramolecular hydrogels of RGD-derived peptide conjugates for pH-responsive drug delivery. Org. Biomol. Chem. 2019, 17, 3853–3860. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Chen, H.; Peng, J.; Yang, X. Small peptide-doxorubicin co-assembly for synergistic cancer therapy. Molecules 2020, 25, 484. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, X.; Zhou, B.; Wang, G.; Guan, X.; Xu, Y.; Zhang, J.; Hong, Z.; Cao, J.; Sun, X.; et al. Tumor acidic microenvironment induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf. B Biointerfaces 2021, 202, 111673. [Google Scholar] [CrossRef]
- Baek, K.; Noblett, A.D.; Ren, P.; Suggs, L.J. Self-assembled nucleo-tripeptide hydrogels provide local and sustained doxorubicin release. Biomater. Sci. 2020, 8, 3130–3137. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yi, S.; Sun, L.; Huang, Y.; Lenaghan, S.C.; Zhang, M. Doxorubicin-loaded cyclic peptide nanotube bundles overcome chemoresistance in breast cancer cells. J. Biomed. Nanotechnol. 2014, 10, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Jiang, Z.; Li, J.; Wang, M.; Liu, C.; Qi, W. Co-assembly of curcumin and a cystine bridged peptide to construct tumor-responsive nano-micelles for efficient chemotherapy. J. Mater. Chem. B 2020, 8, 1944–1951. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Yu, Y.; He, C.; Tan, L.; Shen, Y.M. RGD peptide-decorated micelles assembled from polymer-paclitaxel conjugates towards gastric cancer therapy. Colloids Surf. B Biointerfaces 2019, 180, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, R.W.; Wang, F.; Lin, R.; Wang, Y.; Su, H.; Pompa, D.; Cui, H. Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. ACS Nano 2019, 13, 7780–7790. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Y.; Mu, G.; Yang, L.; Wang, W.; Liu, J.; Liu, J. A peptide–drug hydrogel to enhance the anti-cancer activity of chlorambucil. Biomater. Sci. 2020, 8, 5638–5646. [Google Scholar] [CrossRef]
- Cheng, H.; Cheng, Y.J.; Bhasin, S.; Zhu, J.Y.; Xu, X.D.; Zhuo, R.X. Complementary hydrogen bonding interaction triggered co-assembly of an amphiphilic peptide and an anti-tumor drug. Chem. Commun. 2015, 51, 6936–6939. [Google Scholar] [CrossRef]
- Karavasili, C.; Andreadis, D.A.; Katsamenis, O.L.; Panteris, E.; Anastasiadou, P.; Kakazanis, Z.; Zoumpourlis, V.; Markopoulou, C.K.; Koutsopoulos, S.; Vizirianakis, I.S. Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Mol. Pharm. 2019, 16, 2326–2341. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Jervis, P.J.; Silva, J.F.G.; Hilliou, L.; Moura, C.; Pereira, D.M.; Coutinho, P.J.G.; Martins, J.A.; Castanheira, E.M.S.; Ferreira, P.M.T. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 122, 111869. [Google Scholar] [CrossRef]
- Jung, B.T.; Lim, M.; Jung, K.; Li, M.; Dong, H.; Dube, N.; Xu, T. Designing sub-20 nm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics. J. Control Release 2021, 329, 538–551. [Google Scholar] [CrossRef]
- Michiue, H.; Kitamatsu, M.; Fukunaga, A.; Tsuboi, N.; Fujimura, A.; Matsushita, H.; Igawa, K.; Kasai, T.; Kondo, N.; Matsui, H.; et al. Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT). J. Control Release 2021, 330, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Nazeer, N.; Bissessur, R.; Ahmed, M. Diatoms embedded, self-assembled carriers for dual delivery of chemotherapeutics in cancer cell lines. Int. J. Pharm. 2020, 573, 118887. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, C.; Dai, G.; Feng, F.; Chi, Y.; Xu, K. Molecular self-assembly of a tyroservatide-derived octapeptide and hydroxycamptothecin for enhanced therapeutic efficacy. Nanoscale 2021, 13, 5094–5102. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, J.; Zhai, Z.; Yang, L.; Tang, X.; Zhao, L. Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomater. 2020, 106, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liang, C.; Zheng, D.; Yan, X.; Chen, Y.; Chen, Y. Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale 2020, 12, 15275–15282. [Google Scholar] [CrossRef]
- Bozdogan, B.; Akbal, Ö.; Çelik, E.; Türk, M.; Denkbaş, E.B. Novel layer-by-layer self-assembled peptide nanocarriers for siRNA delivery. RSC Adv. 2017, 7, 47592–47601. [Google Scholar] [CrossRef]
- Yoshida, D.; Kim, K.; Takumi, I.; Yamaguchi, F.; Adachi, K.; Teramoto, A. A transfection method for short interfering RNA with the lipid-like self-assembling nanotube, A6K. Med. Mol. Morphol. 2013, 46, 86–91. [Google Scholar] [CrossRef]
- Vermeer, L.S.; Hamon, L.; Schirer, A.; Schoup, M.; Cosette, J.; Majdoul, S.; Pastre, D.; Stockholm, D.; Holic, N.; Hellwig, P.; et al. Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent alpha-helical nanofibrils, concentrating viral particles. Acta Biomater. 2017, 64, 259–268. [Google Scholar] [CrossRef]
- Yang, C.; Mu, G.; Zhang, Y.; Gao, Y.; Zhang, W. Supramolecular nitric oxide for hypoxic tumor vessel normalization and radiosenzitization. Adv. Mater. 2022, 15, 2202625. [Google Scholar] [CrossRef]
- Vaissière, A.; Aldrian, G.; Konate, K.; Lindberg, M.F.; Jourdan, C.; Telmar, A. A retro-inverso cell-penetrating peptide for siRNA delivery. J. Nanobiotechnol. 2017, 15, 34. [Google Scholar] [CrossRef]
- Dehghani, S.; Alibolandi, M.; Tehranizadeh, Z.A.; Oskuee, R.K.; Nosrati, R.; Soltani, F. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery. Colloids Surf. B Biointerfaces 2021, 208, 112047. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, W.; Zhou, Z.; Qin, X.; Wang, D.; Gao, Y. Peptide-aptamer coassembly nanocarrier for cancer therapy. Bioconjug. Chem. 2019, 30, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, M.; Casella, C.; Hansen, P.L.; Polo, E.; Herda, L.M.; Dawson, K.A. Human DMBT1-derived cell-penetrating peptides for intracellular siRNA delivery. Mol. Ther. Nucleic Acids 2017, 8, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Al-Husaini, K.; Elkamel, E.; Han, X.; Chen, P. Therapeutic potential of a cel penetrating peptide (CPP, NP1) mediated siRNA delivery: Evidence in 3D spheroids of colon cancer cells. Can. J. Chem. Eng. 2020, 98, 1240–1254. [Google Scholar] [CrossRef]
- Pan, R.; Xu, W.; Yuan, F.; Chu, D.; Ding, Y.; Chen, B. A novel peptide for efficient siRNA delivery in vitro and therapeutics in vivo. Acta Biomater. 2015, 21, 74–84. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, C.; Liu, R.; Yang, J.; Dai, J.; Zhai, T. A multifunctional peptide-conjugated AIEgen for efficient and sequential targeted gene delivery into the nucleus. Angew. Chem. Int. Ed. Engl. 2019, 131, 5103–6107. [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Wang, Q.; Cheng, Y.; Guo, J.; Zhao, Z. Tumor-triggered disassembly of a multiple-agent-therapy probe for efficient cellular internalization. Angew. Chem. Int. Ed. Engl. 2020, 132, 20585–20590. [Google Scholar] [CrossRef]
- Huang, P.; Gao, Y.; Lin, J.; Hu, H.; Liao, H.-S.; Yan, X. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano. 2015, 9, 9517–9527. [Google Scholar] [CrossRef]
- Xing, R.; Zou, Q.; Yuan, C.; Zhao, L.; Chang, R.; Yan, X. Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics. Adv. Mater. 2019, 31, 1900822. [Google Scholar] [CrossRef]
- Liu, K.; Xing, R.; Zou, Q.; Ma, G.; Möhwald, H.; Yan, X. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew. Chem. Int. Ed. Engl. 2016, 128, 3088–3091. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, K.; Li, S.; Xin, X.; Yuan, S.; Ma, G. Self-assembled minimalist multifunctional theranostic nanoplatform for magnetic resonance imaging-guided tumor photodynamic therapy. ACS Nano. 2018, 12, 8266–8276. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Kuang, Y.; Jiang, Q.; Zhou, S.; Yu, J.; He, Z. Arginine-peptide complex-based assemblies to combat tumor hypoxia for enhanced photodynamic therapeutic effect. Nano Res. 2022, 15, 5183. [Google Scholar] [CrossRef]
- Wan, G.; Cheng, Y.; Song, J.; Chen, Q.; Chen, B.; Liu, Y. Nucleus-targeting near-infrared nanoparticles based on TAT peptide-conjugated IR780 for photo-chemotherapy of breast cancer. Chem. Eng. J. 2020, 380, 122458. [Google Scholar] [CrossRef]
- Liang, Z.; Cui, X.; Yang, L.; Hu, Q.; Li, D.; Zhang, X.; Han, L.; Shi, S.; Shen, Y.; Zhao, W.; et al. Co-assembled nanocomplexes of peptide neoantigen Adpgk and Toll-like receptor 9 agonist CpG ODN for efficient colorectal cancer immunotherapy. Int. J. Pharm. 2021, 608, 121091. [Google Scholar] [CrossRef]
- Shi, X.; Song, H.; Wang, C.; Zhang, C.; Huang, P.; Kong, D. Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy. Chem. Eng. J. 2020, 399, 125854. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, S.; Huang, W.; Zan, X.; Geng, W. Efficient delivery of antibodies intracellularly by co-assembly with hexahistidine-metal assemblies (HmA). Int. J. Nanomed. 2021, 16, 7449–7461. [Google Scholar] [CrossRef]
- Su, Q.; Song, H.; Huang, P.; Zhang, C.; Yang, J.; Kong, D. Supramolecular co-assembly of self-adjuvanting nanofibrious peptide hydrogel enhances cancer vaccination by activating MyD88-dependent NF-κB signaling pathway without inflammation. Bioact. Mater. 2021, 6, 3924–3934. [Google Scholar] [CrossRef]
- Sun, M.; Yao, S.; Fan, L.; Fang, Z.; Miao, W.; Hu, Z. Fibroblast activation protein-α responsive peptide assembling prodrug nanoparticles for remodeling the immunosuppressive microenvironment and boosting cancer immunotherapy. Small 2022, 18, 2106296. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Chen, W.; Wang, W.; Shi, W.; Chen, J. Self-assembly of photosensitive and radiotherapeutic peptide for combined photodynamic-radio cancer therapy with intracellular delivery of miRNA-139-5p. Bioorg. Med. Chem. 2021, 44, 116305. [Google Scholar] [CrossRef]
- Chen, H.; Guan, X.; Liu, Q.; Yang, L.; Guo, J.; Gao, F. Co-assembled nanocarriers of de novo thiol-activated hydrogen sulfide donors with an RGDFF pentapeptide for targeted therapy of non-small-cell lung cancer. ACS Appl. Mater. Interfaces 2022, 14, 53475–53490. [Google Scholar] [CrossRef]
- Jia, H.; Shang, Y.; Cao, H.; Gao, Y.; Liu, J.; Yang, L.; Yang, C.; Ren, Z. A minimalist supramolecular nanovaccine forcefully propels the Tfh cell and GC B cell responses. Chem. Eng. J. 2022, 435, 134782. [Google Scholar] [CrossRef]
- Law, B.; Weissleder, R.; Tung, C.H. Peptide-based biomaterials for protease-enhanced drug delivery. Biomacromolecules 2006, 7, 1261–1265. [Google Scholar]
- Tan, W.; Zhang, Q.; Quiñones-Frías, M.C.; Hsu, A.Y.; Zhang, Y.; Rodal, A.; Hong, P.; Luo, H.R.; Xu, B. Enzymatic assemblies of thiophosphopeptides instantly target Golgi apparatus and selectively kill cancer cells. J. Am. Chem. Soc. 2022, 144, 6709. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.D.; Lv, G.T.; An, H.W.; Zhang, N.Y.; Wang, H. In Situ Self-Assembly of Bispecific Peptide for Cancer Immunotherapy. Angew. Chem. Int. Ed. 2022, 61, 1–7. [Google Scholar]
- Chang, R.; Zou, Q.; Zhao, L.; Liu, Y.; Xing, R.; Yan, X. Amino-Acid-Encoded Supramolecular Photothermal Nanomedicine for Enhanced Cancer Therapy. Adv. Mater. 2022, 34, 2200139. [Google Scholar] [CrossRef]
- Gao, Y.; Cai, X.; Zou, W.; Tang, X.; Jiang, L.; Hao, J.; Zheng, Y.; Ye, X.; Ying, T.; Li, A. Self-supplying Cu2+ and H2O2 synergistically enhancing disulfiram-mediated melanoma chemotherapy. RSC Adv. 2024, 14, 13180–13189. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Dang, Y.; Lou, H.; Xu, Z.; Zhang, W. Biosensors and Bioelectronics NIR-I Fluorescence Imaging Tumorous Methylglyoxal by an Activatable Nanoprobe Based on Peptide Nanotubes by FRET Process. Biosens. Bioelectron. 2022, 204, 114068. [Google Scholar] [CrossRef]
- Marciano, Y.; Nayeem, N.; Dave, D.; Uljin, R.V. N-acetylation of biodegradable supramolecular peptide nanofilaments selectively enhances their proteolytic stability for targeted delivery of gold-based anticancer agents. ACS Biomater. Sci. Eng. 2023, 12, 3379–3389. [Google Scholar] [CrossRef]
- Luo, H.; Cao, H.; Jia, H.; Shang, Y.; Liu, J. EISA in tandem with ICD to form in situ nanofiber vaccine for enhanced tumor radioimmunotherapy. Adv. Healthc. Mater. 2023, 27, 2301083. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, L.; Fang, Z.; Zou, Z.; Zhao, J.; Zuo, X.; Li, G. Application of Functional Peptides in the Electrochemical and Optical Biosensing of Cancer Biomarkers. Chem. Commun. 2023, 59, 3383–3398. [Google Scholar] [CrossRef]
- Novak, D.; Utikal, J. New Biomarkers in Cancers. Cancers 2021, 13, 708. [Google Scholar] [CrossRef]
- Wei, H.; Yu, Y.; Wang, Y.; Ying, Z.; Cheng, W.; Tian, X.; Kan, Q. Vimentin-Targeting AIEgen-Peptide Conjugates: Wash Free Fluorescence Detection of EMT-Type Cancer Cells and Tissues. Sens. Actuators B Chem. 2020, 321, 128536. [Google Scholar] [CrossRef]
- Yu, N.; Huang, T.; Duan, T.; Bao, Y.; Gao, R.; Wang, X.; Xu, K.; Han, C. Accurate Detection and Delineation Boundary of Renal Cell Carcinoma Based on Dual-Targeted Magnetic-Fluorescent Carbon Dots. Chem. Eng. J. 2022, 440, 135801. [Google Scholar] [CrossRef]
- Yan, R.; Hu, Y.; Liu, F.; Wei, S.; Fang, D.; Shuhendler, A.J.; Liu, H.; Chen, H.; Ye, D. Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. J. Am. Chem. Soc. 2019, 141, 10331–10341. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Wu, W.; Xie, L.; Geng, H.; Zhang, Y.; Hanyu, M. Wholebody pet tracking of a D-dodecapeptide and its radiotheranostic potential for PD-L1 overexpressing tumors. Acta Pharm. Sin. B 2022, 12, 1363–1376. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, M.; Chen, B.; Liu, H.; Fang, J.; Xiang, S. Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2584–2594. [Google Scholar] [CrossRef]
- Dominijanni, A.J.; Devarasetty, M.; Forsythe, S.D.; Votanopoulos, K.I.; Soker, S. Cell Viability Assays in Three-Dimensional Hydrogels: A Comparative Study of Accuracy. Tissue Eng. Part C 2021, 27, 401–410. [Google Scholar] [CrossRef]
- Song, H.; Cai, G.H.; Liang, J.; Ao, D.S.; Wang, H.; Yang, Z.H. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanobrous microenvironments of three hydrogel biomaterials. J. Nanobiotechnol. 2020, 18, 90. [Google Scholar] [CrossRef]
- Huang, H.; Ding, Y.; Sun, X.S.; Nguyen, T.A. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells. PLoS ONE 2013, 8, e59482. [Google Scholar] [CrossRef]
- Nagai, Y.; Yokoi, H.; Kaihara, K.; Naruse, K. The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel. Biomaterials 2012, 33, 1044–1051. [Google Scholar] [CrossRef]
- Kim, J.; Narayana, A.; Patel, S.; Sahay, G. Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics 2019, 9, 3191. [Google Scholar] [CrossRef]
- Panikar, S.S.; Ramírez-García, G.; Vallejo-Cardona, A.A.; Banu, N.; Patrón-Soberano, O.A.; Cialla-May, D.; Camacho-Villegas, T.A.; de la Rosa, E. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF4:Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale 2019, 11, 20598–20613. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-L.; Chou, Y.-T.; Su, B.-K.; Wu, C.-C.; Wang, C.-H.; Chang, K.-H.; Ho, J.-A.A.; Chou, P.-T. Comprehensive Thione-Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging, Tracking, and Targeted Photodynamic Therapy. J. Am. Chem. Soc. 2022, 144, 17249–17260. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Shin, Y.; Won, W.R.; Lim, C.; Kim, J.C.; Kang, K.; Husni, P.; Lee, E.S.; Youn, Y.S.; Oh, K.T. Development of AE147 Peptide-Conjugated Nanocarriers for Targeting uPAR-Overexpressing Cancer Cells. Int. J. Nanomed. 2021, 16, 5437–5449. [Google Scholar] [CrossRef] [PubMed]
- Peth, L.; Murányi, J.; Pénzes, K.; Gurbi, B.; Brauswetter, D.; Halmos, G.; Csík, G.; Mez˝o, G. Suitability of GnRH Receptors for Targeted Photodynamic Therapy in Head and Neck Cancers. Int. J. Mol. Sci. 2019, 20, 5027. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Gauri, S.S.; Mukhopadhyay, S.K.; Chatterjee, S.; Das, S.S.; Mandal, S.M.; Dey, S. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides 2014, 54, 148–158. [Google Scholar] [CrossRef]
- Gerlach, S.L.; Rathinakumar, R.; Chakravarty, G.; Göransson, U.; Wimley, W.C.; Darwin, S.P.; Mondal, D. Anticancer and chemosensitizing abilities of cycloviolacin O2 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Biopolymers 2010, 94, 617–625. [Google Scholar] [CrossRef]
- Sarojini, V.; Cameron, A.J.; Varnava, K.G.; Denny, W.A.; Sanjayan, G. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function. Chem. Rev. 2019, 119, 10318–10359. [Google Scholar] [CrossRef]
- Tan, J.; Tay, J.; Hedrick, J.; Yang, Y.Y. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020, 252, 120078. [Google Scholar] [CrossRef]
- Kaushik, A.C.; Mehmood, A.; Peng, S.; Zhang, Y.J.; Dai, X.; Wei, D.Q. A-CaMP: A tool for anti-cancer and antimicrobial peptide generation. J. Biomol. Struct. Dyn. 2020, 39, 285–293. [Google Scholar] [CrossRef]
- Piotrowska, U.; Sobczak, M.; Oledzka, E. Current state of a dual behaviour of antimicrobial peptides—Therapeutic agents and promising delivery vectors. Chem. Biol. Drug Des. 2017, 90, 1079–1093. [Google Scholar] [CrossRef]
- Trinidad-Calderón, P.A.; Varela-Chinchilla, C.D.; García-Lara, S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021, 26, 7453. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int. J. Pept. Res. Ther. 2020, 26, 139–150. [Google Scholar] [CrossRef]
- Bojarska, J.; Mieczkowski, A.; Ziora, Z.M.; Skwarczynski, M.; Toth, I.; Shalash, A.O.; Parang, K.; El-Mowafi, S.A.; Mohammed, E.H.M.; Elnagdy, S.; et al. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Konno, K.; Rangel, M.; Oliveira, J.S.; dos Santos Cabrera, M.P.; Fontana, R.; Hirata, I.Y.; Hide, I.; Nakata, Y.; Mori, K.; Kawano, M.; et al. Decoralin, a novel linear cationic helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 2007, 28, 2320–2327. [Google Scholar] [CrossRef]
- Souza, B.M.; Mendes, M.A.; Santos, L.D.; Marques, M.R.; César, L.M.M.; Almeida, R.N.A.; Pagnocca, F.C.; Konno, K.; Palma, M.S. Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 2005, 26, 2157–2164. [Google Scholar] [CrossRef]
- Laederach, A.; Andreotti, A.H.; Bruce Fulton, D. Solution and Micelle-Bound Structures of Tachyplesin I and Its Active Aromatic Linear Derivatives. Biochemistry 2002, 41, 12359–12368. [Google Scholar] [CrossRef]
- Lan, Y.; Ye, Y.; Kozlowska, J.; Lam, J.K.W.; Drake, A.F.; Mason, A.J. Structural contributions to the intracellular targeting strategies of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2010, 1798, 1934–1943. [Google Scholar] [CrossRef]
- Aisenbrey, C.; Amaro, M.; Pospíšil, P.; Hof, M.; Bechinger, B. Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids. Sci. Rep. 2020, 10, 11652. [Google Scholar] [CrossRef]
- Mandal, S.M.; Migliolo, L.; Das, S.; Mandal, M.; Franco, O.L.; Hazra, T.K. Identification and characterization of a bactericidal an proapoptotic peptide from cycas revoluta seeds with DNA binding properties. J. Cell. Biochem. 2012, 113, 184–193. [Google Scholar] [CrossRef]
- Azuma, M.; Del Carpio, C.A.; Kojima, T.; Yokoyama, I.; Tajiri, H.; Yoshikawa, K.; Saga, S. Antibacterial activity of multiple antygen peptides homologous to a loop region in human lactoferrin. J. Pept. Res. 2008, 54, 237–241. [Google Scholar] [CrossRef]
- Shai, Y.; Bach, D.; Yanovsky, A. Channel formation properties of synthetic pardaxin and analogues. J. Biol. Chem. 1990, 265, 20202–20209. [Google Scholar] [CrossRef] [PubMed]
- Vadevoo, S.M.P.; Gurung, S.; Lee, H.S.; Rangaswamy Gunassekaran, G.; Lee, S.M.; Yoon, J.W.; Lee, Y.K.; Lee, B. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 2023, 55, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Fath, M.K.; Babakhaniyan, K.; Zokaei, M.; Yaghoubian, A.; Akbari, S.; Khorsandi, M.; Soofi, A.; Zalpoor, H.; Jalalifar, F.; Azargoonjahromi, A.; et al. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell. Mol. Biol. Lett. 2022, 27, 33–59. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, M.; Giovannelli, P.; Barone, M.V.; Auricchio, F.; Castoria, G.; Migliaccio, A. A Small Peptide Targeting the Ligand-Induced Androgen Receptor/Filamin a Interaction Inhibits the Invasive Phenotype of Prostate Cancer Cells. Cells 2022, 11, 14. [Google Scholar] [CrossRef]
- Giovannelli, P.; Di Donato, M.; Auricchio, F.; Castoria, G.; Migliaccio, A. Androgens Induce Invasiveness of Triple Negative Breast Cancer Cells Through AR/Src/PI3-K Complex Assembly. Sci. Rep. 2019, 9, 4490. [Google Scholar] [CrossRef]
- Migliaccio, A.; Castoria, G.; de Falco, A.; Bilancio, A.; Giovannelli, P.; Di Donato, M.; Marino, I.; Yamaguchi, H.; Appella, E.; Auricchio, F. Polyproline and Tat transduction peptides in the study of the rapid actions of steroid receptors. Steroids 2012, 77, 974–978. [Google Scholar] [CrossRef]
Name | Sequence | Ref. |
---|---|---|
CSBP | ldvflyse | [22] |
C25 | CVPMTYRAC | [23] |
HAC-I | HVIHEGTVVI | [24] |
HAC-V | HVVHEGTVVI | [24] |
pep-20-D12 | awsATWSNYwrh | [25] |
DPPA-1 | NYSKPTDRQYHF | [26] |
DTBP-3 | GGYTHWHRLNP | [14] |
DPPA-2 | KHAHHTHNLRLP | [26] |
DVS3 | dpGWSFGKLHWPGS-Pal) | [27] |
Peptide-99 | Cyclic[FLIVIRDRVFR(Scc)]G | [28] |
PDLong1 | FMTYWHLLN-AFTVTVPKDL | [29] |
TPP-1 | SGQYASYHCWC-WRDPGRSGGSK | [30] |
AUNP-12 | (SNTSESF)2KFRVTQ-LAPKQIKE-NH2 | [31] |
Peptide-57 | Cyclic[F(NMe)ANPHLSWSW(NMe)[NLe](NMe)[NLe]R(Scc)]G | [28] |
Peptide-71 | Cyclic[F(NMe)F(NMe)[NLe](Sar)DV(NMe)FY(Sar)WYL(Scc)]G | [28] |
BMS-986189 | [(Met)-Tyr-Ala-Asn-Pro-(Dpr)-Leu-(Hyp)-Trp-(Dab)-Trp-(Nle)-(Nle)-Leu-Cys-Gly] | [14] |
Peptide | Active Ingredient | Application | Ref. |
---|---|---|---|
RADA16 | Anti-PD-1 + DCs + OVA peptide | delivery system for DC-based vaccine in EG7-OVA tumor model | [147] |
K2(SL)6K2 | STING agonist | delivery system in MOC2-E6E7 tumor model | [151] |
Fmoc-KCRGDK | BRD4 inhibitor + indocyanine green + autologous tumor cells | delivery system for postoperative cancer immunotherapy in 4T1 tumor model | [150] |
Ac-I3SLKG-NH2 | G(IIKK)3I-NH2 | delivery system for MMP-2 overexpressing HeLa tumor model | [152] |
OVA253–266 peptide | OVA253–266 peptide conjugated with dialkyl lipid tail and 2 palmitic chains | delivery system plus peptide tumor antigen in EG7-OVA tumor model | [123] |
OVA254–267-HBc (Hepatitis B core protein) | OVA254–267 peptide | delivery system plus tumor antigen plus adjuvant for B16-OVA-Luc tumor model | [153] |
Peptide-MHC/ANXA5 | Peptide-MHC (pMHC) | antigen for B16-OVA tumor model | [154] |
Ada-GFFYGKKK-NH2 | OVA peptide | nano-adjuvant for B16-OVA cancer immunotherapy | [136] |
Nap-GFFpY-OMe | OVA peptide | vaccine adjuvant for EG7-OVA tumor model | [116] |
Q11 (QQKFQFQFEQQ) | Mucin 1 (MUC1) glycopeptide | delivery system plus adjuvant for MCF-7 tumor model | [95] |
Ac-AAVVLLLW-COOH | OVA250–264 + HPV16 E743–57 | TC-1 tumor model | [104] |
Cholesterol-aK-Cha- VAaWTLKAa- LEEKKGNYVVTDH | EGFRvIII + PADRE epitopes | cellular and humoral immune response in B16-EGFRvIII tumor model | [155] |
Coil29 (QARILEADAEIL RAYARILEAHAEILRAD) | EGFRvIII, PADRE, SIINFEKL, PEPvIII | induction of CD4+ T-cell, and CD8+ T-cell and B-cell responses in mice | [132] |
DEAP-DPPA-1 | PD-L1 antagonist (DPPA-1) + peptide substrate of MMP-2 + indoleamine-dioxygenase inhibitor (NLG919) | B16-F10 tumor model | [156] |
GDFDFDYDX-ss-ERGD (X = E, S or K) | tumor vaccine delivery | [25] | |
GE11 (EGFR ligand) | Acetylcholinesterase gene + Doxorubicin | drug and gene delivery system targeted toward EGFR-expressing cancer | [157] |
S4-8Q (QAEPDRAHYNIVTFCCKCD conjugated to a 4-arm star polymer) | 8Q (HPV-16 E7 epitope) | TC-1 tumor model | [11] |
Self-Assembled Peptide | Delivered Molecule | Ref. |
---|---|---|
Drugs delivery | ||
AmPDKK2/AmPDKK2K4 | doxorubicin | [36] |
Ac-ATK(C18)DATGPAK(C18)TA | doxorubicin | [160] |
Nap-GFFYGRGDH | doxorubicin | [161] |
Fmoc-FK (FK)/Fmoc-FKK (FKK) | doxorubicin | [162] |
LLLLLLKKKGRGDS | doxorubicin | [163] |
Adenine acetic acid-FFF | doxorubicin | [164] |
PEG-QAEAQACA | doxorubicin | [165] |
ATKTA-S-S-ATKTA | curcumin | [166] |
RGD-PEG-SS-PTX | paclitaxel | [167] |
GGVVVRGDR | paclitaxel | [168] |
Npx-DFDFDEDY | cisplatin | [25] |
chlorambucil-FFFK-cyclen | chlorambucil | [169] |
CA-C11-GGGRGDS | methotrexate | [170] |
RADA16-I | doxorubicin, curcumin | [171] |
Cbz-FF | doxorubicin, curcumin | [172] |
EVEALEKKVAALEC KVQALEKKVEALEHGW | doxorubicin, apomorphine, rapamycin, tamoxifen, dexamethasone, paclitaxel | [173] |
AAAAAAK | boron neutron | [174] |
GRVGPLGK | doxorubicin/paclitaxel/ curcumin | [175] |
IDM-GFFYGRGDH | IMD + doxorubicin | [161] |
FKFEY-YSV | hydroxycamptothecin + tyroservatide | [176] |
Nap-FFYERGD | cisplatin + irinotecan | [177] |
HCPT-FFERGD | hydroxycamptothecin + cisplatin | [146] |
Rh-GFFYERGD | Rhe + Cisplatin | [178] |
Gene delivery | ||
FF | SiRNA | [179] |
RRRR | pDNA | [148] |
AAAAAAK | SiRNA | [180] |
KKALLHAALAHLL ALAHHLLALLKKA | lentiviral | [181] |
Other delivery | ||
Nap-FFGGG-β-Gal | Achieving radiosensitization by the delivery of NO to normalize blood vessels | [182] |
DOCA-PLGLAG-iRGD | Delivery of STING agonist and aPD1 | [150] |
Gene drugs-based co-assembly | ||
Retro-Inverso CADY-K | siRNA | [183] |
KALA-2LMWP-NLS | pDNA | [184] |
TR4 | pDNA | [148] |
Fmoc-RRMEHRMEW | siRNA/AS1411 aptamer | [30,185] |
GRVEVLYRGSW GRVRVLYRGSW | siRNA | [186] |
STR-H16R8 | siRNA | [187] |
STR-HK | siRNA | [188] |
TNCP | ASN | [189] |
FC-PyTPA | Bcl-2 siRNA + PyTPA | [190] |
Chol-HHHHHHH-AKRGARSTA | siRNA + 1-methyl-DL-tryptophan | [9] |
Phototherapeutic agents-based co-assembly | ||
NapFFKYp | indocyanine green | [191] |
Z-Histidine-Obzl | biliverdin | [192] |
Fmoc-L3-OMe | m-5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin | [9] |
H-FF-NH2·HCl, Fmoc-K | chlorine6 | [193] |
Fmoc-L-L | chlorine6 | [194] |
Fmoc-L3-Arg | 5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin | [195] |
TAT-IR780 | IR780 + doxorubicin | [196] |
RKDVY(TP5) | TP5 + indocyanine green | [20] |
LND-K | TPPS4(photosensitizer) + lonidamine | [159] |
Immunotherapeutic agents-based co-assembly | ||
10 K-Adpgk | Adpgk (neoantigen peptide) | [197] |
Epitope-R8 | epitope | [198] |
AC-KLVFFAL-NH2 | cyclic diguanylate monophosphate | [120] |
Fbp-GDFDFDYD(E, S, or K)-ss-ERGD | OVA (ovalbumin) | [25] |
Fbp-GDFDFDYDK(γE)2-NH2 | OVA | [25] |
HmA | antibody | [199] |
ECPs | K-OVA257–264 + E-OVA323–336 | [200] |
DEAP-DPPA-1 | DPPA + NLG919 | [156] |
PCP | R848 + doxorubicin | [201] |
AmpF, AmpFY, AmpFC919 | NLG919 (indoleamine 2, 3-dioxygenase (IDO) inhibitor) + 125I | [20] |
Radiosensitizer-based co-assembly | ||
Ce6-R9-125I-RGD | 125I + Ce6 + miR-139-5p | [202] |
NIA-D1 | 2-(2-nitroimidazol- 1-yl) acetic acid + R848 | [35] |
FFRGD | H2S + 2-Gy radiation | [203] |
HCPT-FFRGD | nuclear delivery of dual anticancer drugs | [146] |
NBD-DFDF-Thioester | Golgi targeting and destruction | [206] |
LTP-VEALYL | lysosome targeting and destruction | [207] |
Npx-DFDFDK(Pt)DpY | in situ nanomedicine and pro-apoptosis | [202] |
ABS-GFFKYPLGLAG-PEG1000 | conquering radioresistance by inducing CSC differentiation | [150] |
DNDYDSDKDPDTDDDRDQDYDHDF | PD-L1 inhibition | [150] |
LGASWHRPDKK(PLGYLG-(man)3-)LVFFAECG | bispecific nanoantibody | [150] |
Fbp-GDFDFDpY | radioimmunotherapy | [212] |
Nap-FFK(CPT)-K(HCQ)-pY | chemoimmunotherapy | [209] |
RKDVY-ICG | photothermal immunotherapy | [208] |
ligand/receptor | photodynamic therapy | [66] |
QRHKPRE (QRH)/epidermal growth factor receptor | [150] | |
YHWYGYTPQNVI (GE11) | [150] | |
CMYIEALDKYAC | [150] | |
WxEAAYQrFL/keratin 1 | [224] | |
LQNAPRS/CD133 | [217] | |
anti-HER2 peptide/human epidermal growth factor receptor 2 | [225] | |
cyclo-[2NaI-Gly-d-Tyr-Arg-Arg] (FC131)/cel-syrface chemokine receptor | [226] | |
KSD-cha-FskYLWSSK(AE147)/urokinase-type plasminogen activator receptor | [227] | |
KDKPPR/NRP-1 | [203] | |
EHWSYGLRPG/gonadotropin-releasing hormone receptor | [228] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojarska, J.; Wolf, W.M. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers 2024, 16, 3254. https://doi.org/10.3390/cancers16193254
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers. 2024; 16(19):3254. https://doi.org/10.3390/cancers16193254
Chicago/Turabian StyleBojarska, Joanna, and Wojciech M. Wolf. 2024. "Short Peptides as Powerful Arsenal for Smart Fighting Cancer" Cancers 16, no. 19: 3254. https://doi.org/10.3390/cancers16193254
APA StyleBojarska, J., & Wolf, W. M. (2024). Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers, 16(19), 3254. https://doi.org/10.3390/cancers16193254